Seismoestratigraphy and geomorphological evolution of the continental slope adjacent to eastern Buenos Aires province, Argentina
Keywords:
Argentina continental margin; Continental slope; Depositional sequences; Neogene; Northeastern Buenos Aires Province.Abstract
Introduction
The Argentina Continental Margin (MCA) is one of the largest margins around the world (2x106 km2), which in most of its area of development (between 35 and 48ºS) belongs to a typical extensional volcanic passive margin (Mohriak et al., 2002). The region is located in a key area of the Southwestern Atlantic Ocean due to its significance in the global oceanographic-climatic interaction (Wefer et al., 1996, 2004; Carter and Cortese, 2009). As a result, the study of the Cenozoic sedimentary sequences preserved in the geological record is very important for paleoceanographic-paleoclimatic-paleoenvironmental reconstructions.
The study area is included in the northern part of the MCA adjacent to eastern Buenos Aires province (Fig. 1a). The major physiographic units are the shelf, slope, rise and the Mar del Plata Submarine Canyon. This work describes the Cenozoic morphosedimentary, stratigraphic and evolutive aspects of the continental slope in the region. The study is based on high resolution seismic (multi and monochannel) complemented with sediment analysis on piston and gravity cores as well as grab samples (Fig. 1b), obtained during different cruises on board the Research Vessels Puerto Deseado (Argentina) and Meteor (Germany) (Table 1); additional seismic, geological and sedimentological information was gathered from LDEO (USA) and BGR (Germany).
Geotectonic, Morphosedimentary and Oceanographic Setting
The region (Fig. 1a) is located in the southern part of the Salado basin where post-Cretaceous sediment thickness varies between 2 and 4 kilometers. Stratigraphic information from offshore oil drillings (Fig. 2) indicates that in the outer shelf, immediately west of the study area, sedimentary sequences are represented by Maastrichtian-Paleocene marine deposits, Eocene-Oligocene continental deposits, Miocene marine deposits, Pliocene continental deposits and Quaternary marine deposits (Yrigoyen, 1975, 1999; Tavella and Wright, 1996). These sequences change towards the slope into fully deep-marine facies.
Morphosedimentary configuration of the continental slope in the entire passive margin is dominated by a contourite depositional system (Hernández-Molina et al., 2009, Fig. 3a), composed of both depositional and erosive features (drifts, terraces, scarps, submarine canyons) that resulted from complex interactions among sedimentary, oceanographic and climatic components. One of the main conditioning factors is the oceanographic setting (Fig. 3b), characterized by predominance of parallel-to-the-slope (contouritic) south-to-north circulating currents from Antarctic origin, which in the northern part of the margin interact with the North Atlantic water masses, so determining the Confluence Zone. Across-margin sediment transport processes such as turbidity currents are also very significant in the evolution and configuration of the margin. These processes became more important towards the north, particularly in the study area.
Morphology and Sedimentology of the Eastern Buenos Aires Province Continental Slope
The continental slope in the study area extends between 120 and 3500 m depth (Fig. 4). It is constituted by an upper sector characterized by a steep slope above 700/800 m (upper slope). From there, the middle slope extends seaward, constituting the Ewing Terrace, a terraced, low-gradient feature that extends down to 1300 meters. The lower continental slope has again a steep slope that reaches 3500 m, from where it grades to the continental rise. The continental slope is cut by the Mar del Plata Submarine Canyon that begins at about 500 m depth, showing a typical V-shape configuration between 1200 and 3700 meters. The sedimentary cover in the slope is siliciclastic and consists of sandy muds, which close to the canyon incorporate a higher sand content and pebbles. The mineralogical content belongs to the volcanic-pyroclastic association of pampean-patagonian origin. Figure 5 illustrates a type morphological cross section showing the bottom and near-bottom sediment distribution. Analysis of the forams collected from several cores indicate that in the upper 5 m of the sedimentary cover upper Pliocene to Recent faunas are present, with ages lower than 450 ka at 1.5 m, 120 ka at 0.75 m, and late Holocene in the uppermost 0.5 m.
Stratigraphy
The seismic-stratigraphic analysis and correlation with geological information from offshore oil drillings allowed to define seven depositional sequences (SD) (named with letters A to G from top to bottom), which encompasses the time-span between Late Cretaceous and the present. They are separated from each other by major seismic reflectors that represent unconformities produced by significant climatic-oceanographic events of regional extension (Tables 2 and 3). Interpretation and correlation among different seismic reflectors defined by several authors (Ewing & Lonardi, 1971, Hinz et al., 1999, Parker et al., 1999, 2005) was needed before defining those that separate the SDs. Figure 6 represents the synthesis of the correlation between seismic and geological information, whereas figure 7 is a type section showing the architecture and regional disposition of the SDs.
The depositional sequences are described from bottom (SD G) to top (SD A).
SD G: the top of the unit is the seismic reflector AR3 that represents the K-T boundary. The age of the sequence is considered Aptian-Maastrichtian. Internal seismic characteristics are mainly represented by subparallel, semi-transparent reflections. It represents shallow marine environments deposited in a longitudinal basin which evolved as a result of the South Atlantic opening.
