Fluvial-aeolian interaction deposits in intermontane valleys: modern and ancient examples

Authors

  • Alfonsina Tripaldi Departamento. de Ciencias Geológicas - CONICET - Universidad de Buenos Aires, Pabellón 2 Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
  • Carlos O. Limarino Departamento. de Ciencias Geológicas - CONICET - Universidad de Buenos Aires, Pabellón 2 Ciudad Universitaria, C1428EHA, Buenos Aires, Argentin

Keywords:

Aeolian; Fluvial; Present environments; Paleoenvironments; Intermontane valleys.

Abstract

Arid to semiarid regions usually show a close interaction between fluvial and aeolian processes resulting in a particular pattern of landforms and sedimentary facies (Langford, 1989; Langford and Chan, 1989). Here we present a characterization of the fluvial-aeolian interaction environment and its distinctive facies, both in modern settings (Guandacol Valley, La Rioja province) and in a sedimentary section of the Vinchina Formation (Northwestern Pampean Ranges). Recognition of these interaction facies in ancient sequences becomes critical not only because of its paleoenvironmental and paleoclimatic significance but also on account of its potential importance as reservoir rocks (Ellis, 1993; Meadows and Beach, 1993). Methodology in Guandacol Valley included mapping of subenvironments by remote sensing and field survey, definition, characterization and sampling of landforms, textural analysis of sediments and description of stratification styles in natural exposures. In the ancient fluvial-aeolian deposits main lithofacies and facies association were identified and described, together with the characterization of sandstones by petrographic studies.

Fluvial-aeolian interaction environment in Guandacol Valley (Figs. 1 and 2) is characterized by an ephemeral high-energy gravelly-sandy braidplain associated with abundant aeolian landforms (Tripaldi y Limarino, 1998; Tripaldi, 2002, Tripaldi et al., 2003). This region presents an arid/semiarid regime with average annual precipitations of 130 mm, focus on spring and summer. Two subenvironments have been distinguished in the Guandacol Valley, channel and floodplains (Table 3). The former comprises different kinds of fluvial bars, channel bed deposits and aeolian landforms (Fig. 3). Since most of the year channels remain dry and vegetation cover is scarce, wind action reworked fluvial sediments, determining aeolian rippled mantles and sand shadows (Figs. 4 and 5). According to grain size and morphology two kinds of ripples were recognized in Guandacol Valley: sand aeolian ripples and granule aeolian ripples (Sharp, 1963; Fig. 4). Floodplains are dominated by aeolian landforms (rippled aeolian mantles, sand shadows, zibars, protodunes and dunes; Figs. 6 and 7), with subordinated fluvial deposits (gravelly-sandy overflow mantles and cracked mud drapes; Figs. 6 and 7). Floodplains show an irregular and rolling sandy topography shaped by the emerging of protodunes that evolve to dunes, as well as by the vertical growth of sand shadows and zibars. Although the aeolian sediments could be partially eroded during flood, their importance results from their capacity of producing different types of interactions with fluvial currents. Aeolian bedforms not only can cause temporary dam streams and disruption of the fluvial drainage network (Langford, 1989), but also can supply high quantities of sands promoting rapid saturation of the flooding currents and the consequent amelioration of the flow erosive power.

Ancient fluvial-aeolian interaction deposits of the Vinchina Formation (Turner, 1964) are characterized by thin aeolian sandstone bodies interfingered with fluvial rip-up clast conglomerates, sandstones and mudstones deposited in ephemeral meandering plains (Fig. 8). Aeolian levels are 10 to 40-cm thick, tabular to lentiform bodies of well sorted fine to very fine sandstones, showing a very thin parallel or low angle cross-lamination (Fig. 9). Dune deposits were scarcely identified in the studied fluvial-aeolian succession. Remarkable features in the aeolian beds include: 1) inversely graded laminae (product of wind ripple migration), 2) unimodal, symmetrical or positive asymmetric, well to very well sorted sand, 3) open packing and high porosity in sandstones, 4) very low matrix percentage, 5) lack of muddy intraclasts, upper regime structures (as parting lineation) and erosive surfaces, 6) high index ripple forms with coarsest grains at the crest, 7) occurrence of some beds of medium to very coarse (occasionally granule), bimodal sandstones, with parallel to low angle cross-lamination and inversely graded laminae, owing to the development of granule ripples by wind reworking of fluvial sands (Table 4).

References

Ahlbrandt, T.S., 1979. Textural parameters of eolian deposits. En: E.D. McKee (Ed.), A Study of Global Sand Seas. U. S. Geological Survey, Professional Paper 1052:187-238.

