Stratigraphic revision of the Eocene-Pliocene intermontane San Antonio de los Cobres Basin, Puna Salteña, Argentina
Keywords:
Andean Foreland, Intermontane Basin, Geste Formation, San Antonio de los Cobres Formation, Puna.Abstract
The intermontane San Antonio de los Cobres basin (SAC), is located in the Eastern border of the Puna, near the limit with the Eastern Cordillera (Ramos, 2017). This basin preserves the stratigraphic record of the Salta Group (Cretaceous-Eocene) and the Andean foreland (Eocene -Pliocene). This basin has been the subject of numerous investigations mainly focused on structural and volcanic aspects (e.g. Viramonte et al., 1994; Petrinovic et al., 1999; Riller et al., 2001; Petrinovic et al., 2005; Norini et al., 2013; Seggiaro et al., 2016). However, there are few works concerning to the sedimentary sequences, which have led to a lack of consensus on the stratigraphic record. Nevertheless, this basin is of special interest since it is located in a singular position at the limit of the Puna and the Eastern Cordillera, so that the sedimentary record archives the moment and the way in which this area evolved.
In this contribution we present an integrated stratigraphic column for the San Antonio de los Cobres basin based on detailed cartography, stratigraphic relationships, sedimentological characterization and available ages. Likewise, and in accordance with the norms and recommendations of the Argentine Stratigraphy Code (1992), we propose a new lithostratigraphic unit, which allows organizing the stratigraphy of the Miocene record.
The basement of this basin is composed mainly of metamorphic and metasedimentary rocks of Lower Proterozoic - Lower Paleozoic age (e.g. Puscovicana Formation - Ramos (1973), Donato and Vergani (1988), Guayoc Chico Group – Ramos (1970), Parcha Formation - Harrington y Leanza, (1957)) and intrusive igneous rocks (granodiorites and rhyodacitic porphyries) corresponding to the Oire Eruptive Complex (Middle - Upper Ordovician) (Turner, 1960). These units are exposed, in general, in ranges-limiting the basin.
The sedimentary succession of the Cretaceous - Eocene age corresponding to the Salta Group rift related basin lies unconformably on the basement rocks (Turner, 1959). These units maintain the lithological characteristics described for the rest of the basin, in particular with the deposits of the Alemanía and Tres Cruces sub-basins (Salfity and Marquillas, 1994).
The foreland basin is characterized by sandy to conglomeratic rocks, which have been deposited in different continental depositional systems, intercalated with volcanic deposits. The oldest unit that is recognized is the Geste Formation (Turner, 1960; Alonso, 1992). It is identified by the up-wards coarsening pattern and light gray-pink colors. Main outcrops can be found in the area of Corte Blanco and Quebrada Los Patos (Fig. 1d), in the southeastern sector of the basin at the foot of the Muñano mountain range (Fig. 1b - Quebrada Fundiciones), and in the Piscuno area (Fig. 1c). Based on differences in facies associations, three informal sections were distinguished: a) the lower section is characterized by a succession of reddish pelitic layers with sporadic intercalations of tabular banks composed of carbonate pisolites (Fig. 3c). Upwards it passes to tabular layers of claystones, silty claystones and silty sandstones with calcareous nodules and rhizoconcretions; alternating with tabular to lenticular sandy to conglomeratic layers. This section is limited in its top by a hardened calcareous horizon, approximately six meters thick (Fig. 3e); b) the middle section is composed mainly of sandy to conglomeratic facies to the bottom (Fig. 3f) and pebbly to cobbly conglomerates at the top (Fig. 3g) with lenticular geometry, which intercalate with tabular strata of clayey siltstones and silty sandstones facies. The presence of greenish-yellow limestone clasts is highlighted, which suggest the uplift and exhumation of the Yacoraite Formation (Fig. 3h); c) the upper section is made up of tabular to slightly lenticular, pebbly to bouldery, clast-supported and imbricated conglomerates (Fig. 3i). At the moment, this Formation lacks absolute age determination in the study area. By similarity and correlation with the exposed outcrops in the adjacent Pastos Grandes basin, we assume ages between 37 - 35 Ma (DeCelles et al., 2007).
