Compositional analysis and origin of the Peñas Coloradas Formation, Río Chico Group (Late Paleocene-Eocene?), in the eastern region of the Golfo de San Jorge basin, Chubut, Argentina
Keywords:
Detritic modes; Petrofacies; Provenance; Peñas Coloradas Formation; Golfo de San Jorge BasinAbstract
This work describes the sandstone composition and provenance of the Peñas Coloradas Formation (Late Paleocene-Eocene?) located in the eastern sector of the Golfo de San Jorge basin, in the Chubut Province. Sandy sections in the unit from the profiles of the localities of Punta Peligro, Estancia La Rosa and Cañadón Hondo (Fig. 1) were analyzed petrographically, together with the diffractometric analysis of sandy and shale levels. The obtained data were used to define detritic modes, classify sandstones, differentiate petrofacies, and to infer the possible source of materials, in a warm and humid paleoclimatic context.
In this part of the basin, the Peñas Coloradas Formation is composed of thin bedded conglomerates and sandstones of variable grain sizes (fine to coarse) with intercalated mudstone beds, which show evidences of pedogenesis. They are composed by grey to reddish epiclastic and volcaniclastics, with an average thickness of 80 m and representing a fluvial system of high to moderate energy (Fig. 2). The paleontological record is represented by fossil woods suggesting a warm and humid weather (Brea et al., 2004, Brea and Zucol, 2006 and Raigemborn et al., 2006) and mammals remnants of Late Paleocene age belonging to the Carodnia Fauna (Simpson, 1935).
The Golfo San Jorge extensional basin was developed during the Jurassic and Cretaceous in a cratonic setting (Hechem and Strelkov, 2002). An extensive marine flooding took place from Maastrichtian to Early Paleocene, when the Salamanca Formation was deposited (Uliana and Legarreta, 1999). During the late Paleocene, the sedimentation evolved into a continental environment with the deposition of the Río Chico Group: Peñas Coloradas, Las Flores and Koluél Kaike formations was characterized by recurrence of lacustrine and fluvial conditions (Legarreta and Uliana, 1994). Contemporarily, a bimodal calcoalcaline volcanism developed in the Pilcaniyeu Belt (Rapela and Kay, 1988).
Medium to coarse sandstones with matrix < 15 % was used in order to analyze provenance using the Gazzi-Dickinson method (Ingersoll et al., 1984; Zuffa, 1985). At least 300 clasts were counted per thin section. The recognized components are shown in Table 1. The average composition of the plagioclases isandesine-oligoclase and that of the K-feldspar is sanidine and microcline. Scarce volcanic lithics show dissolution (Figure 3c), developing a pseudomatrix (Dickinson, 1970). Clay and siliceous cements are abundant in many sandstone samples (Figure 3a and b). Less commonly, cementation is by iron oxide and calcite. Sandstones from Peñas Coloradas Formation are not intensely altered diagenetically.
The classification diagram of Folk et al. (1970) shows an average Q21F43L36 (Fig. 4 and Table 2). In general, the analyzed samples present a predominance of plagioclase over K-feldspar and relationships of Lv/L close to 1. These sandstones show increased proportions of quartz and feldspar, and decreases in the relative proportion of lithics with time.
Two petrofacies were differentiated (Table 2). The petrofacies I (Q<28 %) are composed of feldespathic litharenites and lithic feldarenites (Q14F44L42), with high P/K relations, the volcanic lithics are very abundant, and variety with microlithic texture predominates (Fig. 3b and d). This petrofacies characterizes the lower levels of the Peñas Coloradas Formation. The petrofacies II (Q>28 %) is integrated by lithic feldarenites (Q36F40L24), showing a P/K relation smaller than in petrofacies I with more abundant feldspar than in lithic fragments (Fig. 3a and c). This petrofacies is observed in the upper sections of the Peñas Coloradas Formation.
The X-Ray analysis (Table 3) was carried out in air-dried, glycolated and heated samples (550º C) over samples coming from shales (< 4 ìm fraction). Semi-quantitative estimations of contents of identified species were performed by measuring peak areas on glycolate preparations (Biscaye, 1965). The smectite is the most abundant clay mineral, with kaolinite, illite and interestratificated I/S. Clinoptilolite and amorphous silica (opal-CT) are present in all of the samples. This mineralogical association can be attributed to the alteration of ash (De Ros et al., 1997) under warm and humid climatic conditions, with certain seasonality (Dingle and Lavelle, 2000).