Anderson, R.S., 1987. A theoretical model for aeolian impact ripples. Sedimentology 34:943-956.

Atkins, J.E. y E.F. McBride, 1992, Porosity and packing of Holocene river, dune, and beach sands. American Association of Petroleum Geologists Bulletin 76:339-355.

Bagnold, R.A., 1954. The physics of blown sand and desert dunes. Methuen, London, 265 pp.

Beard, D.C. y P.K. Weyl, 1973. Influence of texture on porosity and permeability of unconsolidated sand. American Association of Petroleum Geologists Bulletin 57:349-369.

Bullard, J.E. y I. Livingstone, I. 2002. Interactions between aeolian and fluvial systems in dryland environments. Area 34:8-16.

Bullard, J.E. y G.H. McTainsh, 2003. Aeolian-fluvial interactions in dryland environments: scales, concepts and Australia case study. Progress in Physical Geography 27:471-501.

Cabrera, A., 1976. Regiones Fitogeograficas Argentinas. Enciclopedia Argentina de Agricultura y Ganadería. Buenos Aires, Argentina.

Ciccioli, P.L., C.O. Limarino y S.A. Marenssi, 2005. Nuevas edades radimétricas para la Formación Toro Negro en la Sierra de los Colorados, Sierras Pampeanas Noroccidentales, provincia de La Rioja. Revista de la Asociación Geológica Argentina 60:251-254.

Cowan, G., 1993. The identification and significance of aeolian deposits within the dominantly fluvial Sherwood Sandstone Group of the East Irish Sea Basin UK. En: C.P. North y D.J. Prosser, (Eds.), Characterization of Aeolian and Fluvial Reservoirs. Geological Society London, Special Publications 73:249-249.

Ehrlich, R., S.K. Kennedy, S.J. Crabtree y R.L. Cannon, 1984. Petrographic image analysis, I. Analysis of reservoir pore complexes. Journal of Sedimentary Petrology 54:1365-1378.

Ellis, D., 1993. The Rough Gas Field: distribution of Permian aeolian and non-aeolian facies and their impact on field development. En: C.P. North y D.J. Prosser, (Eds.), Characterization of Aeolian and Fluvial Reservoirs. Geological Society London, Special Publications 73:265-277.

Estadísticas Climatológicas, 1986. Servicio Meterológico Nacional, Buenos Aires.

Folk, R.L. y W.C. Ward, 1957. Brazos River bar - A study in the significance of grain-size parameters. Journal of Sedimentary Petrology 27:3-27.

Friedman, G.M., 1958. Determination of sieve-size distribution from thin-section data for sedimentary petrological studies. Journal of Geology 66:394-416.

Friedman, G.M., 1962. Comparison of moment measures for sieving and thin-section data for sedimentary petrological studies. Journal of Sedimentary Petrology 32:15-25.

Friedman, G.M., 1979. Address of the retiring president of the International Association of Sedimentologists: Difference in size distribution of populations of particles among sands of various origins. Sedimentology 26:3-32.

Fryberger, S.G. y C. Schenk, 1988. Pin stripe lamination: a distinctive feature of modern and ancient eolian sediments. Sedimentary Geology 55:1-16.

Fryberger, S.G., T.S. Ahlbrandt y S.A. Andrews, 1979. Origin, sedimentary features, and significance of low-angle eolian «sand sheet» deposits, Great Sand Dunes National Monument and Vicinity, Colorado. Journal of Sedimentary Petrology 49:733-746.

Glennie, K.W., 1970. Desert sedimentary environments. Developments in Sedimentology 14. Elsevier, Amsterdam, 222 pp.

Harrell, J.A. y K.A. Eriksson, 1979. Empirical conversion equations for thin-section and sieve derived size distribution parameters. Journal of Sedimentary Petrology 49:273-280.

Hesp, P.A., 1981. The Formation of Shadow Dunes. Journal of Sedimentary Petrology 51:101-111.

Herries, R.G., 1993. Contrasting styles of fluvial-aeolian interaction at a downwind erg margin: Jurassic Kayenta-Navajo transition, northeastern Arizona, USA. En: C.P. North y D.J. Prosser, (Eds.), Characterization of Aeolian and Fluvial Reservoirs. Geological Society London, Special Publications 73:199-218.

Houseknecht, D.W., 1987. Assessing the relative importance on compaction processes and cementation to reduction of porosity in sandstones. American Association of Petroleum Geologist Bulletin 71:633-642.

