Upper Troncoso Member Evapofacies of the Huitrín Formation (Lower Cretaceous, Neuquén Basin, Argentine): palaeoenvironments, evolution and controls
Keywords:
Barremian evaporites, Depositional sys- tem, Upper Troncoso Member (Huitrín Formation), Neuquén Basin, Argentine.Abstract
This contribution presents a characterization of Barremian evaporite facies of the Neuquén Basin (western Argentina) in order to discuss accumulation processes and depositional conditions. The evapo- rite accumulation is related to a proto-Pacific trans- gression that followed an Early Barremian widespread desiccation event. These evaporites are known as the Upper Troncoso Member of the Huitrín Formation. They constitute a research topic of great importance, both from the theoretical point of view (stratigraphy, origin, palaeoclimate), as well as from the knowledge of non-renewable natural resources (celestine - barite, anhydrite - gypsum, rock salt, potassium salts and hydrocarbons). The Neuquén Basin is considered an ensialic backarc basin associated with the easterly oriented subduction along the proto-Pacific margin of Gond- wana (Figs. 1, 4). A generalised extensional stress regime due to steep subduction angle occurred in the magmatic arc and in the backarc settings, although regional thermal subsidence was punctuated by several episodes of structural inversion. Thus, the Upper Troncoso evaporites represent an unique example of accumulation in a marginal marine basin linked to the active continental margin of western Gondwana (Figs. 3, 4).
The Lower Cretaceous deposits of the Huitrín Formation crop out almost continuously for more than 500 km along a north-south oriented belt (Fig. 5), from the latitude of the Aconcagua Mountain (Mendoza Province) up to the vicinity of the city of Zapala (Neuquén Province). Owing to the highest solubility and hygroscopic characteristics of the sediments, combined with the strong tectonic dis- turbation of the Huitrín Formation, the methodology for the study of the evaporites was largely based on subsurface information (geophysical well-log responses, cutting and cores) taken from oil and potassium salt exploration drill holes. In particular, electric logs allowed to identify electrofacies, and -based on the interpretation of cross-plots- to infer the mineralogy of the evaporites. Together with lithological descriptions of cutting and cores, repre- sentative samples of the rocks were studied in thin sections and by X-ray diffractometry. In the latter both whole-rock composition and <2µm clay mine- ral composition were defined. Lithological sections were elaborated, adjusted and correlated on the basis of this compositional information, and the areal distribution of evaporite salts was represented in a regional map. Geological correlations of the sedi- mentological record allowed define the geometry of evaporite facies in order to identify the main sedi- mentary environments. The regional study also involved the quantification of thickness variations in the deposits as well as the changes in evaporite mineralogy.
The marine brine associated with the Troncoso evaporites followed successive processes of concen- tration and dilution. As a result, different salts were accumulated. In this study, these compositional changes are represented by the definition of several evaporite facies (Fig. 6). At the base of the Upper Troncoso Member the Facies Anhidrita was formed (Figs. 7, 8). This unit was covered by a thick salt succession composed of three facies: the lower Facies Salina Concentradora (Figs. 7, 9), the middle Facies de Sales Amargas (Figs. 10, 11), and the upper Facies Salina Terminal (Figs. 12, 13).
During Facies Anhidrita deposition (Figs. 7, 8), the evaporite basin reached its maximum expansion (Fig. 14). An extensive salt pan formed from perennial or free brine, in the depocentral sector of the basin. Besides, a sabkha setting subjected to periodic events of flooding and concentration of the brines characterized the marginal areas of the basin. In this marginal belt, sulphate and carbonate microbial mats and siliciclastic muds were accumulated. In the central sectors of the basin, the anhydrite facies is characterized by microcrystalline films (sheets) composed of anhydrite-calcite pairs (Fig. 8), indicating a pelagic sedimentation under an almost stillness environment. A lateral transition from this central sector up to the coastal and supratidal sabkha sectors is recorded by regional correlation. In the lower part of the Facies Salina Concentra- dora, halite with a crystalline cumulus texture occurs (Figs. 7, 9). It was precipitated from a relatively depth brine and passes upwards to halite with a chevron texture indicating a progressive shallowing of the brine. The stratigraphic record of this facies shows cycles of primary clean halite – recycled halite – anhydrite sheets that repetitively occur. The Facies de Sales Amargas starts with sylvite daughter crystals in halite fluid inclusions, followed by a few crystals of sylvite, passing upwards to two thick beds of sylvinite (Fig. 10). This facies reaches a maximum thickness of 25 meters and represents the evaporite deposits of the Upper Troncoso Mem- ber with the smallest areal distribution (Fig. 14). However, they cover a (preserved) area of 3,000 km2.
