Magnetic parameters in paleolimnological studies in Antarctica
Keywords:
Lakes, Paleomagnetism, AntarcticPeninsula, MagneticProxiesAbstract
Environmental magnetism and paleomagnetism methods are useful tools for climate-related and environmental changes studies, as well as for age dating. In particular, they may be applied in magnetic monitoring and to investigate the behavior, response, and history of environments like rivers, lakes, soils, etc. Although the usefulness of magnetic susceptibility in such applications is well known, in this contribution the potential and the need of using additional parameters obtained from measurements of remanent magnetization (natural, anhysteretic, isothermal), magnetic hysteresis and thermomagnetic studies are discussed. Magnetic signals from sediments and soils are often dominated by ferromagnetic minerals sensu lato: ferrimagnetic (titano)-magnetite and/ or antiferromagnetic hematite. These minerals are often not detected with standard analytical techniques due to their low concentrations (<1% wt). However, rock magnetic measurements are sensitive enough to detect and identify such minerals, with concentrations that are several orders of magnitude smaller. One important phenomenon to be taken into account is “magnetic enhancement” (Le Borgne 1955, Tite and Linington, 1975), which is caused by the in situ conversion of paramagnetic to ferrimagnetic materials. New formation of ferrimagnetic materials may occur by fermentation, heating, fire, biological activity and chemical processes (Mullins, 1977; Maher, 1986), and thus also be the result of pollutants and magnetized particles of anthropogenic origin (Chaparro et al., 2006, 2013a,b; Bu?ko et al., 2010; Marié et al., 2010; Zhang et al., 2011).
Natural systems are complex and their behavior depends on the interaction of several independent forcing factors like climate variations and human activity affecting the environment. Parameters describing indirectly a system are called “proxies” and may be derived from physical, chemical or biological properties. Magnetic proxies have the advantage to be determined with high sensitivity combined with fast laboratory processing; sample preparation is easy, laboratory instruments are of relatively low cost, and most measurements are non- destructive. Magnetic properties are well suited as proxies of: a) magnetic mineral concentration; b) magnetic grain size; c) correlation of sediment cores and soil profiles; d) geomagnetic field records; e) climatic changes records; f) pollution records; and g) environmental processes records (Maher et al., 1999; Kravchinsky et al., 2003; Chaparro et al. 2006, 2007, 2013a,b, 2015; Irurzun et al., 2006, 2014a; Blundell et al., 2009; Bidegain et al., 2009; Torrent et al., 2010; Lascu and Plank 2013; Oldfield et al. 2014; Quijano et al., 2014).
In this work, preliminary results from James Ross Archipelago lakes (NE Antarctic Peninsula) are presented. Sediment cores and water samples were taken from lake systems located on James Ross, Vega and Marambio islands (JRI, VI, MI, respectively, Fig. 1). Lake water’s pH and total dissolved solids exhibit a wide range of variation (<7 to 10 and <50 to 5000 mg/L, respectively), differentiating MI from JRI and VI in these aspects, due to the evaporation processes and a deficit of biological activity on MI. Organic and inorganic carbon contents in sediments are low and points to the dominance of siliciclastic materials. Thermomagnetic studies reveals in both JRI and VI the dominance of magnetite (Tc= 580°C) and subordinated titanomagnetite and/or iron sulfur (Tc= 290°C), goethite and hematite (Tc= 110°C and 680°C, Fig. 2). Lake Esmeralda (Fig. 1) shows a strong increase of magnetization after heating (sample ESM7-24, Fig. 2), maybe due to the initial presence of hematite or goethite and paramagnetic minerals, and their conversion to ferrimagnetic minerals.