Hunter, R.E., 1977a. Terminology of cross-stratified sedimentary layers and climbing-ripple structures. Journal of Sedimentary Petrology 47:697-706.

Hunter, R.E., 1977b. Basic types of stratification in small eolian dunes. Sedimentology 24:361-387.

Jones, L.S. y R.C. Blakey, 1997. Eolian - fluvial interaction in the Page Sandstone (Middle Jurassic) in south-central Utah, USA: a case study of erg-margin processes. Sedimentary Geology 109:181- 198.

Johnson, M.R., 1994. Thin section grain size analysis revisited. Sedimentology 41:985-999.

Kocurek G., 1999. The aeolian rock record. En: A. Goudie y I. Livingstone (Eds.), Aeolian Environments, Sediments and Landforms. John Wiley, London:239-259.

Kocurek, G. y J. Nielson, 1986. Conditions favourable for the formation of warm-climate aeolian sand sheets. Sedimentology 33:795-816.

Kocurek, G. y N. Lancaster, 1999. Aeolian system sediment state: theory and Mojave Desert Kelso dune field example. Sedimentology 46:505-515.

Kocurek G., N.I. Robinson y J.M. Sharp, 2001. The response of the water table in coastal aeolian systems to changes in sea level. Sedimentary Geology 139:1-13.

Kocurek, G., M. Townsley, E. Yeh, K. Havholm y M. L. Sweet, 1992. Dune and dune-field development on Padre Island, Texas, with implications for interdune deposition and water-table-controlled accumulation. Journal of Sedimentary Petrology 62(4):622-635.

Langford, R.P., 1989. Fluvial-aeolian interactions: Part I, modern systems. Sedimentology 36:1023-1035.

Langford, R.P. y M.A. Chan, 1988. Flood surfaces and deflation surfaces within the Cutler Formation and Cedar Mesa Sandstone (Permian), southeastern Utah. Geological Society of America Bulletin 100:1541-1549.

Langford, R.P. y M.A. Chan, 1989. Fluvial-aeolian interactions: Part II, anciant systems. Sedimentology 36:1037-1051.

Lancaster, N. y J.T. Teller, 1988. Interdune deposits of the Namib sand sea. Sedimentary Geology 55:91-107.

Limarino, C.O. y G. Martinez, 1992. Caracterización textural de algunas mesoformas eólicas de ambientes semidesérticos en el Bolsón de Guandacol. IV Reunión Argentina de Sedimentología, Actas II:295-302.

Limarino, C., A. Tripaldi, S.A. Marenssi, L.I. Net, G. Re y A.T. Caselli, 2001. Tectonic control on the evolution of the fluvial systems of the Vinchina Formation (Miocene), Northwestern Argentina. Journal of South American Earth Sciences 14:751-762.

Mader, D., 1983. Aeolian sands terminating an evolution of fluvial depositional environment en Middle Buntsandstein (Lower Triassic) of the Eifel, Federal Republic Germany. En: M.E. Brookfield y T.S. Ahlbrandt (Eds.), Eolian sediments and processes. Developments in Sedimentology 38:583-612.

Marenssi, S.A., L.I. Net, A.T. Caselli, A. Tripaldi y C.O. Limarino, 2000. Hallazgo e interpretacion de discordancias intraformacionales en la Formación Vinchina (Neógeno), Quebrada de la Troya, La Rioja, Argentina. Revista de la Asociación Geológica Argentina 55:414-418.

Meadows, N.S. y A. Beach, 1993. Structural and climatic controls on facies distribution in a mixed fluvial and aeolian reservoir: The Triassic Sherwood Sandstone in the Irish Sea. En: C.P. North y D.J. Prosser, (Eds.), Characterization of Aeolian and Fluvial Reservoirs. Geological Society London, Special Publications 73:247-264.

Miall, A.D., 1977. A review of the braided river depositional environment. Earth Science Review 13:1-62.

Miall, A.D., 1996. The geology of fluvial deposits. Springer Verlag, Berlín, 582 pp.

Mountney, N.P. y A. Jagger, 2004. Stratigraphic evolution of an aeolian erg margin system: the Permian Cedar Mesa Sandstone, SE Utah, USA. Sedimentology 51:713-743.

Newell, A.J., 2001. Bounding surfaces in mixed aeolian-fluvial system (Rotliegend, Wessex Basin, SW UK). Marine and Petroleum Geology 18:339-347.