These deposits are dominated by sylvinite (sylvite plus halite), which appears as anhedral to subhedral reddish, yellowish and whitish crystal aggregates (Fig. 11). The presence of hematite as fine solid dispersions, suggests that sylvite would result from lixiviation of magnesium chloride from a primary red carnallite. The Facies Salina Terminal represents the dilution of the evaporite basin (Fig. 12). Three successive evaporite cycles are recognized and they are interpreted as the result of flash floods that supplied rainwater from emerged areas. The mix of these waters with the perennial brines in the depocenter allowed precipitation of an anhydrite bed followed by a rhythmic laminated succession of halite with chevron texture alternating with anhydrite. At this time, fine-grained siliciclastics would have been supplied to the evaporite basin through flash floods from emerged areas, as well as from pyroclastic activity in the magmatic arc. This terrigenous material was preferentially accumulated during the dilution of the evaporite brine. The peripheral sectors of the basin are represented by salty mudflat sediments or siliciclastic sabkha deposits, which are interpreted to represent the development of wet salt mudflats in coastal areas and relatively drier mudflats in the more proximal (continental) margins of the basin. Syn-depositional to slightly post-depositional changes occurred in both the central and marginal settings, where underground brines produced preci- pitation of inter-crystalline passive cement in clean halite, and dissolution – reprecipitation of halite in the chaotic mud salt (Fig. 9c). Early diagenetic processes also involved neoformation of evaporitic minerals (anhydrite by dehydration of gypsum and autigenous sylvite from carnallite). By hyperhalmyrolysis, smectite in fine-grained siliciclastic deposits was transformed in mixed layer clay minerals, namely chlorite and illite.
Under the global Cretaceous greenhouse context, the Neuquén Basin supported a dry and windy climate. The magmatic arc would have acted as a topographic barrier to the open proto-Pacific Ocean, and the basin behaved as a partially isolated hydrographically depression below sea level at that time (Fig. 4). Therefore, the evaporites of the upper Troncoso Member are linked to a restricted marine environment; this is an inland hypersaline shallow sea. High temperatures generated strong evaporation rates, which exceeded water supply (runoff, ground water discharge and atmospheric precipitations). These conditions increased salt concentration and caused the precipitation of salts according to their degree of solubility (Fig. 16). Moreover, the conti- nuous evaporation would have created an imbalance in sea level currently stimulating continuous income, although limited, of sea water into the basin (Fig. 17a). In turn, the arc produced partial to total reflux retention in the basin, allowing brine concentration over time (Fig. 17a). A larger positive accommodation space towards the western sector of the depression favoured the connection between the proto-Pacific Ocean with the backarc Neuquén Basin during Facies Anhidrita and Facies Salina Concentradora (Fig.18). In the Facies Sales Amargas and in the Facies Salina Terminal, the evaporitic basin was assimilable to a hydrologically closed basin, with continental recharge of recycled marginal evaporites (Fig. 17b). This contribution identifies and characterizes a group of evapofacies in Barremian evaporites of the Neuquén Basin that allows to answer some questions on the origin, the depositional system, the controls and the evolution of the evaporitic record.
References
Aguirre-Urreta M.B., D.G. Lazo y P.J. Pazos, 2008. Variaciones en la paleosalinidad de la Formación Agrio (Cretácico inferior) de la Cuenca Neuquina. 17º Congreso Geológico Argentino Actas:743-744, Jujuy.
Aguirre-Urreta M.B., D.G. Lazo, M. Griffin, V. Vennari, A.M. Parras, C. Cataldo, R. Garberoglio y L. Luci, 2011. Megainvertebrados del Cretácico y su importancia bioestra- tigráfica. En H.A. Leanza, C. Arregui, O. Carbone, J.C. Danieli y J.M. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del 18º Congreso Geológico Argentino: 465-488. Neuquén.
Aref M.A.M. y R.J.A. Taj, 2012. Recent analog of gypsified microbial laminites and stromatolites in solar salt works and the Miocene gypsum deposits of Saudi Arabia and Egypt. Arabian Journal Geoscience. DOI 10.1007/s12517-012-0684-5.
Argüello-Scotti A. y G.D. Veiga, 2015. Morphological characteri- zation of an exceptionally preserved eolian system: The Cretaceous Troncoso Inferior Member in the Neuquén Basin (Argentina). Latin American Journal of Sedimentology and Basin Analysis 22:29-46.