SD F: Paleocene-upper Eocene. It has a maximum thickness of 900 meters. The internal seismic structure is transparent, with aggrading sequences (Fig. 8a-d) and locally chaotic, sometimes divergent reflections towards the base. Paleovalleys associated to ancient submarine canyons are also evident (Fig. 7). The upper boundary (reflector AR4) shows deep depressions that affect the base of the sequence; this reflector represents a regional expansion of the eastern Antarctic ice masses during Eocene-Oligocene times. The unit represents the final evolution of the "sag" stage in the Salado basin.
SD E: upper Eocene-beginning of the mid Miocene. Thickness reaches up to 500 meters. The internal seismic structure shows changing characteristics, with prograding sequences in the base, retrograding sequences in the middle part with wavy megastructures, and aggrading sequences in the upper part with large sediment lobes and paleovalleys (Fig. 8a-d) as well as cut-and-fill structures (Fig. 8d) and debris flows (Fig. 8c). The top reflector (AR5) represents another regional expansion of Antarctic ice masses. The unit shows evidences of deepening of the marine environment from base to top, and seismic reflector R* that divides two lithologically different sections could represent the change from prograding to retrograding facies.
SD D: mid to upper Miocene. The top seismic reflector (H2) has a morphology similar to the present surface (Fig. 7). Thickness is about 400 m. Seismic structure is semitransparent, with subparallel reflections and local chaotic configuration. The lower section shows prograding structures indicating the growing of the slope towards the east, whereas the upper section shows retrograding sequences with megawaves (Fig. 8 a-d). A contouritic drift develops in this upper part. Sediment infilling of paleovalleys is also evidenced. The Ewing Terrace is well developed and shows evidence of erosive processes with formation of submarine canyons.
SD C: lower Pliocene. Seismic configuration shows morphological features very similar to the present-day topography (Fig. 7). Thickness is less than 200 m. Internal seismic structure is homogeneous, with subparallel seismic reflectors of large lateral extension, prograding structures and channels with internal migrating and filling structures (Fig. 8a-d). In the outer boundary of the Ewing Terrace, retrograding, sometimes chaotic structures are evident.
SD B: mid to upper Pliocene. Thickness is less than 200 meters. Internal seismic configuration is of reflectors parallel to top and bottom, with aggrading levels in the upper slope and Ewing Terrace (Fig. 8a-d).
SD A: upper Pliocene-Quaternary. Thickness doesn't exceed few tens of meters. Parallel reflections, turbiditic and contouritic facies as well as slides, debris flows and active erosive-depositional processes are evident. Cores obtained in the upper levels of this unit are composed of muddy and silty sediments with thin sand layers probably representing turbiditic processes.
Discussions and Conclusions
The sequence stratigraphy, architecture and structures reveals that the continental slope begun to evolve during the Eocene-Oligocene transition as a result of complex processes like aggradation and progradation, with turbiditic-contouritic processes and formation of submarine canyons, mainly associated to oceanographic and climatic conditioning factors. Two main features characterize the slope configuration: the Ewing Terrace and the Mar del Plata Submarine Canyon.
The Ewing Terrace mainly resulted from sedimentation conditioned by along-slope, south-to-north flowing contouritic currents with additional strong action of across (down)-slope turbiditic processes. Post-Miocene sequences in the Terrace represent deep marine sedimentary facies genetically associated to sea-level fluctuations. Contouritic deposits seem to be mainly associated to highstands, whereas turbiditic and down-slope slides processes probably dominated during lowstands when high-energy, coastal processes occurred near to the shelf-slope transition.
The Mar del Plata Submarine Canyon is an expression of high-energy, turbiditic processes that were probably enhanced during sea-level lowstands (Pickering et al., 1989, Viana et al, 2002, Canals et al., 2006). Intercalations of sandy deposits in between the dominant muddy sedimentation on the terrace around the canyon reveals the importance of turbiditic activity. The configuration of seismic reflector N shows that the canyon reached a morphology similar to the present one in the upper Pliocene.
Four stages define the evolution of the study sector of the MCA:
1) Initial aggradational stage, from the Cretaceous to the Eocene, with marked vertical accretion of the slope associated to the "sag" stage with high sedimentation rate in the Salado basin.
2) Growing-up of the slope during upper Eocene-mid Miocene times, when the "passive margin" stage developed and the strong influence of the Antarctic water masses begun to affect the region, what is manifested by the formation of complex sedimentary sequences with alternating prograding-retrograding cycles. Prograding cycles dominate in the region with high turbiditic dynamics and formation of submarine canyons that allowed the seaward advance of the slope.
3) Development of the Ewing Terrace in the mid-upper Miocene, when the sediment dynamics associated to the near-bottom circulation of oceanic currents of Antarctic origin favoured the northward migration of large contouritic deposits.
4) Definitive configuration of the slope in Pliocene-Quaternary times, when the Ewing Terrace and the Mar del Plata Submarine Canyon reached their present characteristics.
References
Aceñolaza, F.G., 2000, La Formación Paraná (Mioceno medio): estratigrafía, distribución regional y unidades equivalentes. En: Aceñolaza F.G. y Herbst R. (Eds.), El Neógeno de Argentina. INSUGEO, Tucumán, Serie Correlación Geológica, 14:9-27.