The Conglomerado Los Patos lies on angular unconformity over different units of the Santa Bárbara Subgroup (Fig. 3j, k) and/or on the Geste Formation (Fig. 3d). It is composed by cobbly to bouldery, matrix-supported conglomerates, clast-supported conglomerates and conglomerates with imbricated clasts. A maximum depositional age of 14.5 ± 0.5 Ma is constrained by U-Pb zircon dating in a volcanic clast contained in the base of the unit (del Papa and Petrinovic, 2017) while the top is limited at 13 Ma of the Viscachayoc Ignimbrite (Petrinovic et al., 1999).
The sedimentary succession above the Vizcachayoc Ignimbrite and below the Pleistocene – Holocene deposits has been named San Antonio de los Cobres Formation by Pingel et al., (2019). In the present work, we proposed the formal assignation complemented by stratigraphic details and sedimentological descriptions. Based on distinctive sedimentary facies associations, this Formation is divided into two formal members: a) Corte Blanco Member (Nom. Nov.): it lies unconformably on the Conglomerado Los Patos (Fig. 3k), on the Vizcachayoc Ignimbrite, or on the Geste Formation. It is characterized by a basal eruptive unit known as “Corte Blanco Ignimbrite” (Nom. Nov. for Toba I of Viramonte et al., 1984). Above, it develops an aeolian and fluvio-aeolian succession (Figs. 4, 5b) composed of sets of sandstones, with tabular cross-stratification and large-scale trough/ tabular cross-stratification. The top is defined by the eruptive unit “Ignimbrita Ramadas” (Nom. Nov. for Tufita Corte Blanco - Viramonte et al., 1984) (Figs. 4, 5a). U-Pb zircon dating in both eruptive units allows us to constraint the age of this Member between 6.4 and 7.8 Ma (Late Miocene); b) Muñano Member (Nom. Nov.): it lies in sharp and concordant relation on Corte Blanco Member. It is characterized by a coarsening upward sequence. It begins with a succession of well-channelized sandstone bodies, intercalated with fine to medium conglomeratic beds. In the medium section predominates levels of multi-layering conglomerates intercalated with medium to coarse sandy beds; while the uppermost section consists of medium to coarse-grained sandy levels with erosive bases (concave) and thin lenses of pebbly conglomerate, and thick bodies of clast-supported, pebbly to bouldery conglomerates towards the top. U-Pb zircon dating yielded an age of 5.5 Ma in volcanic ash fall contained at the upper section (Pingel et al., 2019), so a Late Miocene – Pliocene? age could be assigned to this Member.
References
Alonso, R.N., 1992. Estratigrafía del Cenozoico de la cuenca de Pastos Grandes (Puna Salteña) con énfasis en la Formación Sijes y sus boratos. Revista de la Asociación Geológica Argentina 47(2):189-199.
Andrews, E., T. White y C. del Papa, 2017. Paleosol-based paleoclimate reconstruction of the Paleocene-Eocene Thermal Maximum, northern Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 471:181-195.
Arnosio, M., V. Marmol y R. Becchio, 2005. Estratigrafía volcánica y evolución del centro volcánico El Morro (24° 17’ S – 66° 15’ O) Puna Salteña. Actas del XVI Congreso Geológico Argentino. La Plata. 859-866.
Bigazzi, G., 2004. Fission track dating of the Corte Blanco Tuff. En: Tait, M.A., 2004. Dynamics Eruption Dynamics and Evolution of a Highly Explosive Rhyolitic Volcanic Complex in the High Andes: The Late Miocene Ramadas Volcanic Centre, Andean Puna, Salta Argentina. Ph.D. Thesis, Monash University, Melbourne, Australia.
Carrapa, B. y P.G. DeCelles, 2008. Eocene Exhumation and Basin Development in the Puna of Northwestern Argentina. Tectonics, 27, TC1015.