Arthurton R.S., 1973. Experimentally produced halite compared with Triassic layered halite-rock from Chespire, England. Sedimentology 20:145-160.
Babel M., 2004a. Model for evaporite, selenite and gypsum micro- bialite deposition in ancient saline basins. Acta Geologica Polonica 54:219-249.
Babel M., 2004b. Badenian evaporite basin of the northern Carpathian Foredeep as a drawdown salina basin. Acta Geologica Polonica 54:313-337.
Balod M., 1999. Proyecto Potasio Río Colorado, Mendoza – Neuquén. En E.O. Zappettini (Ed.) Recursos Minerales de la República Argentina, Instituto de Geología y Recursos Minerales SEGEMAR Anales 35:1077-1081. Buenos Aires.
Barbieri M., M.K. de Brodtkorb, S. Ametrano y V. Ramos, 1981. Datos isotópicos de Sr87/Sr86 relacionados a los yacimientos de celestina y baritina de la Formación Huitrín, Provincia del Neuquén. 8° Congreso Geológico Argentino Actas 2:787-796, San Luis.
Bein A., S.D. Hovorka, R.S. Fisher y E. Roedder, 1991. Modification of seawater derived brines in evaporite brine pools and early diagenesis: evidence from fluid inclusions in Permian bedded halite (Palo Duro Basin, Texas). Journal of Sedimentary Petrology 61:1-14.
Bengochea J.D. y V. Padula, 1993. Evaluación Geológica - Económica del Proyecto Potasio Río Colorado, Mendoza, Ar- gentina. 6° Congreso Nacional de Geología Económica y 1° Congreso Latinoamericano de Geología Económica. Actas: 253-261, San Juan.
Betejtin A., 1977. Curso de Mineralogía. Ed. Mir. 739 pp.
Braitsch O., 1971. Sal Deposits. Their Origin and Composition. Springer-Verlag. 297 pp.
Brantley S.L. y B. Donovan, 1990. Marine evaporites, bittern seepage, and the genesis of subsurface brines. Chemical Geology 84:187-189.
Brodtkorb M.K. de, y J.C. Danieli, 2011. Yacimientos de baritina y celestina. En Leanza H.A., C. Arregui, O. Carbone, J.C. Danieli y J.M. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del 18º Congreso Geológico Argentino: 745-754. Neuquén.
Brodtkorb M.K. De; V. Ramos y S. Ametrano, 1975. Los yacimientos estratoligados de celestina - baritina de la Formación Huitrín y su origen evaporítico, Provincia del Neuquén, Argentina. II Congreso Iberoamericano de Geología Económica Actas 2:143-
, Buenos Aires.
Brodtkorb M.K. de; J.C. Danieli, R.E. De Barrio, R.O. Etcheverry y A. Giusiano, 1992. Los Yacimientos de celestina - baritina, yeso, halita y sales de potasio relacionados a las Sedimentitas Cretácicas de la Cuenca Neuquina, República Argentina. En Brodtkorb M.K. De y J. Ferreira De Sousa (Eds.), Recursos Minerales y Energéticos del Cretácico de América Latina Actas:1-24.
Brodtkorb M.K. de; M. Barbieri, K. Zák, J. Hladiková, C. Tassinari, S. Ametrano, A. Giusiano, A.O. Etcheberry, R.E. De Barrio, M. Del Blanco y J.C. Danielli, 1997. Isotope data on barite and celestite deposits related to three Mesozoic Evaporitic Sequences of the Neuquén Basin, Argentina. International Geology Review 39:307-316.
Casas E. y T.K. Lowenstein, 1989. Diagenesis of saline pan halite: Comparison of petrographic features of Modern, Quaternary and Permian halites. Journal of Sedimentary Petrology 59:724- 739.
Cendón D.I., C. Ayora, J.J. Pueyo y C. Taberner, 2003. The geochemical evolution of the Catalan potash subbasin, South Pyrenean foreland basin (Spain). Chemical Geology 200:339- 357.
Cendón D.I., T.M. Peryt, C. Ayora, J.J. Pueyo y C. Taberner, 2004. The importance of recycling processes in the Middle Miocene Badenian evaporite basin (Carpathian foredeep): palaeoenvironmental implications. Palaeogeography, Palaeo¬ climatology and Palaeoecology 212:141-158.
Compagnucci R.H., 2011. Atmospheric circulation over Patagonia from the Jurassic to present: a review through proxy data and climatic modelling scenarios. Biological Journal of the Linnean Society 103:229-249.