Amoco Andina Production Company, 1994. Final Well Report Dorado x-1. Geoservices S.A. Sucursal Argentina. (inédito) [ Links ]
Argentine Sun Oil Company, 1969. Informe de terminación de Pozo Sb III Samar-D x-1. (inédito).
Arhan, M., X. Carton, A. Piola, y W. Zenk, 2002. Deep lenses of circumpolar water in the Argentine Basin: Journal of Geophysical Research, 107 (C1):7.1-7.12.
Bearmon, G. (Ed.), 1989. Ocean chemistry and deep-sea sediments. The Ope University. Pergamon, 134 pp.
Berger, W.H. y G. Wefer, 1996a. Central themes of South Atlantic Circulation. En: G. Wefer et al. (Eds.), The South Atlantic, Present and Past Circulation. Springer-Verlag:1-11.
Berger, W.H. y G. Wefer, 1996b. Expeditions into the past: Paleoceanographic studies in the South Atlantic. En: G. Wefer, W.H. Berger, G. Siedler y D.J. Watt (Eds.), The South Atlantic, Present and Past Circulation. Springer-Verlag:363-410.
Bleil, U., M. Britzke, H. Buschhoff, T. von Dobeneck, A. Dürkopp, I. Ehrhardt, I. Engelbrecht, M. Giese, F. Gingele, S. Hacke, R. Haese, C. Hensen, S. Hinrichs, C. Höll, E. Holmes, B. Jahn, A. Janke, S. Kasten, N. Nowald, S. Otto, H. Petermann, M. Raulfs, U. Rosiak, A. Schmidt, M. Scholz y M. Zabel, 1994. Report and preliminary results of Meteor Cruise 29/2, Montevideo-Rio de Janeiro, 15/07/1994-08/08/1994. Berichte, Fachbereich Geowissenschaften, Univ. Bremen, Nº 59:153 pp.
Bleil, U., A. Alin, T. Bickert, W. Böke, M. Breitzke, S. Drachenberg, E. Eades, T. Frederichs, M. Frenz, V. Heuer, C. Hilgenfeldt, V. Hopfauf, A. de León, H. von Lom-Keil, K. Michels, K. Pfeifer, U. Rosiak, C. Rühlemann, M. Segl, V. Spieß, R.A. Violante, S. Watanabe, T. Westerhold y N. Zatloucal, 2001. Report and preliminary results of Meteor Cruise 46/3, Montevideo-Mar del Plata, 4/01/2000-7/02/2000. Berichte, Fachbereich Geowissenschaften, Univ. Bremen, Nº 172:161 pp.
Bozzano, G., S. Marcolini y R.A. Violante, 2008. Régimen depositacional de los sedimentos en el sector norte del Talud Continental Argentino. 2008. XVII Congreso Geológico Argentino, S.S. de Jujuy, Actas III: 1187-1188.
Canals, M., P. Puig, X.D. de Madron, S. Heussner, A. Palanques y J. Fabres, 2006. Flushing submarine canyons. Nature 444: 354-357.
Carter, L. y G. Cortese, 2009. Change in the Southern Ocean: responding to Antarctica. En: J. Brigham-Grette, R. Powell, L. Newman y T. Kiefer (Eds.), PAGES News: change at the Poles, a paleoscience perspective, IGBP-PAGES (Past Global Changes), PAGES International Project Office, 17 (1): 30-32.
Cavallotto, J.L. y R.A. Violante, 2007. Factores que controlaron la sedimentación durante el Cenozoico en el margen continental bonaerense. 6as. Jornadas Geológicas y Geofísicas Bonaerenses, Mar del Plata, diciembre 2007, G. Bértola, M. Osterrieth y M. Bernasconi (Eds.), Actas de Resúmenes: 103.
Cavallotto, J.L. y R.A. Violante, 2008. Las unidades sismoestratigráficas del Cenozoico en las adyacencias del cañón submarino Mar del Plata y principales aspectos climáticos y tectónicos regionales condicionantes de su depositación. XVII Congreso Geológico Argentino, S.S. de Jujuy, Actas III: 1191-1192.
Chelton, D.B., M.C. Schlax, D.L. Witter y G.J. Richman, 1990. Geosat Altimeter Observations of the Surface Circulation of the Southern Ocean. Journal of Geophysical Research, 95 (C10): 17877-17903.
Costa, I.P., L. Segovia, C.M. Paterlini y R.A. Violante, 2007. Evolución de las terrazas del talud continental superior en el área que comprende al cañón submarino Mar del Plata. 2007. 6as. Jornadas Geológicas y Geofísicas Bonaerenses, Mar del Plata. Resúmenes: 104.
Díaz, H.F. y V. Markgraff, 1992. El Niño: historical and paleoclimatic aspects of the Southern Oscillation. Cambridge Univ. Press, Cambridge, UK, 96 pp.
Diekmann, B., D.K. Fütterer H. Grobe C.D. Hillenbrand, G. Kuhn, K. Michels, R. Petschick y M. Pirrung, 2004. Terrigenous sediment supply in the Polar to Temperate South Atlantic: Land-Ocean links of environmental changes during the Late Quaternary. En: G. Wefer, S. Mulitza y V. Ratmeyer (Eds.), The South Atlantic in the Late Quaternary. Springer-Verlag: 375-399.
