Mixed (carbonatic/siliciclastic) cycles in the Upper Member of the Mulichinco Formation (Cañadón Amarillo Field, central Neuquén Basin, Argentina): sequential implications and for reservoir characterisation

Authors

  • Ernesto Schwarz Centro de Investigaciones Geológicas (CONICET-UNLP), Diagonal 113 #275 (B1904DPK) La Plata, Argentina.
  • Gastón Álvarez-Trentini Centro de Investigaciones Geológicas (CONICET-UNLP), Diagonal 113 #275 (B1904DPK) La Plata, Argentina.
  • Marta E. Valenzuela YPF S.A., Talero 360, Neuquén, Argentina.

Keywords:

Carbonate/Siliciclastic Cycles, High- Resolution Sequence Stratigraphy, Reservoirs, Mulichinco Formation, Neuquén Basin.

Abstract

The presence of carbonate strata within sili- ciclastic-dominated marine successions (i.e. mixed carbonate-siliciclastic successions) poses serious challenges for palaeoenvironmental reconstructions and reservoir characterization, and unambiguous interpretations can emerge only when the spatial vs. temporal relationship between carbonate production and siliciclastic input is well understood. This study integrates sedimentology and high-resolution sequence stratigraphy in order to better understand the temporal/spatial relationships and controls in the origin of a Lower Cretaceous, mixed carbonate- siliciclastic succession in the subsurface of the Neuquén Basin, west-central Argentina (Figs. 1, 2). This mixed succession, so-called Upper Member of the Mulichinco Formation, accumulated in a shallow, epeiric sea during third-order highstand conditions (Fig. 3), and is presently widely distributed in the central part of the basin, both in outcrops and subsurface (Schwarz et al., 2009; Schwarz et al., 2011). The study area, covering an area of about 80 km2, is located in the Cañadón Amarillo hydrocarbon field (Fig. 4), where this unit has been in production since the 1970’s. This study is based on a detailed description and interpretation of four cored wells (three of them covering the entire unit), complemented with calibrated well-log suites from additional 22 wells (Fig. 5).The Upper Member of the Mulichinco Formation (65-80 m thick) has a cyclic alternation of relatively thick (up to 16 m) siliciclastic packages and thinnercarbonate-dominated intervals (Fig. 6). Three facies associations were identified within the siliciclastic packages, and they are inferred to represent shoreface, offshore-transition, and offshore settings in an open marine system influenced by storm- and fair-weather waves. The lower-shorefacefacies association (Fig. 7) is composed of amalgamated, siliciclastic sandstone beds (with minor contribution of carbonate particles) mostly having hummocky cross-stratification, horizontal lamination or ripple cross-lamination. Bioturbation varies from low to high and the trace fossil suite (Arenicolites, Gyrochortes, Palaeophycus, Ophiomorpha, Skolithosy ?Macaronichnus) is interpreted to represent an Skolithosichnofacies (MacEachern et al., 2007). The offshore-transition facies association groups intensely bioturbated muddy sandstones and less bioturbated (i.e. better preserved) sandstone-rich heterolithics (Fig. 8), with occasional medium-bedded sandstone beds (< 15 cm thick) having HCS and rippled tops. Siliciclastics largely dominate within these sediments, but bioclasts (mostly from oysters) can be common locally. The assemblage of trace fossils (Planolites, Palaeophycus, Thalassinoides, Teichichnus, Phyco- siphon, Ophiomorpha, Schaubcylindrichnus y As- terosoma) is attributed to represent a Proximal Cruzianaichnofacies (MacEachern and Bann, 2008), and, together with the sediments, reflect a storm- dominated offshore-shoreface transition, between the storm and fair-weather wave bases (Reading& Collinson, 1996). In turn, the offshore facies association comprises mostly massive or laminated mudstones, as well as mudstone-dominated hetero- lithics. In the latter, very thin-bedded siltstone beds with wavy tops are abundant, likely reflecting the distal ends of storm-related flows.