Danieli J.C., A. Giusiano, M. Barbieri y M.K. de Brodtkorb, 1989. Las celestinas-baritinas de la Formación Huitrín en el flanco oriental de la Cordillera del Salado, Provincia del Neuquén, Argentina. Simposio Depósitos Minerales del Cretácico de América Latina. Parte C:73-84. Buenos Aires.
De Barrio R.E. y G.D. Vergani, 2011. Las mineralizaciones de celestina-baritina y la Formación Huitrín (Cretácico inferior), Provincia del Neuquén. 18º Congreso Geológico Argentino, Actas en CD, 1084-1085. Neuquén.
Digregorio J.H. y M.A. Uliana, 1980. Cuenca Neuquina. En Turner J.C.M. (Ed.), Segundo Simposio de Geología Regional Argen¬ tina, Academia Nacional de Ciencias, 2:985-1032. Córdoba.
Digregorio R.E., C.A. Gulisano, A.R. y S.A. Minniti, 1984. Es- quema de la Evolución Geodinámica de la Cuenca Neuquina y sus Implicancias Paleogeográficas. Noveno Congreso Geoló¬gico Argentino, Actas 2:147-162, Buenos Aires.
Dupraz C., R.P. Reid, O. Braissant, A.W. Decho, R.S. Norman y P.T. Visscher, 2009. Processes of carbonate precipitation in modern microbial mats. Earth¬Science Reviews, 96:141-162.
Eugster H.P., 1982. Climatic significance of lake and evaporite deposits. En Climate in Earth History. National Academy Press, Studies in Geophysics:105-111.
Eugster H.P., 1984. Geochemistry and sedimentology of marine and nonmarine evaporites. Eclogae Geologicae Helvetiae 77:237-248.
Farías M.E., M. Contreras, M.C. Rasuk, D. Kurth, R. Flores, D.G. Poiré, F. Novoa y P.T. Visscher, 2014. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extre¬ mophiles 18:311-329.
Föllmi K.B., 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research 35:230-257.
Föllmi K.B., M. Bôle, N. Jammet, P. Froidevaux, A. Godet, S. Bodin, T. Adatte, V. Matera, D. Fleitmann y J.E. Spangenberg, 2012. Bridging the Faraón and Selli oceanic anoxic events: late Hauterivian to early Apitan dysaerobic to anaerobic phases in the Techys. Climate of the Past 8:171-189.
Franzese J.R. y L.A. Spalletti, 2000. Extensión continental y formación de cuencas marginales mesozoicas en los Andes meridionales (30ºLS – 40ºLS). 2º Congreso Latinoamericano de Sedimentología y 8ª Reunión Argentina de Sedimentología. Resúmenes 76-77, Mar del Plata.
Franzese J.R. y L.A. Spalletti, 2001. Late Triassic-early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-breac-up rifting. Journal of South American Earth Sciences 14:257-270.
Franzese J.R., L.A. Spalletti, I. Gómez Pérez y D. Macdonald, 2003. Tectonic and paleoenvironmental evolution of Mesozoic sedimentary basins along the Andean foothills of Argentina (32-54ºS). Journal of South American Earth Sciences 16:81-90.
Gabriele N.A., 1987. Información básica de manifestaciones de sales de potasio, fosforitas y azufre. Consejo de Planificación
y Acción para el Desarrollo del Neuquén (COPADE), 56 pp. (inédito).
Gabriele N.A., 1989. Geología de la Caverna de Reñi (Dpto. Ñorquín, Neuquén). Revista Salamanca 5:21-27. Buenos Aires. Gabriele N.A., 1992. Sales de Potasio de la Formación Huitrín (Cretácico Inferior). Provincias de Mendoza y Neuquén, República Argentina. Revista de la Asociación GeológicaArgentina 47:305-316.
Gabriele N.A., 1999. Cuenca Potásica Huitriniana, Neuquén. En Zappettini, E.O. (Ed.). Recursos Minerales de la República Argentina. Instituto de Geología y Recursos Minerales SEGEMAR Anales 35:1083-1089, Buenos Aires.
Gómez J., 2014. Sales de potasio del Miembro Troncoso Superior (Formación Huitrín, Cretácico Inferior, cuenca Neuquina): estratigrafía y paleoambiente. XIV Reunión Argentina de Sedimentología Actas:125-126, Puerto Madryn.
Gómez J., C. Monardez y M. Balod, 2011a. El Miembro Troncoso Superior de la Formación Huitrín (Cretácico temprano). En
H.A. Leanza, C. Arregui, O. Carbone, J.C. Danieli y J.M. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del 18º Congreso Geológico Argentino, 189-198, Neuquén.