Einsele, G., 2000. Sedimentary basins, evolution, facies and sediment budget. Springer Verlag, Berlin, 2ª Ed., 792 p.
Ewing, M. y A. Lonardi, 1971. Sediment transport and distribution in the Argentine Basin. 5: Sedimentary structure of the Argentine Margin, basin and related provinces. En: L.H. Ahrens et al. (Eds.), Physics and Chemistry of the Earth. Pergamon Press, London, VIII: 125-249.
Ewing, M., S.L. Eittreim, J.I. Ewing y X. Le Pichon, 1971. Sediment transport and distribution in the Argentine Basin. 3: Nepheloid layer and processes of sedimentation. En: L.H. Ahrens, F. Press, S.K. Runcorn y H.C. Urey (Eds.), Physics and Chemistry of the Earth. Pergamon Press, London, VIII: 49-78.
Faugères, J.C., M.L. Mezerais y D.A.V. Stow, 1993. Contourite drift types and their distribution in the North and South Atlantic Ocean basins. Sedimentary Geology 82 (1-4):189-203.
Flood, R.D. y A.N. Shor, 1988. Mud waves in the Argentine Basin and their relationship to regional bottom circulation patterns. Deep-Sea research 35 (6):943-971.
Franke, D., S. Neben, S. Ladage, B. Schreckenberger y K. Hinz, 2007. Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic, Marine Geology 244:46-67.
Frenz, M., R. Höppner, J.-B.W. Stuut, T. Wagner, T. y R. Henrich, 2004. Surface sediment bulk geochemistry and grain-size composition related to the oceanic circulation along the South American Continental Margin in Southwest Atlantic. En: G. Wefer, S. Mulitza y V. Ratmeyer (Eds.), The South Atlantic in the Late Quaternary. Springer-Verlag: 347-373.
Gladczenko, T.P., K. Hinz, O. Eldholm, H Meyer, S Neben y J. Skogseid, 1997. South Atlantic volcanic margins. Journal Geological Society of London 154:456-470.
Goni, G., S. Kamholz, S. Garzoli y D. Olson, 1996. Dynamics of the Brazil-Malvinas Confluence based on inverted echo sounders and altimetry. Journal of Geophysical Research 101 (C7): 16273-16289.
Haq, B.U., J. Hardenbol y P.R. Vail, 1987. Chronology of fluctuating sea levels since the Triassic. Science 235: 1156-1167.
Hastenrath, S., 1982. On meridional heat transport in the World Ocean. Journal of Physical Oceanography 12: 922-927.
Hernández-Molina, F.J., R.D. Larter, M. Rebesco y A. Maldonado, 2004. Miocene changes in bottom current regime recorded in continental rise sediments on the Pacific margin of the Antarctic Peninsula. Geophysical Research Letter 31: L22606-L22611.
Hernández-Molina, F.J., R.D. Larter, M. Rebesco y A. Maldonado, 2006. Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: stratigraphic evidence from a contourite sedimentary tail. Marine Geology 228:93-116.
Hernández-Molina, F.J., C.M. Paterlini, P. Marshall, M. de Isasi, M. L. Somoza y R.A. Violante, 2008a. The Argentine Continental Slope Contourite Depositional System. En: A. Tripaldi y G. Veiga (Eds.), XII Reunión Argentina de Sedimentología, Buenos Aires, Resúmenes: 83.
Hernández-Molina, F.J., C.M. Paterlini, P. Marshall, M. de Isasi, L. Somoza y R.A. Violante, 2008b. The evolution of the Contourite Depositional System in the Argentine Margin: Influence and Global Implications of Antarctic Water Masses. En: A. Tripaldi y G. Veiga (Eds.), XII Reunión Argentina de Sedimentología, Buenos Aires, Resúmenes: 84.
Hernández-Molina, F.J., C.M. Paterlini, R.A. Violante, P. Marshall, M. de Isasi, L. Somoza y M. Rebesco, 2009. A contourite depositional system on the Argentine Slope: an exceptional record of the influence of Antarctic water masses. Geology 37 (6):507-510.
Hinz, K., S. Neben, B. Schreckenberger, H.A. Roeser, M. Block, K. Gonzalvez de Souza y H. Meyer, 1999. The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during breakup. Marine and Petroleum Geology 16:1-25.
Huber, M. y D. Nof, 2006. The ocean circulation in the Southern Hemisphere and its climatic impacts in the Eocene. Paleogeography, Paleoclimatology, Paleoecology, 231: 9-28.
Kennett, J., 1982. Marine Geology, Prentice Hall, 813 pp.
Klaus, A. y M.T. Ledbetter, 1988. Deep-sea sedimentaryprocesses in the Argentine Basin revealed by high-resolution seismic records (3.5 kHz echograms). Deep-Sea Research. 40: 899-917.
Light, M.P.R., M.L. Keeley, M.P. Maslanyj y C.M. Urien, 1993. The tectono-stratigraphic development of Patagonia, and its relevance to hydrocarbon exploration. Journal of Petroleum Geology 16 (4):465-482.