Carrapa, B., S. Bywater-Reyes, P.G. DeCelles, E. Mortimer y G. Gehrels, 2012. Late Eocene-Pliocene Basin Evolution in the Eastern Cordillera of Northwestern Argentina (25°- 26°S): Regional Implications for Andean Orogenic Wedge Development. Basin Research 24(3):249-268.
Coira, B., S.M. Kay y J.G. Viramonte, 1993. Upper Cenozoic magmatic evolution of the Argentine Puna - A model for changing subduction geometry. International Geology Review 35:677-720.
Coira, B., S.M. Kay, J. G. Viramonte, R.W. Kay y C. Galli, 2018. Origin of Late Miocene Peraluminous Mn-Rich Garnet- Bearing Rhyolitic Ashes in the Andean Foreland (Northern Argentina). Journal of Volcanology and Geothermal Research 364:20-34.
DeCelles, P.G., B. Carrapa, y G.E. Gehrels, 2007. Detrital Zircon U-Pb Ages Provide Provenance and Chronostratigraphic Information from Eocene Synorogenic Deposits in Northwestern Argentina. Geology 35(4): 323-326.
del Papa, C., F. Hong, P. Payrola Bosio, J. Powell, V. Deraco y C. Herrera, 2013a. Relaciones estratigráficas de las Formaciones quebrada de los Colorados y Angastaco (Paleógeno - Neógeno), Valles Calchaquíes, Salta (Argentina): Significado en el análisis de la cuenca del Grupo Payogastilla. Latin American Journal of Sedimentology and Basin Analysis 20(1):51-64.
del Papa, C., F. Hong, J. Powell, P. Payrola, M. Do Campo, M.R. Strecker, I. Petrinovic, A.K. Schmitt y R. Pereyra, 2013b. Middle Eocene-Oligocene broken-foreland evolution in the Andean Calchaqui Valley, NWArgentina: insights from stratigraphic, structural and provenance studies. Basin Research 25:574-593.
del Papa, C.E. y I.A. Petrinovic, 2017. The Development of Miocene Extensional and Short-Lived Basin in the Andean Broken Foreland: The Conglomerado Los Patos, Northwestern Argentina. Journal of South American Earth Sciences 73:191- 201.
Donato, E. y G. Vergani, 1988. Geología del área de San Antonio de los Cobres. Bol. Inf. Pet. 5 (15), 83-101 (Buenos Aires).
Gauthier, P.J., B. Déruelle, J. Viramonte y A. Aparicio, 1994. Grenats des rhyolites de la caldéra de La Pava-Ramadas (NW Argentine) et de leurs xénolites granitiques. Comptes Rendus de l´Académie des Sciences. Paris, t. 38, série II, p. 1629-1635.
Harrington, H.J. y A. Leanza, 1957. Ordovician trilobites of Argentina. University of Kansas Press, Lawrence, 276 p.
Haschke, M., A. Deeken, N. Insel, E. Sobel, M. Grove y A.K. Schmitt, 2005. Growth pattern of the Andean Puna plateau constrained by apatite fission track, apatite (U-Th)/He, K-feldspar 40Ar/39Ar, and zircon U-Pb geochronology. 6th International Symposium on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts: 360-363
Llambías, J.E., A.M. Sato y J. Tomsic, 1985. Geología y características químicas del stock terciario del Nevado de Acay y vulcanitas asociadas. Revista de la Asociación Geológica Argentina 40 (3-4), 158-176.
Lucci, F., M. Rossetti, R. Becchio, T. Theye, A. Gerdes, J. Opitz, W. Baez, L. Bardelli, G. De Astis, J. Viramonte y G. Giordano, 2018. Magmatic Mn-Rich Garnets in Volcanic Settings: Age and Longevity of the Magmatic Plumbing System of the Miocene Ramadas Volcanism (NW Argentina). Lithos 322: 238-49.