Gómez J., C. Monardez y M. Balod, 2011b. Características texturales y estructurales del Miembro Troncoso Superior, Formación Huitrín, Cuenca Neuquina, Malargüe, Provincia de Mendoza. 18º Congreso Geológico Argentino, Acta en CD, Neuquén.
Gornitz V.M., 2004. Minerals as keys to ancient climates. Mineral News 20:9-13.
Gornitz V.M., 2005. Mineral indicators of past climates. En Gornitz V.M. (Ed.), Encyclopedia of Paleoclimatology and Ancient Environments, Springer: 573-583.
Groeber P., 1929. Líneas Fundamentales de la Geología del Neuquén, Sur de Mendoza y Regiones Adyacentes. Dirección General de Minas, Geología e Hidrología. Publicación 58. Buenos Aires.
Groeber P., 1946. Observaciones Geológicas a lo largo del Meridiano 70. 1. Hoja Chos Malal. Revista de la Sociedad Geológica Argentina 1:177-208. En Serie C, Reimpresiones Nº 1(1980) Asociación Geológica Argentina.
Groeber P., 1952. Andico. En: Geografía de la República Argentina. Sociedad Argentina de Estudios Geográficos 2:349-510. Bue- nos Aires.
Gutiérrez Pleimling A.R., G. Olea; M. Suárez y M. Valenzuela, 2011a. El Miembro Chorreado de la Formación Huitrín (Cre- tácico Temprano). En H.A. Leanza, C. Arregui, O. Carbone, J.C. Danieli y J.M. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del 18º Congreso Geológico Argentino: 175-188.
Gutiérrez Pleimling A.R., G. Olea; M. Suárez y M. Valenzuela, 2011b. Miembro Chorreado: Arquitectura y facies en la región de Cañadón Amarillo. 18º Congreso Geológico Argentino, Ac- tas en CD, Neuquén.
Handford C.R., 1981. Coastal Sabkha and salt pan deposition of the Lower Clear Fork Formation (Permian), Texas. Journal of Sedimentary Petrology 51:761-778.
Handford C.R., 1991. Marginal marine halite: Sabkhas and Sali- nas. Chapter 1. En J.L. Melvin (Ed.), Evaporites, Petroleum and Mineral Resources. Elsevier Development in Sedimentology 50:1-66.
Hardie L.A., T.K. Lowenstein y R.J. Spencer, 1983. The problem of distinguishing between primary and secondary features in evaporites. En Schreiber B.Ch. y Harner, H. L. (Eds.). Sixth International Symposium on Salt 1:11-39. The Salt Institute, Alexandria, VA.
Hay W.W., 1996. Tectonics and climate. Geologische Rundschau
:409-437.
Hovorka S., 1987. Depositional environments of marine-domi- nated bedded halite, Permian San Andres Formation, Texas. Sedimentology 34:1029-1054.
Hovorka S., R.M. Holt y D.W. Powers, 2007. Depth indicators in Permian Basin evaporites. En B.C. Schreiber, S. Lugli y M. Babel (Eds.), Evaporites Through Space and Time. Geological Society, London, Special Publications 285:335-364.
Howell J., E. Schwarz, L. Spalletti y G. Veiga, 2005. The Neuquén Basin: An Overview. En G. Veiga, L. Spalletti, J. Howell y E. Schwarz (Eds.), The Neuquén Basin: A case study in sequence stratigraphy and basin dynamics. Geological Society of London Special Publication 252:1-14.
Hsü K.J., 1972. Origin of saline giants: a critical review after the discovery of the Mediterranean Evaporite. Earth Sciences Review 8:371-396.
Jenkyns H.C., L. Schouten-Huibers, S. Schouten y J.S. Sinninghe Damsté, 2012. Warm Middle Jurassic-Early Cretaceous high- latitude sea-surface temperatures from the Southern Ocean. Climate of the Past 8:215-226.
Kendall A.C., 1984. Evaporites. En R.G. Walker (Ed), Facies Models, 2da Edición. Geoscience Canada Ed.: 259-296.
Kendall A.C., y G.M. Harwood, 1996. Marine evaporites: arid shorelines and basins. En H.G. Reading (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd. Ed., Blackwell Scientific Publications, Oxford: 5-36.
Kendall C.G.ST.C., P. Lake, H.D. Weathers III, V. Lakshmi, J. Althausen y A.S. Alsharhan, 2003. Evidence of rain shadow in the geologic record: Repeated evaporite accumulation at extensional and compressional plate margins. En A.S. Alsharhan, W.W. Wood, A.S. Goudie, A. Fowler y E.M. Abdellatif (Eds.), Desertification in the Third Millennium, Swets y Zeitlinger Publishers, Lisse: 45-52.