Lonardi, A. y M. Ewing, 1971. Sediment transport and distribution in the Argentine Basin. En: L.H. Ahrens et al. (Eds.), Physics and Chemistry of the Earth. Pergamon Press, London, VIII: 253-264.
Maamaatuaiahutapu, K., V.C. Garçon, C. Provost, M. Boulahdid y A. Bianchi, 1994. Spring and winter water mass composition in the Brazil-Malvinas Confluence. Journal of Marine Research. 32:397-425.
Maldonado, A., A. Barnolas, F. Bohoyo, J. Galindo-Zaldivar, F.J. Hernández-Molina, F.J. Lobo, J. Rodriguez-Fernandez, L. Somoza y J.T. Vazquez, 2003. Contourite deposits in the central Scotia Sea: the importance of the Antarctic circumpolar current and the Weddell gyre flow. Paleogeography, Paleoclimatology, Paleoecology, 198: 187-221.
Maldonado, A., A. Barnolas, F. Bohoyo, C. Escutia, J. Galindo-Zaldivar, F.J. Hernández-Molina, A. Jabaloy, F.J. Lobo, C.H. Nelson, J. Rodriguez-Fernandez, L. Somoza y J.T. Vazquez, 2006a. Miocene to Recent drift development in the northern Weddell Sea (Antarctica). En: D.K. Fütterer, D. Damaske, G, Kleinschmidt, H. Millar y F, Tessensohn, F. (Eds), Antarctica: contributions to global earth sciences. Springer-Verlag, Cap. 8.5: 441-446.
Maldonado, A., F. Bohoyo, J. Galindo-Zaldivar, F.J. Hernández-Molina, A. Jabaloy, F.J. Lobo, J. Rodriguez-Fernandez, E. Suriñach y J.T. Vazquez, 2006b. Ocean basin near the Scotia and Antarctic Plate boundary: influence of the tectonics and paleoceanography on the Cenozoic evolution. Marine Geophysical Researches. 27:83-107.
Marcolini, S., 2005. Mineralogía de los sedimentos de la plataforma como posible indicador de cambios de circulación atmosférica y oceánica. V Jornadas Nacionales de Ciencias del Mar, Mar del Plata, Resúmenes: 82.
Marcolini, S. y G. Bozzano, 2007. Caracterización sedimentológica y mineralógica de los depósitos recientes del Margen Continental Argentino. En: G. Bértola, M. Osterrieth y M. Bernasconi (Eds.), 6as. Jornadas Geológicas y Geofísicas Bonaerenses, Mar del Plata, Actas de Resúmenes: 106.
Markgraf, V., 2001. Interhemispheric Climate Linkages. Academic Press, 454pp.
Massé, L., J.C. Faugères y V. Hrovatin, 1998. The interplay between turbidity and contour current processes on the Columbia Channel fan drift, Southern Brazil. Sedimentary Geology. 115:111-132.
Mata, J. L., M., Campos, E. Basso, R.H. Compagnucci, P. Fearnside, G. Magrin, J. Marengo, A.S.R. Moreno, A. Suárez, S. Solman, A. Villamizar, L. Villers, F. Argenal, C. Artigas, M. Cabildo, J. Codignotto, U. Confalonieri, V. Magaña, B. Morales-Arnao, O. Oropeza, J. Pabón, J. Paz, O. Paz, F. Picado, G. Poveda, J. Tarazona y W. Vargas, 2001. "Latin America". En: J.J. Mc.Carthy, O.F. Canziani, N.A. Leary, D.J. Dokken y K.S. White (Eds.), Climate Change 2001. Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the 3rd Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press: 693-734.
Mianzan, H., C. Lasta, M. Acha, R. Guerrero, G. Macchi y C. Bremec, 2001. Río de la Plata Estuary, Argentina-Uruguay. En: U. Seeliger y B. Kjerve (Eds.), Coastal Marine Ecosystems of Latin America. Springer-Verlag, Ecological Studies 144 (13): 185-204.
Mitchum, J.R., R.M. Vail y P.R. Sangree, 1977. Seismic Stratigraphy and Global Changes of Sea Level, Part 6: Stratigraphic Interpretation of Seismic Reflection Patterns in Depositional Sequences. En: Ch.E. Payton (Ed.), Seismic Stratigraphy applications to Hydrocarbon Exploration, American Association of Petroleum Geologists, Tulsa, Memoir 26: 117-134.
Mohriak, W.U., B.R. Rosendahl, J.P. Turner y S.C. Valente, 2002. Crustal architecture of South Atlantic volcanic margins. En: M.A. Menzies, S.L. Klemperer, C.J. Ebinger y J. Baker (Eds.). Volcanic rifted margins, Geological Society of America, Special Paper 362: 159-202.
Mollenhauer, G., J.F. Mc.Manus, A. Benthien P.J. Müller y T.I. Egliton, 2006. Rapid lateral particle transport in the Argentine basin: molecular 14C and 230Thxs evidence. Deep-Sea Research, I, 53: 1224-1243.