Carbonate-dominated intervals are composed of two facies associations that collectively are inferred to represent subenvironments within acarbonate ramp, namely shallow (inner) and middle sectors of it. The shallow-ramp facies association is characterized by cross-bedded ooid-skeletal grainstones/packstones, with subordinated skeletal rudstones and packstones (Fig. 10). Bioclasts derived mostly from mollusks and echinoids, whereas terrigenous material is less than 25%. These sediments deposited in open-marine high-energy settings, likely shoals and intershoals areas (Rankey y Reeder, 2011; Christ et al., 2012). In contrast, the middle-ramp facies association is composed of mud- dominated textures, mostly skeletal wackestones and floatstones (Fig. 11). They are massive, but argillaceous seams might create a nodular aspect. Bioclasts from epibenthic (oysters) and endobenthic bivalves, as well as from serpulids and echinoids are dominant, but glauconite and intraclasts are locally abundant. Compared to the previous association, these sediments were deposited in lower energy and deeper parts of the ramp.The nature of key stratigraphic surfaces, facies associations distribution and analysis of stacking patterns within this cyclic carbonate/siliciclastic succession suggest that the siliciclastic- and carbonate-dominated depositional systems were not coeval, but replaced over time. Correlation panels show that individual carbonate and siliciclastic hemicycles extend across the entire area and lateral transition between them were not recorded (Figs. 12, 13). Carbonate packages are invariably bounded by sharp, erosive surfaces (Fig. 14a,b), which are interpreted to represent transgressive ravinement surfaces (Swift, 1968; Nummedal and Swift, 1987). Facies associations in these hemicycles suggest a deepening-upward trend, whereas in the overlying siliciclastic packages the stratal patterns indicate normal (i.e. not forced) regressive conditions (Fig. 15). Therefore, the seven small-scale cycles (plus two incomplete cycles) recorded in the Upper Member of the Mulichinco Formation (3-18 m thick) are interpreted to represent high-frequency sequences (nomenclature following Zecchin and Catuneanu, 2013), comprising relatively thin, transgressive, carbonate-rich hemicycles and thicker, siliciclastic regressive hemicycles (Fig 16). The non-erosive boundary between both hemicycles (Fig. 14c) could correlate with the maximum flooding surface (Van Wagoner et al., 1990), or being slightly younger, as it reflects enough terrigenous supply to dilute carbonate productivity (Abbot, 1997). In this context, it isconsidered equivalent of a downlap surface (Fig 16). These high-frequency sequences were most likely controlled by short-term, low-amplitude, relative sea-level changes, and the thickness of transgressive hemicycles could have been influenced by carbonate productivity and/or rate of transgression.

The results of this study provide with a more accurate reservoir characterization of this mixed (and complex) succession. Two reservoir-type facies associations were identified, namely the lower- shoreface and shallow-ramp facies associations. The understanding of key reservoir attributes, such as geometry, thickness, connectivity and internal heterogeneity were improved with this study. Additionally, the findings of this work provided with a high-resolution sequence-stratigraphic model that help predicting the occurrence of the reservoir- type facies within a high-frequency sequence. The integration of all these elements within a geological model could contribute to define for example the most efficient development strategy for the reservoir horizons (e.g. vertical versus horizontal wells) which would, eventually, impact in the recovery factor of the field.

References

Abbott, S.T., 1997. Mid-cycle shellbeds from mid-Pleistocene cyclothems, New Zealand: implications for sequence architecture. Sedimentology 44:805-824.

Abbott, S.T., 1998. Transgressive systems tracts and onlapshellbeds from middle-Pleistocene sequences, Wanganui Basin, New Zealand. Journal of Sedimentary Research 68:253-268.

Allen, G.P. y H.W. Posamentier, 1993. Sequence stratigraphy and facies model of a incised valley fill: the Gironde estuary, France. Journal of Sedimentary Petrology 63:378-391.

Braga, J.C., J.M. Martín, J. Aguirre, C.D. Baird, I. Grunnaleite, N. Bo, A. Puga-Bernabéu, G. Saelen y M.R. Talbot, 2010. Middle- Miocene (Serravallian) temperate carbonates in a seaway connecting the Atlantic Ocean and the Mediterranean Sea (North Betic Strait, S Spain). Sedimentary Geology 225:19-33.

Burchette, T.P., V.P. Wright y T.J. Faulkner, 1990. Oolitic sand- body depositional models and geometries, Mississippian of southwest Britain: implications for petroleum exploration incarbonate ramp settings. Sedimentary Geology 68:87-115.

Cattaneo, A. y R.J. Steel, 2003. Transgressive deposits, a review of their variability. Earth Science Reviews 62:187-223.

Charvin, K., G.J. Hampson, K.L. Gallagher y R. Labourdette, 2010.Intra-parasequence architecture of an interpreted asymmetrical wave-dominated delta. Sedimentology 57:760-785.