Kinsman D.J.J., 1976. Evaporites: Relative humidity control of primary mineral facies. Journal of Sedimentary Petrology 46: 273-279.
Kirkland D.W., 2003. An explanation for the varves of the Castile evaporites (Upper Permian), Texas and New Mexico, USA. Sedimentology 50:899-920.
Kyle J.R. y H.H. Posey, 1991. Halokinesis, cap rock development, and salt dome mineral resources. Chapter 5. En: Melvin J.L. (Ed.). Evaporites, Petroleum and Mineral Resources. Elsevier, Developments in Sedimentology 50: 413-474.
Leanza H.A., 2003. Las sedimentitas huitrinianas y rayosianas (Cretácico inferior) en el ámbito central y meridional de la cuenca Neuquina, Argentina. Servicio Geológico Minero Ar- gentino. Instituto de Geología y Recursos Minerales. Serie Contribuciones Técnicas, Geología 2:1-31.
Leanza H.A. y C.A. Hugo, 2011. Las Formaciones La Amarga y Lohan Cura (Cretácico temprano) en el Depocentro de Picún Leufú. En H.A. Leanza, C. Arregui, O. Carbone, J.C. Danieli y J.M. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del 18º Congreso Geológico Argentino:223-230. Neuquén.
Legarreta L., 1985. Análisis estratigráfico de la Formación Huitrín (Cretácico Inferior), Provincia de Mendoza. Facultad de Cien- cias Naturales, Universidad Nacional de Buenos Aires, Tesis Doctoral, 197 p., 27 adj., Buenos Aires. Disponible en la Biblioteca Digital de la FCEN-UBA www.digital.bl.fcen.uba. ar, (inédito).
Legarreta L. y A. Boll, 1982. Formación Huitrín. Análisis estrati¬ gráfico y esquema prospectivo, Provincia de Mendoza. Yaci- mientos Petrolíferos Fiscales, Mendoza, 77 pp. (inédito).
Legarreta L., G. Olea, G. Peroni y A.S. De Bustamante, 1983.
Estratigrafía y evaluación prospectiva del Grupo Rayoso en el subsuelo del valle superior del Río Colorado, Provincias de Neuquén y Mendoza. Yacimientos Petrolíferos Fiscales, Plaza Huincul, 20 pp. (inédito).
Lescano M.A., D.G. Lazo, C.S. Cataldo, M.B. Aguirre-Urreta y A. Concheyro, 2015. Primer hallazgo de nanofósiles calcáreos en el Miembro La Tosca, Formación Huitrín, Sierra de Cara Cura, Mendoza. Reunión de Comunicaciones “60 años (1955¬2015)” de la Asociación Paleontológica Argentina (RCAPA 2015). Resúmenes:71-72, Mar del Plata.
Littler K., S.A. Robinson, P.R. Bown, A.J. Nederbragt y R.D. Pancost, 2011. High sea-surface temperatures during the Early Cretaceous Epoch. Nature Geoscience 4:169-172.
Lowenstein T.K. y L.A. Hardie, 1985. Criteria for the recognition of salt-evaporites. Sedimentology 32:627-644.
Lowenstein T.K. y R.J. Spencer, 1990. Syndepositional origin of potash evaporites: petrographic and fluid inclusion evidence. American Journal of Science 290:1-42.
Mackenzie F.T. y A.J. Andersson, 2013. The Marine Carbon System and Ocean Acidification during Phanerozoic Time. Geochemical Perspectives 2:1-244.
Merriman R.J., 2002. The magma-to-mud cycle. Geology Today 18:67-71.
Merriman R.J., 2006. Clay minerals and sedimentary basin history. Macla 6: 25-26.
Musacchio E. y P.S. Vallati, 2000. La regresión del Barremiano- Aptiano en Bajada del Agrio, Neuquén (Argentina). 9º Con¬ greso Geológico Chileno Actas 2:230-234, Punta Varas.
Olea G., M. Suárez y M. Valenzuela, 2011. El Miembro La Tosca de la Formación Huitrín (Cretácico temprano). En H.A. Leanza, C. Arregui, O. Carbone, J.C. Danieli y J.M. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del 18º Congreso Geológico Argentino: 199-203.
Pérez de Fachini A., 1979. Estudio Estratigráfico del Grupo Rayoso y sus posibilidades económicas en el sector Norte de la Cuenca Neuquina. Yacimientos Petrolíferos Fiscales, Plaza Huincul, 13 pp. (inédito).