Neben, S., B. Schreckenberger, J. Adam, T. Behrens, C. Bönnemann, Ü. Demir, D. Franke, I. Heyde, G. Kallaus, D. Ladage, C. Müller, U. Schrader, J. Sievers, E. Surburg y T. Temmler, 2005. Research Cuise BGR04 - ARGURU - Geophysical Investigations offshore Argentine & Uruguay with Akademik Alexandr Karpinsky. Buenos Aires-Buenos Aires, 19/11/ 2004 - 19/12/2004. Cruise Report and Preliminary results. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover. 99 págs.
Onken, R., 1995, The Spreading of Lower Circumpolar Deep Water in the Atlantic Ocean: Journal of Physical Oceanography. 25 (12):3051-3063.
Parker, G., R.A. Violante y C.M. Paterlini, 1996. Fisiografía de la Plataforma Continental. En: V.A. Ramos y M.A. Turic (Eds.), Geología y Recursos Naturales de la Plataforma Continental Argentina, Relatorio XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Buenos Aires. 1996. Asociación Geológica Argentina-Instituto Argentino del Petróleo, 1:1-16.
Parker, G., C.M. Paterlini y R.A. Violante, 1997. El Fondo Marino. En: E.E. Boschi (Ed.), El Mar Argentino y sus Recursos Pesqueros, INIDEP, Mar del Plata, 1: 65-87.
Parker, G., C.M. Paterlini, R.A. Violante, I.P. Costa, S. Marcolini y J.L. Cavallotto, 1999. Descripción geológica de la Terraza Rioplatense (Plataforma Interior del noreste bonaerense). Servicio Geológico y Minero Argentino, Buenos Aires, Boletín N° 273: 86 p.
Parker, G., C.M. Paterlini, R.A. Violante, I.P. Costa, S. Marcolini y J.L. Cavallotto, 2005. Geología submarina: Plataforma continental frente a Mar del Plata, Provincia de Buenos Aires, 2005. XVI Congreso Geológico Argentino, la Plata. Actas III: 817-824.
Parker, G., R.A. Violante, C.M. Paterlini, S. Marcolini, I.P. Costa y J.L. Cavallotto, 2008. Las secuencias sismoestratigráficas del Plioceno-Cuaternario en la Plataforma Submarina adyacente al litoral del este bonaerense. Latin American Journal of Sedimentology and Basin Analysis. 15 (2):105-124.
Paterlini, C.M., R.A. Violante, I.P. Costa, S. Marcolini C. Laprida, N. García Chapori y G. Parker. 2005 Fisiografía y edad del cañón submarino Mar del Plata. XVI Congreso Geológico Argentino, La Plata, Actas III: 809-816.
Perillo, G.M.E. y J. Kostadinoff, 2005. Margen Continental de la Provincia de Buenos Aires. En: Relatorio Geología de la Provincia de Buenos Aires, XVI Congreso Geológico Argentino, La Plata: 277-292.
Perillo, G.M.E., M.C. Piccolo y J. Marcovecchio, 2005. Coastal Oceanography of the Western South Atlantic continental shelf (33ºS to 55ºS). En: A.A. Robinson y K. Brink (Eds.). COASTS Interdisciplinary Global Coastal Ocean Study. The Sea, 14, J.Wiley & Co., New York: 295-327.
Piccolo, M.C, 1998. Oceanography of the Western South Atlantic continental shelf from 33ºS to 55ºS. En: A.R. Robinson y K.H. Brink (Eds.), Coastal Oceanography, The Sea. J. Wiley & Sons: 253-271.
Pickering, K.T., R.N. Hiscott y F.J. Hein, 1989. Deep marine environments: clastic sedimentation and tectonics. Unwin Hyman Ltd. London, 416 pp.
Piola, A.R. y A.L. Gordon, 1989. Intermediate waters in the Southwest South Atlantic. Deep Sea Research, 36-1: 1-16.
Piola, A.R. y R.D. Matano, 2002. Brazil and Falklands (Malvinas) currentes. En: J.H. Steele, S.A. Thorpe y K.K. Turekian (Eds.), Encyclopedia of Oceanic Sciences, Academic Press, San Diego: 340-349.
Piola, A.R. y A.L. Rivas, 1997. Corrientes en la Plataforma Continental. En: E.E. Boschi (Ed.), El Mar Argentino y sus Recursos Pesqueros, INIDEP, Mar del Plata, 1:119-132.
Piola, A.R., E.J.D. Campos, O.O. Möller Jr., M. Charo y C. Martínez, 2000. Subtropical Shelf front off Eastern South America. Journal of Geophysical Research. 105 (C3):6565-6578.
Piola, A.R., Matano, R.P., E.D. Palma, O.O. Möller Jr. y E.J.D. Campos, 2005. The influence of the Plata River discharge on the western South Atlantic shelf, Geophysical Research Letters, 32, LO1603, doi: 10.1029/2004GL021638.
Piola A.R., O.O. Möller Jr. R.A. Guerrero y E.J.D. Campos, 2008. Variability of the subtropical shelf front off eastern South America: Winter 2003 and Summer 2004. Continental Shelf Research, 28: 1639-1648.