Christ, N., A. Immenhauser, F. Amour, M. Mutti, S. Tomas,S.M. Agar, R. Alway y L. Kabiri, 2012. Characterization and interpretation of discontinuity surfaces in a Jurassic ramp setting (High Atlas, Morocco). Sedimentology 59:249-290.

Clifton, H.E., 1981. Progradational sequences in Miocene shoreline deposits, southeastern Caliente Range, California. Journal of Sedimentary Petrology 51:165-184.

Clifton, H.E., 2006. A re-examination of facies models for clastic shorelines. En H.W. Posamentier y R.G. Walker (Eds.), Facies models revisited. SEPM Special Publication 84:293-337.

Coffey, B.P. y J.F. Read, 2007. Subtropical to temperate facies from a transition zone, mixed carbonate–siliciclastic system, Palaeogene, North Carolina, USA. Sedimentology 54:339-365

Dumas, S. y R.W.C. Arnott, 2006. Origin of hummocky and swaley cross-stratification: The controlling influence of unidirectional current strength and aggradation rate. Geology 34:1073-1076.

Dumas, S., R.W.C. Arnott y J.B. Southard, 2005. Experiments on oscillatory-flow and combined flow bed forms: Implications for interpreting parts of the shallow marine rock record. Journal of Sedimentary Research 75:501-513.

Francis, J.M., G.B. Dunbar, G.R. Dickens, I.A. Sutherland yA.W. Droxler, 2007. Siliciclatic sediment across the North Queensland Margin (Australia): A Holocene perspective on reciprocal versus coeval deposition in tropical mixed siliciclastic-carbonate systems. Journal of Sedimentary Research 77:572-586.

Fürsich, F.T., 1995. Approaches to the palaeoenvironmental reconstructions. Geobios, 18:183-195.

Fürsich, F.T., W. Oschman, A.K. Jaitly y I.B. Singh, 1991. Faunal response to trangressive-regressive cycles: example from the Jurassic of western India. Palaeogeography, Palaeoclimatology, Palaeoecology 85:149-159.

Gillespie, J.P. y C.S. Nelson, 1997. Mixed siliciclastic-skeletal carbonate facies on Wanganui shelf, New Zealand: a contribution to the temperate carbonate model. En N.P. James y J.A.D. Clarke (Eds.), Cool-Water Carbonates. SEPM SpecialPublication 56:127-140.

Gulisano, C.A., A.R. Gutiérrez Pleimling y R.E. Digregorio, 1984.Análisis estratigráfico del intervalo Tithoniano-Valanginiano (Formaciones Vaca Muerta, Quintuco y Mulichinco) en el suroeste de la provincia de Neuquén. IX Congreso Geológico Argentino Actas I:221-235, San Carlos de Bariloche.

Hampson, G.J., 2000. Discontinuity surfaces, clinoforms, and facies architecture in a wave-dominated, shoreface-shelf parasequence. Journal of Sedimentary Research 70:325-340.

Hampson, G.J. y J.E.A. Storms, 2003. Geomorphological and sequence stratigraphic variability in wave-dominated, shore- face-shelf parasequences. Sedimentology 50:667-701.

Hampson, G.J., A.B. Rodriguez, J.E.A. Storms, H.D. Johnson y C.T. Meyer, 2008. Geomorphology and high-resolution stratigraphy of progradational wave-dominated shoreline deposits: impact on reservoir-scale facies architecture. EnG.J. Hampson, R.J. Steel, P.M. Burgess, R.W. Dalrymple (Eds.), Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy. SEPM Special Publication 90:117-142.

Harms, J.C., J.B. Southard, D.R. Spearing y R.G. Walker, 1975.Depositional environments as interpreted from primary sedimentary structures and stratification sequences. SEPM, Short Course 2, pp. 161.

Helland-Hansen, W. y O.J. Martinsen, 1996. Shoreline trajectories and sequences: description of variable depositional-dipscenarios. Journal of Sedimentary Research 66:670-688.

James, N.P., 1997. The cool-water carbonate depositional realm.En N.P. James y J.A.D. Clarke (Eds.), Cool-Water Carbonates. SEPM Special Publication 56:1-20.

James, N.P., Y. Bone, C.C. Von Der Borch y V.A. Gostin, 1992.Modern carbonate and terrigenous clastic sediments on a cool water, high energy, mid-latitude shelf: Lacepede, southern Australia. Sedimentology 39:877-903.

Kidwell, S.M., 1991. The stratigraphy of shell concentrations.En P.A. Allison y D.E.G. Briggs (Eds.), Taphonomy: releasing thedata locked in the fossil record. Plenum Press, New York:211-289.