Cross-bedding and orient trunks of the Peñas Coloradas Formation indicate a uniform axial sedimentary transport from NW and W to SE and W (Fig. 2). The provenance area is viewed in the diagrams QtFL (Fig. 4b) and QmFLt (Fig. 4c) (Dickinson and Suczek, 1979; Dickinson et al., 1983). The samples show magmatic arc provenance from transitional arc (petrofacies I) to dissected arc (petrofacies II), and they show increased proportions of quartz and feldspar. This compositional change may record the arc dissection (Dickinson et al., 1983), being the volcanic cover removed gradually, leading to the partial exposition of the batholithic rocks of the arc, during the latest stages.
The characteristics of the petrofacies I indicate a supply from the volcanic cover of the magmatic arc (Valloni and Mezzadri, 1984). The petrofacies II displacement is related to the gradual removal of the volcanic cover and the partial exposition of the arc granitic roots (Marsaglia and Ingersoll, 1992). The absence of plutonic origin fragments could also be due to the fact that these are separate in their individual mineral components in the analyzed sandy fraction. At the same time, the partial dissolution and alteration observed in the majority of potassic feldspar grains may be attributed to their low chemical stability under humid and warm weather (Suttner et al., 1981). It is interesting to note that the proportion of K-feldspar in the QmPK diagram (Fig. 4d) does not vary significantly, indicating that the arc provenance was not exhumed deeply enough to expose its plutonic root (Yan et al., 2006).
Petrography data from Peñas Coloradas Formation suggest that they were derived mainly form a magmatic arc, where the sedimentary-volcanic cover was removed gradually, leading to the partial exposition of the batholithic rocks during the latest stages. Paleocurrent indicators demonstrate that this arc was located in the west and northwest of the study area.
Given the compositional characteristics of the Peñas Coloradas Formation and the important volcanic activity during the Paleocene in Patagonia, it may be deduced that the main part of the materials have been provided from the Paleocene-Eocene arc of Pilcaniyeu Belt (Rapela and Kay, 1988), situated to the northwest of the study area (Raigemborn, 2005). The latter was developed between 60 and 43 Ma in northern Patagonian (40 to 43ºS), represented by a bimodal calcoalcaline volcanism composed of basaltic to rhyolitic rocks with ignimbritic facies (Rapela et al., 1984), under a warm and humid but seasonal climate (Aragón and Romero, 1984).
A minor contribution from Paleocene Plateau Basalt and older volcanic units is not ruled out, such as the Middle Jurassic of the Marifil Complex and Cretaceous of the Divisadero Group or equivalents, which crop out towards the W and NW of the study area.
References
Ameghino, F., 1906. Les formations sedimentaires du Crétacé et du Tertiaire de Patagonie entre les faunes mammalogiques et celles de l'ancien continent. Anales del Museo Nacional de Buenos Aires 15:1-568.
Andreis, R. R., 1977. Geología del área de Cañadón Hondo. Departamento de Escalante, Provincia del Chubut, República Argentina. Obra del Centenario del Museo de La Plata 4:77-102.
Andreis, R., M. Mazzoni y L.A. Spalletti, 1975. Estudio estratigráfico y paleoambiental de las sedimentitas terciarias entre Pico Salamanca y Bahía Bustamante, Provincia de Chubut, República Argentina. Revista de la Asociación Geológica Argentina 30:85-103.
Andreis, R. y P. Zalba, 2003. Procesos diagenéticos en las piroclastitas terciarias de la Patagonia: Formaciones Río Chico y Sarmiento (Chubut, Argentina). 3º Congreso Mexicano de Zeolitas Naturales: 73-74.
Aragón, E. y E. Romero, 1984. Geología, Paleoambientes y Paleobotánica de Yacimientos terciarios del occidente de Río Negro, Neuquén y Chubut. IX Congreso Geológico Argentino, Actas IV: 475-507, San Carlos de Bariloche.
Biscaye, P. E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society American Bulletin 76:803-832.
Brea, M., A.F. Zucol, M.S. Raigemborn, y S. Matheos, 2004. Leños fósiles del Paleoceno superior (Grupo Río Chico), provincia del Chubut, Argentina. Ameghiniana, Resúmenes 41:7-8
Brea, M. y A.F. Zucol, 2006. Leños fósiles de Boraginaceae de la Formación Peñas Coloradas (Paleoceno superior), Puerto Visser, Chubut, Argentina. Ameghiniana 43:139-146.