Magnetic measurements of both JRI and VI sediments, suggest the presence of very fine ferrimagnetic minerals (magnetite, <0.1 ?m), while Esmeralda is characterized by larger particles (1-5 ?m); and MI by fine ferrimagnetic and paramagnetic minerals (0.2-1 ?m, Fig. 3). Magnetic hysteresis shows that magnetites tend to be of single domain size (SD) for JRI and Anónima (in Vega island) and of pseudo-single domain size (PSD) for Esmeralda (Fig. 4). The relation between a magnetic concentration dependent parameter (?) and a magnetic grain size dependent parameter (?ARM/?) is shown in figure 5. MI and Esmeralda exhibits a trend of increasing ? and decreasing ?ARM/?, that is, higher magnetic particle concentration is accompanied by coarser magnetic grain size. In contrast, JRI and Anónima show a linear relationship between parameters ? and ?ARM/?, indicating a correlation of magnetic mineral concentration with decreasing grain size. A multivariate statistical analysis of magnetic concentration, magnetic grain size, physic- chemical, and geochemical characteristics shows an inverse relationship between magnetic and physic-chemical variables. Moreover, statistically significant differences between lakes from each studied island are observed. These differences may be due to individual basin and lake environment characteristics and the processes (diagenetic, biological, geochemical, etc.) occurring in them.
Finally, Lake Anónima was selected to deter- mine a curve of relative paleointensity (RPI) of high quality, and to calibrate these Antarctic lake sediments through its correlation with a dated RPI curve from Lake Esmeralda (Fig. 9). Five cores were correlated using ? and ?ARM/? variations and they were converted to a common sedimentary depth, using one core as the master core. For RPI normalization, sediments must satisfy requirements proposed e.g. by Tauxe (1998): NRM/k, NRM/ARM and NRM/SIRM ratios should only depend on the intensity of the geomagnetic field. Those ratios were normalized to the unity for comparison with records from other lakes. The NRM15mT/k results (NRM15mT is the remanence left after demagnetization with 15 mT) for the Anónima cores are shown in Figure 9 and compared to the corresponding Esmeralda mean curve (Irurzun et al., 2013). Both curves show a similar behavior, with at least three possible lines of correlation. The minimum ratio NRM15mT/k at 68 cm for Anónima is clearly correlated with Esmeralda minimum ratio at the age of 7,700 cal. years. This suggests that sediments recovered from Anónima may have recorded changes of the Earth magnetic field during the last 6,000-7,000 years.
We conclude that the magnetic proxies, besides being useful environmental indicators, allow the discrimination between study areas and also to select target region for future studies (e.g. paleomag- netism, environmental changes, etc.). The RPI tech- nique is a very promising tool for dating sediments in Antarctic lakes. This study contributed to a better understanding of Antarctic lake systems from a multidisciplinary approach.
References
Barton, C.E. y M. McElhinny, 1981. A 10,000 years geomagenetic secular variation record from three Australian Maars. Geo¬ physical Journal of the Royal Astronomical society 68:709-724. Battarbee, R., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary science Reviews 19:107-124.
Beckwith, P., J. Ellis, D. Revitt y F. Oldfield, 1986. Heavy metal and magnetic relationships for urban source sediments. Physics of the Earth and Planetary Interiors 42:67-75.
Bidegain, J.C., Y. Rico, A. Bartel, M.A.E. Chaparro y S. Jurado, 2009. Magnetic parameters reflecting pedogenesis in pleistocene loess deposits of Argentina, Quaternary International 209:175-186.
Blundell, A., J.A. Hannam, J.A. Dearing y J.F. Boyle, 2009. Detecting atmospheric pollution in surface soils using magnetic measurements: a reappraisal using an England and Wales database. Environmental Pollution 57:2878-2890
Böhnel, H. y R. Molina¬Garza, 2002. Secular variation in Mexico during the last 40,000 years. Physics of the Earth and Planetary Interiors 133:99-109
Brachfeld, S., G.D. Acton, Y. Guyodo, y S.K. Banerjee, 2000. High- resolution paleomagnetic records from Holocene sediments from the Palmer Deep, Western Antartic Peninsula. Earth and Planetary science Letters 181:429-441.
Brachfeld, S. A., E. Domack, C. Kisel, C. Laj, A. Leventer, S. Ishman, R. Gilbert, A. Camerlenghi y L.B. Eglinton, 2003. Holocene history of the Larsen-A Ice Shelf constrained by geomagnetic paleointensity dating. Geology 31:749-752.
Bu?ko, M.S., T. Magiera, L.J. Pesonen y B. Janus, 2010. Magnetic, Geochemical, and Microstructural Characteristics of Road Dust on Roadsides with Different Traffic Volumes-Case Study from Finland. water, Air and soil Pollution 209:295-306.