Lazo, D.G., 2007. Análisis de biofacies y cambios relativos del nivel del mar en el Miembro Pilmatué de la Formación Agrio, Cretácico Inferior de Cuenca Neuquina, Argentina. Ameghiniana 44:73-89.

Legarreta, L. y C.A. Gulisano, 1989. Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior). En G. Chebli y L.A. Spalletti (Eds.), Cuencas Sedimentarias Argentinas. Serie Correlación Geológica 6:221-243. Tucumán.

Legarreta, L. y E. Kozlowski, 1981. Estratigrafía y sedimentología de la Formación Chachao, Provincia de Mendoza. VIII Congreso Geológico Argentino Actas II:521-543, San Luis.

Legarreta, L. y M.A. Uliana, 1991. Jurassic-Cretaceous marine oscillations and geometry of backarc basin fill, central Argentine Andes. En D.I. Macdonald (Ed.), Sedimentation, Tectonics and Eustasy. Sea level Changes at Active Plate Margins. IAS Special Publication 12:429-450.

MacEachern, J.A. y K.L. Bann, 2008. The role of ichnology in refining shallow marine facies models. En G.J. Hampson, R.J. Steel , P.M. Burgess y R.W. Dalrymple (Eds.), Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy. SEPM Special Publication 90:73-116.

MacEachern, J.A. y S.G. Pemberton, 1992. Ichnological aspects of Cretaceous shoreface successions and shoreface variability in the Western Interior Seaway of North America. En S.G. Pemberton (Eds.), Applications of Ichnology to Petroleum Ex- ploration: a Core Workshop. SEPM Core Workshop 17:169-198.

MacEachern, J.A., B.A. Zaitlan y S.G. Pemberton, 1999. A sharp- based sandstone of the Viking Formation, Joffre Field, Alberta, Canada. Criteria for recognition of transgressively incised shoreface complexes. Journal of Sedimentary Research 69:876-892.

MacEachern, J.A., K.L. Bann, S.G. Pemberton y M.K. Gingras, 2007. The ichnofacies paradigm: high-resolution paleoenvironmental interpretations of the rock record. En J.A. McEachern, K.L. Bann, M.K. Gingras y S.G. Pemberton (Eds.), Applied Ichnology. SEPM Short Course Notes 52:27-64.

McNeill, D. F., K.J. Cunningham, L.A. Guertin y F.S. Anselmetti, 2004. Depositional themes of mixed carbonate-siliciclastics in the south Florida Neogene: Application to ancient deposits. En G.M. Grammer, P.M. Harris y G.P. Eberli (Eds.), Integration of outcrop and modern analogs in reservoir modeling. AAPG Memoir 80:23-43.

Michel, J., G. Mateu-Vicens y H. Westphal, 2011. Modern heterozoan carbonate facies from a eutrophic tropical shelf (Mauritania). Journal of Sedimentary Research 81:641-655.

Myrow, P.M. y J.B. Southard, 1991. Combined flow model for vertical stratification sequences in shallow marine storm- deposited beds. Journal of Sedimentary Petrology 61:202-210.

Naish, T.R. y P.J.J. Kamp, 1997. Sequence stratigraphy of sixth-order (41 k.y.) Pliocene-Pleistocene cyclothems, Wanganui basin, New Zealand: a case for the regressive systems tract. Geological Society of America Bulletin 109:978-999.

Nalin, R. y F. Massari, 2009. Facies and stratigraphic anatomy of a temperate carbonate sequence (Capo Colonna Terrace, Late Pleistocene, southern Italy). Journal of Sedimentary Research 79:210-225.

Nelson, C.S., 1988. An introductory perspective on non-tropical shelf carbonates. SedimentaryGeology 60:3-12.

Net, L.I., E. Schwarz, A. Coppoli, L. Rodríguez Blanco y J.L. Massaferro, 2010. Characterization of mixed siliciclastic/ carbonate systems within the MulichincoFm (Valanginian) in Cañadón Amarillo field, northern Neuquén Basin (Argentina). An integrated approach to build more robust exploration and production models. XVIII International Sedimentological Congress Abstracts Volume:642, Mendoza.

Nummedal, D. y D.J.P. Swift, 1987. Transgressive stratigraphy at sequence-bounding unconformities: some principles derived from Holocene and Cretaceous examples. En D. Nummedal,O.H. Pilkey, y J.D. Howard (Eds.), Sea-level Fluctuation and Coastal Evolution. SEPM Special Publication 41:241-260.