Pratson, L.F., C.A. Nittrouer, P.L. Wiberg, M.S. Steckler, J.B. Swenson, D.A. Cacchione, J.A. Karson, A.B. Murray, M.A. Wolinsky, T.P. Gerber, B.L. Mullenbach, G.A. Spinelli, C.S. Fulthorpe, D.B. O´Grady, G. Parker, N.W. Driscoll, R.L. Burger, C. Paola, D.L. Orange, M.E. Field, C.T. Friedrichs y J.J. Fedele, 2007. Seascape evolution on clastic continental shelves and slopes. En: C.A. Nittrouer et al. (Eds.), Continental Margin Sedimentation: from sediment transport to sequence stratigraphy, International Association of Sedimentologists, Blackwell Publ., Sp. Publ. Nº 37: 339-380.
Rabassa, J., A.M. Coronato y M. Salemme, 2005. Chronology of the Late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). Journal of South American Earth Sciences, 20: 81-103.
Reid, J.L., 1989. On the total geostrophic circulation of the South Atlantic Ocean: flow patterns, tracers and transports. Progress in Oceanography. 23: 149-244.
Reid, J.L., 1996. On the circulation of the South Atlantic. En: Wefer, G., Berger, W., Siedler, G. y Webb, J. (Eds.), The South Atlantic-Present and Past Circulation. Springer Verlag, Berlin: 13-44.
Ramos, V.A., 1996. Evolución tectónica de la Plataforma Continental. En V.A. Ramos y M.A. Turic (Eds.), Geología y Recursos Naturales de la Plataforma Continental Argentina, Relatorio XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Buenos Aires. Asociación Geológica Argentina-Instituto Argentino del Petróleo: Buenos Aires: 385-404.
Schümann, T.K, 2002. The hydrocarbon potential of the deep offshore along the Argentina Volcanic rifted margin: a numerical simulation. PhD. Thesis, Univ. Hamburgo (Alemania), 244 pp.
Segovia, L. y R.A. Violante, 2007. Características sísmicas de megaestructuras sedimentarias cenozoicas en la terraza y talud inferior del sector bonaerense del Margen Continental argentino. 6as. Jornadas Geológicas y Geofísicas Bonaerenses, Mar del Plata. Resúmenes: 105.
Speer, K., W. Zenk, G. Siedler, J. Pätzold y K. Heidland, 1992. First resolution of flow through the Hunter Channel in the South Atlantic. Earth Planet Science Letters. 113:287-292.
Spieß, V., N. Albrecht, T. Bickert, M. Breitzke, M. Brüning, A. Dreyzehner, U. Groß, D. Krüger, H. von Lom-Keil, H.-J Möller, M. Nimrich, W.-T Ochsenhirt, T. Rudolf, C. Seiter, T. Truscheit, R.A. Violante y T. Westerhold, 2002. ODP Südatlantik 2001, Part 2, Cruise Nº. 49, Leg. 2. Meteor Berichte 02-1, 57 pp.
Tavella, G.F., 2005. Cuenca del Salado. En: de Barrio, R.E. et al. (Eds.), Geología y Recursos Minerales de la Provincia de Buenos Aires, XVI Congreso Geológico Argentino, La Plata, Relatorio: 459-472.
Tavella, G.F. y C.G. Wright, 1996. Cuenca del Salado. En: V.A. Ramos y M.A. Turic (Eds.), Geología y Recursos Naturales de la Plataforma Continental Argentina, Relatorio XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Buenos Aires. Asociación Geológica Argentina-Instituto Argentino del Petróleo: Buenos Aires: 95-116.
Thiede, J., T. Agdestein y J.E. Strand, 1980. Temporal and spatial variations of the Upper Mesozoic and Cenozoic sediment flux to the deep North Atlantic Ocean. Marine Geology. 36 (1-2): M11-M19.
Turic, M.A., A.V. Nevistic y G. Rebay, 1996. Geología y Recursos Naturales de la Plataforma Continental. En: V.A. Ramos y M.A. Turic (Eds.), Geología y Recursos Naturales de la Plataforma Continental Argentina. Relatorio XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Buenos Aires. Asociación Geológica Argentina-Instituto Argentino del Petróleo: Buenos Aires: 405-423.
Urien, C.M. y M. Ewing, 1974. Recent sediments and environments of Southern Brazil, Uruguay, Buenos Aires and Río Negro Continental Shelf. En: C. Burk y Ch. Drake (Eds.), The Geology of Continental Margins, Springer-Verlag, New York: 157-177.
Urien, C.M. y J.J. Zambrano, 1996. Estructura del Margen Continental. En: V.A. Ramos y M.A. Turic (Eds.), Geología y Recursos Naturales de la Plataforma Continental Argentina, Relatorio XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Buenos Aires. 1996. Asociación Geológica Argentina-Instituto Argentino del Petróleo, 3: 29-65.
Urien, C.M., L.R. Martins y I.R. Martins, 1979. Modelos depositacionales en la Plataforma Continental de Río Grande do Sul, Uruguay y Buenos Aires. VII Congreso Geológico Argentino, Neuquén, Actas II: 639-658.
van Andel, Tj. H., J. Thiede J.G. Sclater y W.W. Hay, 1977. Depositional history of the South Atlantic during the last 125 million years. Journal of Geology. 85:651-98.
Viana, A.R., 2002. Seismic expression of shallow -to deep-water contourites along the south-eastern Brazilian Margin. Marine Geophysical Researches. 22:509-521.