Malvicini, L., 1985. La mina de hierro del Nevado de Acay, provincia de Salta, un depósito de tipo Skarn. Asociación Geológica Argentina, Revista XL (1-2):89-96.
Maro, G. y P.J. Caffe, 2012. Volcanismo máfico terciario de la Puna jujeña, los Cerros Negros de Jama. Serie Correlación Geológica 28 (1): 51-72. Tucumán.
Mirré, J., 1974. Nuevas evidencias de volcanismo Ordovícico en la Puna. Revista de la Asociación Geológica Argentina 29(1): 128-134. Buenos Aires.
Montero-López, C., C. del Papa, F. Hongn, M.R. Strecker y A. Aramayo, 2018. Synsedimentary broken-foreland tectonics during the Paleogene in the Andes of NW Argentine: new evidence from regional to centimetre-scale deformation features. Basin Research (2018) 30 (Suppl. 1):142-159.
Moreno, J.A., 1970. Estratigrafía y paleogeografía del Cretácico superior en la cuenca del Noroeste Argentino, con especial mención de los Subgrupos Balbuena y Santa Bárbara. Revista de la Asociación Geológica Argentina 24:9-44.
Norini, G., W. Baez, R. Becchio, J. Viramonte, G. Giordano, M. Arnosio, A. Pinton y G. Groppelli, 2013. The Calama– Olacapato–El Toro fault system in the Puna Plateau, Central Andes: Geodynamic implications and stratovolcanoes emplacement. Tectonophysics 608:1280-1297.
Pascual, R., M.G. Vucetich y J. Fernández, 1978. Los primeros mamíferos (Notoungulata, Henricosborniidae) de la Formación Mealla (Grupo Salta, Subgrupo Santa Bárbara) sus implicancias filogenéticas, taxonómicas y cronológicas. Ameghiniana 15:367-390.
Pascual, R., 1983. Novedosos marsupiales paleógenos de la Formación Pozuelos (Grupo Pastos Gandes) de la Puna, Salta, Argentina. Ameghiniana, tomo XX. N° 3-4; 265-280.
Petrinovic, I.A., J. Mitjavilla, J.G. Viramonte, J. Martí, R. Becchio, M. Arnosio y F. Colombo, 1999. Descripción Geoquímica y Geocronológica de Secuencias Volcánicas Neógenas de Trasarco, En El Extremo Oriental de La Cadena Volcánica Transversal Del Quevar (Noroeste de Argentina). Acta Geológica Hispánica 34(2/3):255-72.
Petrinovic, I.A., U. Riller y J. A. Brod, 2005. The Negra Muerta Volcanic Complex, Southern Central Andes: Geochemical Characteristics and Magmatic Evolution of an Episodically Active Volcanic Centre. Journal of Volcanology and Geothermal Research 140(4):295-320.
Petrinovic, I.A., P. Grosse, S. Guzmán y P. Caffe, 2017. Evolución del Volcanismo Cenozoico en la Puna Argentina. Ciencias de la Tierra y Recursos Naturales del NOA. Relatorio del XX Congreso Geológico Argentino, San Miguel de Tucumán: 469- 483.
Pingel, H., R. Alonso, A. Uwe, J. Cottle y M. Strecker, 2019. Miocene to Quaternary basin evolution at the southeastern Andean Plateau (Puna) margin (~24°S lat, Northwestern Argentina). Basin Research 2019:1-19.
Prezzi, C.B. y H. Gotze, 2009. Estructura litosférica de los Andes Centrales a partir de un modelo gravimétrico 3D. Revista de la Asociación Geológica Argentina, 65:81-96.
Ramos V.A., 1970. Geología de los primeros contrafuertes de la Puna Salto-Jujeña entre San Antonio de los Cobres y El Moreno. Tesis Doctoral. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. Buenos Aires.
Ramos V.A., 1973. Estructura de los primeros contrafuertes de la Puna Salto-Jujeña y sus manifestaciones volcánicas asociadas. Actas del V Congreso Geológico, tomo IV, pp. 159-202.