Olszewski, T.D. y M.E. Patzkowsky, 2003. From cyclothems to sequences: the record of eustasy and climate on an icehouse epeiric platform (Pennsylvanian–Permian, North American Midcontinent). Journal of Sedimentary Research 73:15-30.

Posamentier, H.W., M.T. Jervey y P.R. Vail, 1988. Eustatic controls on clastic deposition I – conceptual framework. En C.K. Wilgus, B.S. Hastings, C.G.St.C. Kendall, H.W. Posamentier,C.A. Ross y J.C. Van Wagoner (Eds.), Sea Level Changes–An Integrated Approach, SEPM Special Publication 42:110-124.

Posamentier, H.W. y P.R. Vail, 1988. Eustatic controls on clastic deposition II–sequence and systems tract models. En C.K. Wilgus, B.S. Hastings, C.G.St.C. Kendall, H.W. Posamentier,C.A. Ross y J.C. Van Wagoner (Eds.), Sea Level Changes–An Integrated Approach, SEPM Special Publication 42:125-154.

Rankey, E.C. y S.L. Reeder, 2011. Holocene oolitic marine sand complexes of the Bahamas. Journal of Sedimentary Research 81:97-117.

Reading, H.G. y J.D. Collinson, 1996. Clastic coasts. En H.G Reading (Ed.), Sedimentary Environments: processes, facies and stratigraphy, 3rd. Blackwell Science, Oxford, 232-280 pp.

Schwarz, E., 1999. Facies sedimentarias y modelo deposicional de la Formación Mulichinco (Valanginiano), Cuenca Neuquina Septentrional. Revista de la Asociación Argentina de Sedimentología 6(1-2):37-59.

Schwarz, E., 2008. Análisis sedimentológico y estratigráfico de la Formación Mulichinco en el yacimiento Cañadon Amarillo (Provincia de Mendoza). YPF S.A., 97 pp. (Inédito).

Schwarz, E., 2010. Mixed carbonate (transgressive) / siliciclastic (regressive) cycles deposited in a shallow-water ramp: the Upper Mulichinco Member (Valanginian), Neuquén Basin, Argentina. XVIII International Sedimentological Congress, Abstracts Volume 794, Mendoza.

Schwarz, E., 2012. Sharp-based marine sandstone bodies in the Mulichinco Formation (Lower Cretaceous), Neuquén Basin, Argentina: remnants of transgressive offshore sand ridges. Sedimentology 59:1478-1508.

Schwarz, E. y L.A. Buatois, 2012. Substrate-controlled ichnofacies along a marine sequence boundary: The Intra-Valanginian Discontinuity in central Neuquén Basin (Argentina). Sedimentary Geology 277-278:72-87.

Schwarz, E. y J.A. Howell, 2005. Sedimentary evolution anddepositional architecture of a Lowstand Sequence Set: The Lower Cretaceous Mulichinco Formation, Neuquén Basin, Argentina. En G.D. Veiga, L.A. Spalletti, J.A. Howell y E. Schwarz (Eds.), The Neuquén Basin, Argentina: a Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society of London, Special Publication 252:109-138.

Schwarz, E., L.A. Spalletti y J.A. Howell, 2006. Sedimentary response to a tectonically-induced sea-level fall in a shallow back-arc basin: theMulichinco Formation (Lower Cretaceous), Neuquén Basin, Argentina. Sedimentology 53:55-81.

Schwarz, E., G.D. Veiga y G. Álvarez, 2009. Esquema secuencial y litoestratigráfico de la sucesión Valanginiana en la región central de la Cuenca Neuquina, República Argentina. XII Congreso Geológico Chileno, Formato Digital. Santiago de Chile.

Schwarz, E., L.A. Spalletti y G.D. Veiga, 2011. La Formación Mulichinco (Valanginiano). En Leanza, H., Vallés, J., Arregui,C. y Danieli, J.C. (Eds.), Relatorio del XVIII Congreso Geológico Argentino: Geología y Recursos Naturales de la Provincia del Neuquén, pp. 131-144.

Sixsmith P.J., G.J. Hampson, S. Gupta, H.D. Johnson y J.F. Fofanaet, 2008. Facies architecture of a net transgressive sandstone reservoir analog: The Cretaceous Hosta Tongue, New Mexico. Bulletin American Association Petroleum Geology 92:513-547.