Carrivick, J.L., B.J. Davies, N.F. Glasser y D. Nývlt, 2012. Late Holocene changes in character and behaviour of land- terminating glaciers on James Ross Island, Antarctica. Journal of Glaciology 58:1176-1190.
Chaparro, M.A.E., 2006. Estudio de Parámetros Magnéticos de Distintos Ambientes Relativamente Contaminados en Argentina y Antártida. Geofísica UNAM, México, 107 pp.
Chaparro, M.A.E, C.S.G. Gogorza, M.A.E. Chaparro, M.A. Irurzun y A.M. Sinito, 2006. Review of magnetism and pollution studies of various environments in Argentina. Earth Planets space 58:1411-1422.
Chaparro, M.A.E., H. Nuñez, J.M. Lirio, C.G.S. Gogorza y A.M. Sinito, 2007. Magnetic screening and heavy metal pollution studies in soils from Marambio station, Antarctica. Antarctic sciences 19:379-393.
Chaparro, M.A.E., H.N. Böhnel, R. Byrne, N.R. Nowaczyk, R.S. Molina¬Garza, J. Park y J.F.W. Negendank, 2008. Paleomag- netic secular variation and rock-magnetic studies of Holocene sediments from a maar lake (Hoya de San Nicolas) in Central Mexico. Geophysical Journal International 175:462-476.
Chaparro, M.A.E., M.A.E. Chaparro y A.M. Sinito, 2012. An interval fuzzy model for magnetic monitoring: estimation of a pollution index. Environmental Earth sciences 66:1477-1485.
Chaparro, M.A.E., G. Suresh, M.A.E. Chaparro, V. Ramasamy y
A.M. Sinito, 2013a. Magnetic studies and elemental analysis of river sediments: A case study from the Ponnaiyar River (southeastern India). Environmental Earth sciences 70:201- 213.
Chaparro, M.A.E., J. Lavornia, M.A.E. Chaparro y A.M. Sinito, 2013b. Biomonitors of urban air pollution: Magnetic studies and SEM observations of corticolous foliose and microfoliose lichens and their suitability for magnetic monitoring. Environmental Pollution 172:61-69.
Chaparro, M.A.E., N. Krishnamoorthy, M.A.E. Chaparro, K.L. Lecomte, S. Mullainathan, R. Mehra y Ana M. Sinito, 2015. Magnetic, chemical and radionuclide studies of river sediments and their variation with different physiographic regions of Bharathapuzha River, southwestern India. studia Geophysica et Geodaetica DOI: 10.1007/s11200-014-0145-6.
Cohen, A.S., 2003. Paleolimnology: The history and evolution of lake systems. Oxford University Press, New York, 500 pp.
Creer, K.M., 1974. Geomagnetic variations for the interval 7,000- 25,000 BP as recorded in a core of sediments from station 1474 of the Block Sea cruise of Atlantic II. Earth and Planetary science Letters 23:34-42.
Creer, K.M., D.A Valencio, A.M. Sinito, P. Tucholka y J.F. Vilas, 1983. Geomagnetic secular variations 0-14,000 year BP as recorded by lake sediments from Argentina. Geophysical Journal of the Royal Astronomical society 74:109-222.
Dearing, J., 1999. Magnetic susceptibility. En J. Walden, F. Oldfield y J. Smith (Eds.), Environmental magnetism: a practical guide. Technical guide, No. 6. Quaternary Research Association, London:35-62.
Desenfant, F., E. Petrovský y P. Rochette, 2004. Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France. water, Air and soil Pollution 152:297-312.
Doran, P.T., G.W. Berger, W.B. Lyons, R.A. Wharton Jr, M.L. Davisson, J. Southon y J.E. Dibb, 1999. Dating Quaternary lacustrine sediments in the McMurdo Dry Valleys, Antarctica Palaeogeography, Palaeoclimatology, Palaeoecology 147:223-239. Dunlop, D., 2002. Theory and application of the Day plot (Mrs/ Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysics Research 107(B3), doi:10.1029/2001JB000486.