Brindley, G. y G. Brown, 1980. Crystal structures of clay minerals and their X-ray identification. Mineral. Soc. Monogr. 5.
Chamley, H., 1989. Clay sedimentology, Springer-Verlag, New York, 623 pp.
Critelli, S. y R. Ingersoll, 1995. Interpretation of neovolcanic versus palaeovolcanic sand grains: an example from Miocene deep-marine sandstone of the Topanga Group (Southern California). Sedimentology 42:783-804.
Critelli, S., P. Rumelhart y R. Ingersoll, 1995. Petrofacies and provenance of the Puente Formation (Middle to upper Miocene), Los Angeles Basin, Southern California: implications for rapid uplift and accumulation rates. Journal of Sedimentary Research, A65:656-667.
De Ros, L., S. Morad e I. Al-Aasm, 1997. Diagénesis of silicoclastic and volcaniclastic sediments in the Cretaceous and Miocene sequences of the NW African margin (DSDP Leg 47A, Site 397). Sedimentary Geology 112:137-156.
De Rosa, R., G. Zuffa, A. Taira y J. Leggett, 1986. Petrography of trench sands from the Nakai Trough, southwest Japan: implications for long-distance turbidites transportation. Geological Magazine 23:477-486.
Dickinson W., 1970. Interpreting detrital modes of greywacke and arkose. Journal of Sedimentary Petrology, 40:695-707.
Dickinson W. y Suczek, C., 1979. Plate tectonics and sandstone composition. The American Association of Petroleum Geologist Bulletin 63:2164-2182.
Dickinson W., L. Breard, G. Brakenridge, J. Erjavec, R. Ferguson, K. Inman, R. Knepp, F. Lindberg y P. Ryberg, 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin 94:222-235.
Dingle, R., y M. Lavelle, 2000. Antarctic Peninsula Late Cretaceous-Early Cenozoic paleoenvironments and Gondwana plaeogeographies. Journal of African Earth Sciences 31:91-105.
Egger, H., M. Homayoun y W. Schnabel, 2002. Tectonic and climatic control of Paleogene sedimentation in the Rhenodanubian Flysch basin (Eastern Alps, Austria). Sedimentary Geology 152:247-262.
Espejo, I. y O. López Gamundí, 1994. Source versus depositional controls on sandstone composition in a foreland basin: the El Imperial Formation (mid Carboniferous-lower Permian), San Rafael basin, Western Argentina. Journal of Sedimentary Research, A64:8-16.
Feruglio, E., 1929. Apuntes sobre la constitución geológica de la región del Golfo de San Jorge. En: Anales de la Sociedad Argentina de Estudios Geográficos (GAEA) III:395-486.
Feruglio, E., 1938. Relaciones estratigráficas entre el Patagoniano y el Santacruciano en la Patagonia Austral. Revista del Museo de La Plata (nueva serie) I, sección Geología 4:129-159.
Feruglio, E., 1949. Descripción geológica de la Patagonia. YPF Tomo II:1-349.
Folk. R., P. Andrews y D. Lewis, 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics 13:937-968.
Hechem, J. y E. Strelkov, 2002. Secuencia sedimentaria mesozoica del Golfo San Jorge, En M.J.Haller (Editor): Geología y Recursos Naturales de Santa Cruz. Relatorio del XV Congreso Geológico Argentino. 1-9:129-147, El Calafate.
Huggett, J., A. Gale y D. Wray, 2005. Diagenetic clinoptilolite and opalo CT from the middle Eocene Wittering Formation, Isle of Wight, UK. Journal of Sedimentary Research 75:585-595.
Ingersoll, R., 1983. Petrofacies and provenance of Late Mesozoic Foreacr Basin, Northern and Central California. The American Association of Petroleum Geologists Bulletin 67:1125-1142.
Ingersoll, R., T. Bullard, R. Ford, J. Grimm, J. Pickle y S. Sares, 1984. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology 54:103-116.
Inglès M. y E. Ramos-Guerrero, 1995. Sedimentological control on the clay mineral distribution in the marine and non-marine Paleogene deposits of Mallorc (Western Mediterranean). Sedimentary Geology 94:229-243.
Legarreta, L. y M.A. Uliana, 1994. Asociación de fósiles y hiatos en el supracretácico-Neógeno de Patagonia: una perspectiva estratigráfico-secuencial. Ameghiniana 31:257-281.