Soreghan, G.S., 1997. Walther’s law, Climate change, and Upper Paleozoic Cyclostratigraphy in the Ancestral Rocky Mountains. Journal of Sedimentary Research 67:1001-1004.

Spalletti, L., J. Franzese, S. Matheos y E. Schwarz, 2000.Sequence stratigraphy of a tidally-dominated carbonate- siliciclastic ramp; the Tithonian of the southern Neuquén Basin, Argentina. Geological Society of London 157:433-446.

Spalletti, L.A., D.G. Poiré, D. Pirrie, S.D. Matheos y P. Doyle, 2001. Respuesta sedimentológica a cambios en el nivel de baseen una secuencia mixta clástica-carbonática del Cretácico de la Cuenca Neuquina, Argentina. Revista Sociedad Geológica España 14:57-74.

Spalletti, L.A., G.D. Veiga, E. Schwarz y J.F. Franzese, 2008.Depósitos de flujos gravitacionales subácueos de sedimentos en el flanco activo de la Cuenca Neuquina durante el Cretácico Temprano. Revista de la Asociación Geológica Argentina 63:442-453.

Swift, D.J.P., 1968. Coastal erosion and transgressive stratigraphy.Journal of Geology 76:444-456.

Swift, D.J.P., D.J. Stanley y J.R. Curray, 1971. Relict sediments on continental shelves: a reconsideration. Journal of Geology79:322-346.

Trabucho-Alexandre, J.R. Dirkx, H. Veld, G. Klaver y P.L. de Boer, 2012. Toarcian black shales in the Dutch Central Graben: record of energetic, variable depositional conditions during an oceanic anoxic event. Journal of Sedimentary Research 82:104-120.

Tucker, M.E., F. Calvet y D. Hunt, 1993. Sequence stratigraphy of carbonate ramps: systems tracts, models and application to the Muschelkalk carbonate platforms of eastern Spain. En H.W. Posamentier, C.P. Summerhayes, B.U. Haq y G.P. Allen (Eds.), Sequence stratigraphy and facies associations. International Association of Sedimentologists Special Publication 18:397- 415.

Van Wagoner, J.C., R.M. Mitchum, K.M. Campion y V.D. Rahmanian, 1990. Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrop: Concepts for High-Resolution Correlation of Time and Facies. American Association of Petroleum Geologists, Methods in Exploration Series 7, Tulsa, 255 pp.

Vergani, G.D., A.J. Tankard, H.J. Belotti y H.J. Welsink, 1995.Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. En A.J. Tankard, R.S. Soruco, y H.J. Welsink (Eds.), Petroleum Basins of South America. American Association of Petroleum Geologists, Special Publication 62:383-402.

Walker, R.G. y A.G. Plint, 1992. Wave- and storm-dominated shallow marine systems. En R.G. Walker y N.P. James (Eds.), Facies Models; Response to Sea Level Change. Geological Association of Canada: 219-238.

Weaver, V., 1931. Palaeontology of the Jurassic and Cretaceous central Argentina. University of Washington, Memoir 496. Seattle.

Wright, V.P. y T.P. Burchette, 1996. Shallow-water carbonate environments. En H.G Reading (Eds.), Sedimentary Environments: processes, facies and stratigraphy, 3rd edition. Blackwell Science, Oxford: 325-391.

Zecchin, M., 2007. The architectural variability of small-scale cycles in shelf and ramp clastic systems: the controlling factors. Earth-Science Reviews 84:21-55.

Zecchin, M. y O. Catuneanu, 2013. High-resolution sequence stratigraphy of clastic shelves I: Units and bounding surfaces. Marine and Petroleum Geology 39:1-25.

Zonneveld, J.P., M.K. Gingras y S.G. Pemberton, 2001. Trace fossil assemblages in a Middle Triassic mixed siliciclastic- carbonate marginal marine depositional system, British Columbia. Palaeogeography, Palaeoclimatology, Palaeoecology 166:249-276.

Published

2021-03-31

How to Cite

Schwarz, E. ., Álvarez-Trentini, G. ., & Valenzuela, M. E. . (2021). Mixed (carbonatic/siliciclastic) cycles in the Upper Member of the Mulichinco Formation (Cañadón Amarillo Field, central Neuquén Basin, Argentina): sequential implications and for reservoir characterisation. atin merican ournal of edimentology and asin nalysis, 20(1), 21–49. etrieved from https://lajsba.sedimentologia.org.ar/lajsba/article/view/151

Issue

Section

Research Papers