Elmore, R.D., A.R. Muxworthy y M.M. Aldana, 2012. Remag- netization and Chemical Alteration of Sedimentary Rocks. En
R.D. Elmore, A.R. Muxworthy, M.M. Aldana y M. Mena (Eds.), Remagnetization and Chemical Alteration of sedimentary Rocks. Geological Society, London, Special Publications 371:1-21.
Evans, M.E. y F. Heller, 2003. Environmental magnetism, Princi¬ ples and applications of enviromagnetics, Academic Press. An imprint of Elsevier Science, New York, 299 pp.
Everitt B. y T. Hothorn, 2011. An Introduction to Applied Multivariate Analysis with R. Springer. New York, Dordrecht, Heidelberg, London, 283 pp.
Geiss, C.E., C.E. Umbanhowar, P. Camill y S.K. Banerjee, 2003. Sediment magnetic properties reveal Holocene climate change along the Minnesota prairie-forest ecotone. Journal of Paleolimnology 30:151-166
Gogorza, C.S.G., M.A. Irurzun, A.M. Sinito, A. Lisé¬Pronovost, G. St¬Onge, T. Haberzettl, C. Ohlendorf, S. Kastner y B. Zolitschka, 2012. High-resolution paleomagnetic records from Laguna Potrok Aike (Patagonia, Argentina) for the last 16,000 yrs. Geochemistry, Geophysics. Geosystems 13:Q12Z37, doi:10.1029/2011GC003900.
Gubbins, D. y E. Herrero¬Bervera, 2007. Encyclopedia of Geo¬ magnetism and Paleomagnetism. Springer-Verlag, Berlin, Heidelberg, New York, 1054 pp.
Hanesch, M., H. Stanjek y N. Petersen, 2006. Thermomagnetic measurements of soil iron minerals: the role of organic carbon. Geophysics Journal International 165:53-61.
Heiri O., A.F. Lotter y G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25:101-110.
Hunt, A., J. Jones y F. Oldfield, 1984. Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. sciences of the Total Environment 33:129-139.
Hunt, C.P., B.M. Moskowitz y S.K. Banerjee, 1995. Magnetic properties of rocks and minerals. En T.J. Ahrens (Ed.), Rock Physics and Phase Relations: A Handbook of Physical Constants. American Geophysical Union, Washington D.C., 3:189-204.
Ingólfsson, Ó., C. Hjort, P.A. Berkman, S. Björck, E. Colhoun, I.D. Goodwin, B. Hall, K. Hirakawa, M. Melles, P. Moller y M.L. Prentice, 1998. Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarctic science 10:326-44.
Irurzun, M.A., C.S.G. Gogorza, A.M. Sinito, J.M. Lirio, H. Nuñez y Chaparro, M.A.E., 2006. Paleosecular Variations Recorded by Holocene-Peistocene Sediments from El Trébol Lake (Ar- gentina). Physics of the Earth and Planetary Interiors 154:1-17.
Irurzun, M.A., M.A.E. Chaparro, A.M. Sinito, C.S.G. Gogorza, J.M Lirio, H. Nuñez, N.R. Nowaczyk y H.N. Böhnel, 2013. Preliminary relative palaeointensity record and chronology on sedimentary cores from Lake Esmeralda (Vega Island, Antarctica). Latimag Letters 3, 6 pp.
Irurzun, M.A., C.S.G. Gogorza, A.M Sinito, M.A.E. Chaparro, A. Prieto, C. Laprida, J.M. Lirio, A. Navas y H. Nuñez, 2014a. A high resolution palaeoclimate record for the last 4800 cal. years BP on Lake La Brava SE Pampas plains, Argentina. Geofísica Internacional 53:365-383.
Irurzun M.A., G. González Bonorino, C.S.G. Gogorza, S. Hall, L. Abascal, R.N. Alonso y N. Larcher, 2014b. Caracterización Magnética y Datación Preliminar Mediante Paleointensidades Relativas de Sedimentos Lacustres de la Formación Tajamar (Guachipas), Salta, Argentina. Latinmag Letters 4:1-18 (LL14- 0404Rs).
King, J., S.K. Banerjee, J. Marvin y Ö. Özdemir, 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments. Earth and Planetary science Letters 59:404-419.