Viana, A.R., C.M. Hercos, W. de Almeida Jr., J.L.C. Magalhães y S.B. de Andrade, 2002. Evidence of bottom current influence on the Neogene to Quaternary sedimentation along the northern Campos slope, SW Atlantic Margin. En: D.A.V. Stow et al. (Eds.), Deep water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. Geological Society of London, Memoirs 22:249-259.
Violante, R.A., 2009. Informe sobre la campaña F/S Meteor 78/3, 1ª etapa (Montevideo-Montevideo, 18/5/2009-13/6/2009). COPLA, Comisión de Límites de la Plataforma Continental, 19 pp. (inédito).
Violante, R.A. y G. Parker, 2000. El Holoceno en las regiones costeras y marinas del noreste de la Provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 55 (4):337-351.
Violante, R.A. y G. Parker, 2004. The post-Last Glacial Maximum transgression in the de la Plata river and adjacent inner continental shelf, Argentina. Quaternary International 114 (1):167-181.
Violante, R.A., I.P. Costa, C.M. Paterlini y L.M. Segovia, 2006. Marco Geológico del Cuaternario en la Plataforma Exterior-Talud Superior del sector este-Bonaerense del Margen Continental Argentino. Tercer Congreso Argentino del Cuaternario y Geomorfología, Córdoba, I: 763-772.
Violante, R.A., I.P. Costa, S. Marcolini, C.M. Paterlini, L. Segovia, J.L. Cavallotto, C. Laprida, N. García Chapori, G. Bozzano, F.J. Hernández-Molina, T. Bickert y V. Spieß, 2008a. Descripción morfosedimentaria de los ambientes de plataforma exterior-talud del este bonaerense. En: A. Tripaldi y G. Veiga (Eds.), XII Reunión Argentina de Sedimentología, Buenos Aires, Resúmenes: 186.
Violante, R.A., C.M. Paterlini, F.J. Hernández-Molina, P. Marshall, M. de Isasi, L. Somoza, I.P. Costa, L. Segovia, V. Spieß y T. Bickert, 2008b. Los rasgos erosivos y depositacionales del sector norte del talud continental argentino. En: A. Tripaldi y G. Veiga (Eds.), XII Reunión Argentina de Sedimentología, Buenos Aires, Resúmenes: 187.
Violante, R.A., S. Marcolini, J.L. Cavallotto, C.M. Paterlini, I.P. Costa, C. Laprida, W. Dragani, S. Watanabe, V. Totah, E.I. Rovere y M.L. Osterrieth, en prensa. The Argentina Continental Shelf: morphology, sediments, processes and evolution since the Last Glacial Maximum. En: A.R. Chivas y F.L. Chiocci (Eds.), Continental Shelves During Last Glacioeustatic Cycle: Shelves of the World Reviews. Volumen Final del Proyecto IUGG-UNESCO-IGCP 464 "Continental Shelves during the Last Glacial Cycle", Geological Society of London (Publisher).
von Lom-Keil, H., V. Spieß y V. Hopfauf, 2002. Fine-grained sediment waves on the western flank of the Zapiola Drift, Argentine Basin: evidence for variations in Late Quaternary bottom flow activity. Marine Geology 192:239-258.
Yrigoyen, M.R., 1975. Geología del subsuelo y Plataforma Continental. En: Relatorio: Geología de la Prov. de Buenos Aires, VI Congreso Geológico Argentino, Bahía Blanca, Actas: 139-168.
Yrigoyen, M.R., 1999. Los depósitos cretácicos y terciarios de las Cuencas del Salado y Colorado. En: R. Caminos (Ed.), Geología Argentina. Servicio Geológico Minero Argentino, Instituto de Geología y Recursos Minerales, Anales 29:645-650.
Watanabe, S., V. Totah, C. Laprida, N. García Chapori, R.A. Violante y G. Parker, 2005. Estudio preliminar de los foraminíferos planctónicos y bentónicos de un testigo del Talud Bonaerense, Atlántico sudoccidental. XVI Congreso Geológico Argentino, La Plata, Actas III: 357-366.
Wefer, G., W.H. Berger, G. Siedler y D.J. Webb (Eds.), 1996. The South Atlantic, Present and Past Circulation. Springer, 644 pp.
Wefer, G., S. Mulitza y V. Ratmeyer (Eds.), 2004. The South Atlantic in the Late Quaternary. Springer-Verlag, 722 pp.
Wigley, R.A. y J.S. Compton, 2006. Late Cenozoic evolution of the outer continental shelf at the head of the Cape Canyon, South Africa. Marine Geology 226:1-23.
Wildeboer Schut, E. y G. Uenzelmann-Neben, 2005. Cenozoic bottom current sedimentation in the Cape Basin, South Atlantic. Geophysical Journal International 161:325-333.
Wildeboer Schut, E., G. Uenzelmann-Neben y R. Gersonde, 2002. Seismic evidence for bottom current activity at Agulhas Ridge. Global and Planetary Change 34:185-198.
Zachos, J., M. Pagani, L. Sloan, E. Thomas y K. Billups, 2001. Trends, rhythms and aberrations in global climate 65 Ma to Present. Science 292:686-693.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.