Ramos, V.A., 2017. Las Provincias Geológicas del noroeste Argentino. Relatorio del XX Congreso Geológico Argentino (Octubre): 42-56.
Reyes, F.C. y J.A. Salfity, 1973. Consideraciones sobre la estratigrafía del Cretácico (Subgrupo Pirgua) del noroeste argentino. Actas del V Congreso Geológico Argentino 3:355-385.
Riller, U., I. Petrinovic, J. Ramelow, M. Strecker, y O. Oncken, 2001. Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes. Earth and Planetary Science Letters 188:299-311.
Russo, A., 1972. La estratigrafía terciaria en el noroeste argentino. V Congreso Geológico Argentino, Resúmenes: 29, Villa Carlos Paz.
Salfity, J. A. y R.A. Marquillas, 1994. Tectonic and sedimentary evolution of the Cretaceous-Eocene Salta Group Basin, Argentina. En: Salfity JA (ed). Cretaceous Tectonics of the Andes. Earth Evolution Sciences, Friedr. Vieweg & Sohn, pp 266-315.
Seggiaro, R., S. Guzmán, R. Pereyra, M. Coppolecchia, y M. Cegarra, 2016. Neotectónica y volcanismo monogenético cuaternario sobre el segmento central del lineamiento Calama - Olacapato - El Toro. Revista de la Asociación Geológica Argentina 73 (4):468-477
Siks, B.C. y B.K. Horton, 2011. Growth and fragmentation of the Andean foreland basin during eastward advance of fold-thrust deformation, Puna plateau and Eastern Cordillera, northern Argentina. Tectonics, 30, TC6017.
Tait, M.A., 2004. Dynamics Eruption Dynamics and Evolution of a Highly Explosive Rhyolitic Volcanic Complex in the High Andes: The Late Miocene Ramadas Volcanic Centre, Andean Puna, Salta Argentina. Ph.D. Thesis, Monash University, Melbourne, Australia.
Tait, M.A., R.A.F. Cas, y J.G. Viramonte, 2009. The origin of an unusual tuff ring of perlitic rhyolite pyroclasts: The last explosive phase of the Ramadas Volcanic Centre, Andean Puna, Salta, NW Argentina. Journal of Volcanology and Geothermal Research 183 (1-2):1-16.
Toselli, A.J., F.G. Aceñolaza, H. Miller y J.N. Rossi, 2017. Áreas de proveniencia de meta-sedimentos e interpretación geoquímica de ambientes tectónicos de deposición de la Formación Puncoviscana: Cordillera Oriental y Sierras Pampeanas, Argentina. Acta geológica lilloana 29(2):67-105.
Turner, J.C.M., 1959. Estratigrafía del cordón de Escaya y de la sierra de Rinconada (Jujuy). Revista de la Asociación Geológica Argentina 13:15-39.
Turner, J.C.M., 1960. Estratigrafía del Nevado de Cachi y sector al oeste (Salta). Acta Geológica Lilloana, 3:191-226.
Vilela, C.R., 1969. Descripción geológica de la Hoja 6c, San Antonio de los Cobres. Provincias de Salta y Jujuy. Dirección Nacional de Geología y Minería, Boletín 110, Buenos Aires.
Viramonte, J.G., M.A. Galliski, V.A. Saavedra, A. Aparicio, L. García-Cacho, C.M. Escorza y C. Parica, 1984. Edad, génesis y mecanismos eruptivos de las riolitas granatíferas de San Antonio de los Cobres, provincia de Salta. IX Congreso Geológico Argentino. Actas III, 216-233.
Viramonte, J.G., J.H. Reynolds, C. del Papa y A. Disalvo, 1994. The Corte Blanco Garnetiferous Tuff: A Distinctive Late Miocene Marker Bed in Northwestern Argentina Applied to Magnetic Polarity Stratigraphy in the Río Yacones, Salta Province. Earth and Planetary Science Letters 121(3-4):519-531.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.