Knab, M., V. Hoffmann, E. Petrovský, A. Kapicka, N. Jordanova y E. Appel, 2006. Surveying the anthropogenic impact of the Moldau river sediments and nearby soils using magnetic susceptibility. Environmental Geology 49:527-535.
Kravchinsky, V., M.A. Krainov, M.E. Evans, J.A. Peck, J.W. King, M.I. Kuzmin, H. Sakai, T. Kawai y D.F. Williams, 2003. Magnetic record of Lake Baikal sediments: chronological and paleoclimatic implication for the last 6.7 Myr. Palaeogeography, Palaeoclimatology, Palaeoecology 195:281-298.
Lascu, I. y C. Plank, 2013. A new dimension to sediment magne- tism: Charting the spatial variability of magnetic properties across lake basins. Global and Planetary Change 110:340-349. Last, W. M., 2002. Geolimnology of salt lakes. Geosciences Journal 6:347-36.
Last, W.M. y J.P Smol, 2001. Tracking Environmental Change using Lake sediments. Developments in Paleoenvironmental Research series. Kluwer Academic Publishers, Norwell, MA, USA, 548 pp.
Le Borgne, E., 1955. Susceptibilité magnétique anormal du sol superficiel, Annales de Géophysique 11:399-419.
Lebart, L., A. Morineau y M. Piron, 1995. statisitique exploratoire multidimensionnelle. Dunod, Paris.
Lisé¬ Pronovost, A., G. St¬Onge, C. Gogorza, T. Haberzettl, M. Preda, P. Kliem, P. Francus, B. Zolitschka y The PASADO Science Team, 2013, High-resolution paleomagnetic secular variations and relative paleointensity since the Late Pleistoce- ne in southern South America. Quaternary science Reviews 71:91-108.
Liu, Q., A. P. Roberts, J. C. Larrasoaña, S. K. Banerjee, Y. Guyodo, L. Tauxe y F. Oldfield, 2012. Environmental magnetism: Principles and applications. Review of Geophysics 50, RG4002, doi:10.1029/2012RG000393.
Lund, S.P., L. Stoott, M. Schwartz, R. Thunell y A. Chen, 2006. Holocene paleomagnetic secular variation records from the western Equatorial Pacific Ocean. Earth and Planetary science Letters 246:381-392.
Magiera, T., Z. Strzyszcz, A. Kapicka, E. Petrovský y MAGPROX Team, 2006. Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma 130:299-311.
Maher, B., 1986. Characterisation of soils by mineral magnetic measurements. Physics of the Earth and Planetary Interiors 42:76-92.
Maher, B.A. y R. Thompson, 1999. Quaternary Climate, Environments and Magnetism. Cambridge University Press, Cambridge, 390 pp.
Maher, B.A., R. Thompson y M.W. Hounslow, 1999. Introduction. En B.A. Maher y R. Thompson (Eds.), Quaternary Climate, Environments and Magnetism. Cambridge University Press, Cambridge, 1-48.
Marié, D.C., M.A.E. Chaparro, C.S.G. Gogorza, A. Navas y A.M. Sinito, 2010. Vehicle-derived emissions and pollution on the road Autovia 2 investigated by rock-magnetic parameters: a case of study from Argentina. Studia Geophysica Geodaetica 54:135-152.
Mena, M. y A.M. Walther, 2012. Rock magnetic properties of drill cutting from a hydrocarbon exploratory well and their relationship to hydrocarbon presence and petrophysical properties. En R.D. Elmore, A.R. Muxworthy, M. Aldana y
M. Mena (Eds.), Remagnetization and Chemical Alteration of sedimentary Rocks. Geological Society, London, Special Publications, 371:217-228.
Mullins, C.E., 1977. Magnetic susceptibility of the soil and its significance in soil science, a review. European Journal of soil sciences 28:223-246.
Nedbalova, L., D. Nývlt, J. Kopacek, M. Sobr y J. Elster, 2012. Freshwater lakes of Ulu Peninsula, James Ross Island, north- east Antarctic Peninsula: origin, geomorphology and physical and chemical limnology. Antarctic science 25:358-372.
Oldfield, F., R.C. Chiverrell, R. Lyons, E. Williams, Z. Shen, C. Bristow, J. Bloemendal, J. Torrent y J.F. Boyle, 2014. Discriminating dusts and dusts sources using magnetic properties and hematite:Goethite ratios of surface materials and dust from North Africa, the Atlantic and Barbados. Aeolian Research 13:91-104.