Limarino O, L. Net, P. Gutierrez, A. Caselli y S. Ballent, 2000. Definición litoestratigráfica de la Formación Ciénaga del Río Huaco (Cretácico superior), Precordillera central, San Juan, Argentina. Revista de la Asociación Geológica Argentina 55:83-99.
Mansfield, C., 1971. Stratigraphic variation in sandstone petrology of the Great Valley Sequence in the southern Coast Ranges west of Coalinga, California. Geological Society of America Abstracts with Programs 3:157.
Marsaglia K., y R. Ingersoll, 1992. Compositional trends in arc-related, deep marine sand and sandstone: a reassessment of magmatic provenance. Geological Society of America Bulletin, 104:1937-1649.
Moore, D. y R. Reynolds Jr, 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford Univ Press, New York 332 pp.
Petriella, B.T. y S. Archangelsky, 1975. Vegetación y ambiente en el Paleoceno de Chubut. I Congreso Argentino de Paleontología y Bioestratigrafía. Actas 2:257-270, Buenos Aires.
Pettijohn, F., P. Potter y R. Siever, 1987. Sand and sandstones. Second edition. Springer-Verlag 553 pp.
Raigemborn, M. S., 2004. Caracterización de los minerales de arcilla de la Formación Koluél Kaike (Paleoceno superior-Eoceno inferior?) en el centro oeste de la cuenca del Golfo San Jorge, Chubut. X Reunión Argentina de Sedimentología. Actas 145-146.
Raigemborn, M.S., 2005. Procedencia de las areniscas de la Formación Peñas Coloradas (Paleoceno superior) en la zona costera al norte de Comodoro Rivadavia, Cuenca del Golfo San Jorge (Chubut, Argentina). XVI Congreso Geológico Argentino. Actas III:103-110, La Plata.
Raigemborn, M. S., M. Brea, A. Zucol y S. Matheos, 2006. Geology, fossil wood and phytolith assemblages from the Upper Paleocene-Eocene? Of central Patagonia, Argentina. Climate and biota of the Early Paleogene Meeting. Abstracts 108, Bilbao.
Rapela, C., L.A. Spalletti, J. Merodio y E. Aragón, 1984. El vulcanismo Paleoceno-Eoceno de la provincia volcánica AndinoPatagónica. IX Congreso Geológico Argentino. Actas VIII:189-213, San Carlos de Bariloche.
Rapela, C. y S. Kay, 1988. Late Paleozoic to Recent magmatic evolution of northern Patagonia. Episodes 11:175-182.
Robert, C. y J. Kennett, 1994. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: clay-mineral evidence. Geology 22:211-214.
Scasso, R. y C. Limarino, 1997. Petrología y diagénesis de rocas clásticas. Asociación Argentina de Sedimentología, publicación especial N° 1: 259 pp.
Simpson G., 1933. Stratigraphic nomenclature of the Early Tertiary of Central Patagonia. American Museum Novitates 644:1-13.
Simpson G., 1935. Occurrence and relationships of the Río Chico fauna of Patagonia. American Museum Natural History Novitates 818:1-21.
Suresh, N., S. Ghosh, R. Kumar y S. Sangode, 2004. Clay-mineral distribution patterns in late Neogene fluvial sediments of the Subathu sub-basin, central sector of Himalayan foreland basin: implications for provenance and climate. Sedimentary Geology 163:265-278.
Suttner, L., A. Basu y G. Mack, 1981. Climate and the origin of quartz arenitas. Journal of Sedimentary Petrology 51:1235-1246.
Uliana, M. A. y L. Legarreta, 1999. El Jurásico y Cretácico de la Patagonia y Antártida. Anales 29, Capitulo 17, Buenos Aires.
Valloni, R. y G. Mezzadri, 1984. Compositional suites of terrigenous deep sea sands of the present continental margins. Sedimentology 31:353-364.
Windhausen, A., 1924. El nacimiento de la Patagonia. Revista de la Asociación Geológica Argentina 2:95-113.
Yan, Z., Z. Wang, T. Wang, Q. Yan, W. Xiao y J. Li, 2006. Provenance and tectonic setting of clastic deposits in the Devonian Xicheng Basin, Qinling orogen, Central China. Journal of Sedimentary Research 76:557-574.
Zuffa, G., 1985. Optical analyses of arenites: Influence of methodology on compositional results. En Zuffa G. (ed.). Provenance of arenites: North Atlantic. Treaty Organization, Advanced Study Institute series 148:165-189.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.