Nielson, J. y G. Kocurek, 1986. Climbing zibars of the Algodones. Sedimentary Geology 48:1-15.

Ramos, V.A., 1970. Estratigrafía y estructura del Terciario en la Sierra de los Colorados (provincia de La Rioja), República Argentina. Revista de la Asociación Geológica Argentina 25(3):354-382.

Reineck, H.E. y I.B. Singh, 1973. Depositional sedimentary environments, with reference to terrigenous clastics, Springer-Verlag, Berlin, Primera Edición, 439 pp.

Sharp, R.P., 1963. Wind ripples. Journal of Geology 71:617-636.

Stanistreet, I.G. y H. Stollhofen, 2002. Hoanib River flood deposits of Namib Desert interdunes as analogues for thin permeability barrier mudstone layers in aeolianite reservoirs. Sedimentology 49:719-736.

Svendsen, J., H. Stollhofen, C.B.E. Krapf y I.G. Stanistreet, 2003. Mass and hyperconcentrated flow deposits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast Erg, Namibia. Sedimentary Geology 160:7-31.

Svendsen, J.H. Friis, H. Stollhofen y N. Hartley, 2007. Facies Discrimination in a Mixed Fluvio-Eolian Setting Using Elemental Whole-Rock Geochemistry-Applications for Reservoir Characterization. Journal of Sedimentary Research 77:23-33.

Sweet, M.L., 1999. Interaction between aeolian, fluvial and playa environments in the Permian Upper Rotliegend Group, UK southern North Sea. Sedimentology 46:171-187.

Tabbutt, K.D., 1987. Fission track chronology of foreland basins in the eastern Andes: magmatic and tectonic implications. Master's Thesis, Darthmounth College, 100p. (inédito).

Tanner, W.F., 1967. Ripple mark indices and their uses. Sedimentology 9:89-104.

Trewin, N.H., 1993. Controls on fluvial deposition in mixed fluvial and aeolian facies within the Tumblagooda Sandstone (Late Silurian) of Western Australia. Sedimentary Geology 85:387- 400.

Tripaldi, A., 2002. Análisis sedimentológico de depósitos eólicos de valles intermontanos, su aplicación al estudio de secuencias terciarias del noroeste argentino. Tesis Doctoral, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 363 pp. (inédito).

Tripaldi, A. y C.O. Limarino, 1998. Depósitos de interacción eólica-fluvial en el valle de Guandacol (provincia de La Rioja). VII Reunión Argentina de Sedimentología. Actas:136-137. Salta.

Tripaldi, A., C.O. Limarino y L.I. Net, 2003. Fluvial-eolian interaction systems: examples of modern and ancient deposits from northwestern Argentina. 3rd Latin American Congress of Sedimentology, Actas:306-308. Belém.

Tripaldi, A., C.O. Limarino, A.T. Caselli, L.I. Net y M.L. Gagliardo, 1998. Sedimentología de arenas eólicas cuaternarias del área de Lomas de la Estancia, la provincia de La Rioja (Argentina): un ejemplo de sedimentación en campos eólicos intermontanos. AAS Revista 5:21-40.

Tripaldi, A., L.I. Net, C.O. Limarino, S.A. Marenssi, G. Re y A.T. Caselli, 2001. Paleoambientes sedimentarios y procedencia de la Formación Vinchina, Mioceno, noroeste de la provincia de La Rioja. Revista de la Asociación Geológica Argentina 56:443-465.

Turner, J.C.M., 1964. Descripción Geológica de la Hoja 15c. Vinchina (Provincia de La Rioja). Dirección Nacional de Geología y Minería. Buenos Aires. 81 p.

Veiga, G.D. y L.A. Spalletti, 2007. The Upper Jurassic (Kimmeridgian) fluvial / aeolian systems of southern Neuquén Basin, Argentina. Gondwana Research 11:286-302.

Veiga, G.D., L.A. Spalletti y S. Flint, 2002. Aeolian/fluvial interactions and high-resolution sequence stratigraphy of a non-marine lowsand wedge: the Avilé Member of the Agrio Formation (Lower Cretaceous), central Neuquén Basin, Argentina. Sedimentology 49:1001-1019.

Published

2021-03-31

How to Cite

Tripaldi, A. ., & Limarino, C. O. . (2021). Fluvial-aeolian interaction deposits in intermontane valleys: modern and ancient examples. atin merican ournal of edimentology and asin nalysis, 15(1), 43–66. etrieved from https://lajsba.sedimentologia.org.ar/lajsba/article/view/157

Issue

Section

Research Papers