Peralta A., V. Costanzo¬Alvarez, E. Carrillo, L. Evert Durán, M. Aldana y D. Rey, 2013. Numerical relationships between magnetic parameters measured in quaternary sediments, and global paleoclimatic proxies. Latinmag Letters 3 OB05:1-7.
Peters C. y M. Dekkers, 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Physics and Chemistry of the Earth 28:659-667.
Piper, A.M., 1944. A graphic procedure in the geochemical interpretation of water analyses. American Geophysical Union Transactions 25:914-923.
Quijano, L., M.A.E. Chaparro, D.C. Marié, L. Gaspar y A. Navas, 2014. Relevant magnetic and soil parameters as potential indicators of the soil conservation status in Mediterranean agroecosystems. Geophysical Journal International 198:1805- 1817.
Rijal, M.L., E. Appel, E. Petrovsky y U. Blaha, 2010. Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments. Environmental Pollution 158:1756-1762.
Skácelová, K., M. Barták, P. Coufalík, D. Nývlt y K. Trnková, 2013. Biodiversity of freshwater algae and cyanobacteria on deglaciated northern part of James Ross Island, Antarctica. A preliminary study. Czech Polar Reports 3:93-106.
Snowball, I., P. Sandgren y G. Petterson, 1999. The mineral magnetic properties of an annually laminated Holocene lake- sediment sequence in northern Sweden. The Holocene 9:353- 362.
Snowball, I., L. Zillen y P. Sandgren, 2002. Bacterial magnetite in Swedish varved lake sediments; a potential bio-marker of environmental change. Quaternary International 88:13-19.
Stoner, J. S., C. Laj, J.E.T. Channell y C. Kissel, 2002. South Atlantic and North Atlantic geomagnetic paleointensity stacks (0–80 ka): implications for inter-hemispheric correlation. Quaternary science Reviews 21:1141-1151.
Tauxe, L., 1998. Paleomagnetic principles and practice. Kluwer Academic Publishers. Boston, 299 pp.
Thompson, R. y F. Oldfield, 1986. Environmental magnetism. Allen & Unwin (Publishers) Ltd., London, 225 pp.
Thompson, R., J.C. Stober, G.M. Turner, F. Oldfield, J. Bloemendal, J.A. Dearing y T.A. Rummery, 1980. Environmental applications of magnetic measurements. science 207:481-486.
Tite, M.S. y R.E. Linington, 1975. Effect of climate on the magnetic susceptibility of soils. Nature 256:565-566.
Torrent, J., Q.S. Liu y V. Barrón, 2010. Magnetic minerals in Calcic Luvisols (Chromic) developed in a warm Mediterranean region of Spain: Origin and paleoenvironmental significance. Geoderma 154:465-472.
Williams, T., 1994. Palaeomagnetic and magnetic records for the last 300,000 years from Lac du Bouchet, France: applications to geomagnetism and the environment. PhD thesis. University of Edinburgh.
Willmott, V., E.W. Domack, M. Canals y S. Brachfeld, 2006. A high resolution paleointensity record from the Gerlache- Boyd paloe-ice stream region, northern Antarctic Peninsula. Quaternary Research 66:1-11
Wilson, G.S., F. Florindo, L. Sagnotti, C. Ohneiser y the ANDRILL¬ MIS Science Team, 2007. Palaeomagnetism of the AND-1B Core, ANDRILL McMurdo Ice Shelf Project, Antarctica. Terra Antartica 14:289-296.
Yang, T., Q. Liu, L. Chan y Z. Liu, 2007. Magnetic signature of heavy metal pollution of sediments: case study from the East Lake in Wuhan, China. Environmental Geology 52:1639-1650.
Yang, X., F. Heller, J. Yang y Z. Su, 2009. Paleosecular variations since ~ 9000 yr BP as recorded by sediments from maar lake Shuangchiling, Hainan, South China. Earth and Planetary science Letters 288:1-9.
Zhang, C., Q. Qiao, J.D.A. Piper y B.B. Huang, 2011. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution 159:3057-3070.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.