Petrash D.A., M.K. Gingras, S.V. Lalonde, F. Orange, E. Pecoits y K.O. Konhauser, 2012. Dynamic controls on accretion and lithification of modern gypsum-dominated thrombolites, Los Roques, Venezuela. Sedimentary Geology 245-246:29-47.
Price G.D., I. F?zy, N.M.M. Janssen y J. Pálfy, 2011. Late Valanginian–Barremian (Early Cretaceous) palaeotemperatu- res inferred from belemnite stable isotope and Mg/Ca ratios from Bersek Quarry (Gerecse Mountains, Transdanubian Range, Hungary). Palaeogeography, Palaeoclimatology, Palaeo¬ ecology 305:1-9.
Ramos V.A. y M.K. de Brodtkorb, 1990. The barite and celestite metallotects of the Neuquén retroarc basin, central Argentina. En L. Fontboté, G.C. Amstutuz, M. Cardozo, E. Cedillo, J. Frutos (Eds.), Stratabound Ore Deposits in the Andes. Springer- Verlag Berlin Heidelberg: 599-613.
Ramos V.A., A. Folguera y E. García Morabito, 2011. Las Provincias Geológicas del Neuquén. En H.A. Leanza, C. Arregui, O. Carbone, J.C. Danieli y J.M. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del 18º Congreso Geológico Argentino: 317-326. Neuquén.
Robles D.E., 2005. El descubrimiento de silvita en la Formación Huitrín (Cretácico inferior) Pozo YPF.NCG.x-1 (Cerro Guillermo) Sector Surmendocino de la Cuenca Neuquina. 16° Congreso Geológico Argentino Actas en CD Room, La Plata.
Roedder E., 1984. The fluids in salt. American Mineralogist
:413-439.
Roulston B.V. y D.C. Waugh, 1983. Stratigraphic comparison of the Mississippian Potash Deposits in New Brunswick, Canada. En B.Ch. Schreiber y H. L. Harner (Eds.), Sixth International Symposium on Salt. T.I: 115-129. The Salt Institute, Alexandria, VA.
Sanford W.E y W.W. Wood, 1991. Brine evolution and mineral deposition in hidrologically open evaporite basins. American Journal of Science 291:687-710.
Schlumberger, 1989. Principios / Aplicaciones de la Interpretación de Registros. Ed. Schlumberger Educational Services, 198 pp.
Schmalz R.F., 1969. Deep-Water Evaporite Deposition: A Genetic Model. The American Association of Petroleum Geologists
Bulletin 53:798-823.
Schreiber B.C. y M. El Tabakh, 2000. Deposition and early alteration of evaporites. Sedimentology 47:215-238.
Serra O., 1990. Análisis de ambientes sedimentarios mediante perfiles de pozo. Schlumberger, 272 pp.
Serra O., 1991. Arcilla, limo, arenisca, pelita. Una guía para la identificación de perfiles de pozo de depósitos silicoclásticos. Schlumberger, 159 pp.
Smith D.B., 1971. Possible displacive halite in the Permian Upper Evaporite Group of Northeast Yorkshire. Sedimentology 17:221-232.
Sonnenfeld P., 1989. Genesis of Evaporites. Part. I. En Sonnenfeld P. y Perthuisot J.P., Brines and evaporites. 28º International Geological Congress, Short Course in Geology (Crawford M.L. y Padovani E., Short Course Series Editors.). American Geophysical Union, Volume 3:1-128.
Sonnenfeld P., 1992a. Chemical Facies of Marine Evaporites. Geologica Carpathica 43:3-14.
Sonnenfeld P., 1992b. Genesis of Marine Evaporites – A Summation. Geologica Carpathica 43:259-274.
Spalletti L.A., G.D. Veiga y E. Schwarz, 2011. La Formación Agrio (Cretácico temprano) en la Cuenca Neuquina. En H.A. Leanza, C. Arregui, O. Carbone, J.C. Danieli y J.M. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del 18º Congreso Geológico Argentino: 145-160. Neuquén.
Stewart F.H., 1963. Marine Evaporites. Chapter Y. En: M. Fleischer (Th.Ed.), Data of Geochemistry. Sixth Edition. United States Government Printing Office, Washington. Geological Survey Professional Paper 440-Y: 59 pp.
Strömbäck A., J.A. Howell y G.D. Veiga, 2005. The transgression of an erg – sedimentation and reworking/soft-sediment defor- mation of aeolian facies: the Cretaceous Troncoso Member, Neuquén Basin, Argentina. En G.D. Veiga, L.A. Spalletti, J.A. Howll y E. Schwarz (Eds.), The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society of London, Special Publications 252:163- 183.
Taberner C., D.I. Cendón, J.J. Pueyo y C. Ayora, 2000. The use of environmental markers to distinguish marine vs. continental deposition and to quantify the significance of recycling in evaporite basins. Sedimentary Geology 137:213-240.
Thompson J.B., S. Schultze-Lam, T.J. Beveridge y D. Des Marais, 1997. Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology Oceanography 42:133-141.
Uliana M.A. y L. Legarreta, 1993. Hydrocarbons habitat in a Triassic-to-Cretaceous Sub-Andean setting: Neuquén Basin, Argentina. Journal of Petroleum Geology 16:397-420.
Uliana M.A., D.A. Dellape y G.A. Pando, 1975a. Distribución y génesis de las Sedimentitas Rayosianas (Cretácico inferior de las Provincias de Neuquén y Mendoza, República Argentina). Segundo Congreso Iberoamericano de Geología Económica, Actas 1:151-176, Buenos Aires.
Uliana M.A., D.A. Dellape y G.A. Pando, 1975b. Estratigrafía de las Sedimentitas Rayosianas (Cretácico inferior de las Provincias de Neuquén y Mendoza). 2do Congreso Iberoamericano de Geología Económica, Actas 1: 177-196. Buenos Aires.
Vallati P.S., 2002. Cretaceous palynological assemblages from northern and central Patagonia, Argentine. 3er. European Meeting on the Palaeontology and Stratigraphy of Latin America (EMPSLA), Expanded Abstract 3:124-127.
Veiga G.D. y G.D. Vergani, 2011. El Miembro Troncoso Inferior de la Formación Huitrín (Cretácico Temprano). En H.A. Leanza,
C. Arregui, O. Carbone, J.C. Danieli y J.M. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del 18º Congreso Geológico Argentino: 181-188. Buenos Aires.
Veiga G.D., J.A. Howell y A. Strömbäck, 2005. Anatomy of a mixed marine-non-marine lowstand wedge in a ramp setting. The record of a Barremian Aptian complex relative sea-level fall in the central Neuquén Basin, Argentina. En G.D. Veiga, L.A. Spalletti, J.A. Howell y E. Schwarz (Eds.), The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society of London, Special Publications 252:139-162.
Veiga R. y G. Rossi, 1992. Análisis sedimentológico del Miembro Troncoso inferior (Formación Huitrín) en el ámbito de la Sierra de Reyes, Dpto. Malargüe, Provincia de Mendoza. Cuarta Reunión Argentina de Sedimentología Actas 1:71-78, Buenos Aires.
Velde B., 1985. Clays Minerals. A Physico¬Chemical Explanation of their Occurrence. Development in Sedimentology 40. Elsevier,
pp.
Vergani G., G. Selva y D. Boggetti, 2002. Estratigrafía y modelo de facies del Miembro Troncoso Inferior, Formación Huitrín (Aptiano), en el Noroeste de la Cuenca Neuquina, Argentina. 15º Congreso Geológico Argentino Actas 1:613-618, Calafate.
Vergani, G.D., A.J. Tankard, H.J. Belotti y H.J. Welsink, 1995. Tectonic evolution and paleogeography the Neuquén Basin Argentina. En A.J. Tankard, R. Suárez y H.J. Welsink (Eds.), Petroleum Basins of South America. American Association of Petroleum Geologists, Memoir 62:383-402.
Warren J.K., 1996. Evaporites, brines and base metals: what is an evaporite? Defining the rock matrix. Australian Journal of Earth Sciences 43:115-132.
Warren J.K., 2006. Evaporites: Sediments, Resources and Hydro¬ carbons. Springer Ed., 1035 pp.
Warren J.K., 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth¬Science Reviews 98:217-268.
Yates K.K. y L.L. Robbins, 1998. Production of carbonate sedi- ments by a unicellular green alga. American Mineralogist 83:1503-1509.
Zencich S., I. Brissón, F. Dzelalija, A. Galarza y M. Marteau, 1999. Características del Miembro La Tosca - Formación Huitrín - en el subsuelo de Paso Bardas Norte. Cuenca Neuquina. 4to Congreso de Exploración y Desarrollo de Hidrocarburos Actas 2:825-841, Mar del Plata.
Zhang H., L. Chenglin, Y. Zhao, S. Mischke, X. Fang y T. Ding, 2015. Quantitative temperature records of mid Cretaceous hothouse: Evidence from halite fluid inclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 437:33-41.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.