Magnetic signal in soils of the centre of Buenos Aires province, Argentina
Keywords:
Soils, Environmental Magnetism, Qua- ternary, Loess, Tandilia.Abstract
A great variety of iron oxides are present in soils and paleosols; these can be inherited from the parent material or formed during pedogenesis. Different authors have analyzed magnetic properties of soils and they are mainly associated with climate, topography, soil drainage, characteristics of the parent material or the occurrence of fires. Besides, considering that current climatic and environmental characteristics are more accurately known than such conditions in the geological past, it is estimated that the application of these techniques in soils could help to establish the framework for the study of paleosols through its magnetic properties. This contribution is part of a wider research, which tends to differentiate the soils of the Pampean region based on their magnetic properties. Four soil profiles from central Buenos Aires province are analyzed from the environmental magnetism perspective (Fig. 1) and are compared with the results obtained by several authors in the north and south of the same province. The comparison tends to develop a regional magnetic model for the Late Pleistocene- Holocene loess deposits and loess-derived soils in the Pampean region.
The soils of the study area are developed from loess deposits of Late Pleistocene-Holocene (Las Áni- mas Formation), but they are also controlled by the presence of a regional calcareous crust found below of Las Ánimas Formation, affecting loessoid fluvial sediments that constitute another lithostratigraphic unit, called Vela Formation (Middle Pleistocene). The current climate is humid to subhumid, mesothermal, with a slight hydric excess, with an average annual rainfall of 838 mm and annual average temperature of 13,6ºC; potential evapotranspiration was calculated at 712 mm/year and real evapotranspiration at 694 mm/year.
The soils in the area correspond to the Mollisol order, and as the moisture regime is mainly udic across the region, the suborder is Udoll (Soil Survey Staff, 2014). Taking into account the surveys carried out by Pazos (2014) and INTA (National Institute of Agricultural Technology) in support of the field descriptions (Table 1 - 4), the analysed soils profiles were tentatively classified at the subgroup level of Soil Taxonomy. Two Typic Argiudolls (P1 and P4), a Petrocalcic Hapludoll (P2) and a Typic Hapludoll (P3) were recognized. Whereas the Typic Argiudolls correspond to “zonal” soils, the rest are “intrazonal” soils, in which the development of the Petrocalcic Hapludoll is conditioned by a shallow duricrust and the Typic Hapludoll by a relatively high slope.
Samples of each soil horizon were extracted for analysis by thermogravimetric techniques, which allowed loss on ignition determination at 550 and 1000ºC, and the measurement of magnetic parameters, which included magnetic susceptibility, isothermal remanent magnetization and anhysteric remanent magnetization. Figure 3 shows the varia- tion of the determined parameters as depth-functions for each soil profile, whereas the analyses related to the lithostratigraphic units and soil horizons are shown in the histograms of figures 4 to 6. Besides, the greater amounts of measurements of magnetic susceptibility (?bf) make it possible a more detailed analysis of this parameter (Fig. 5b). The coercivity of remanence (Hcr) and S-ratio (Coef. S) values, as well acquisition of isothermal remanent magnetization curves design (Fig. 7), are consistent with the magnetic signature of ferrimagnetic species. According to Peters and Dekkers’ graph (2001), the samples correspond to magnetite-titanomagnetites- maghemite (Fig. 8a). These data are consistent with those indicated for other soils with loessic parent materials of the Pampean region where it has been determined by different ways that the detrital magnetic composition mainly corresponds to titanomagnetites with low titanium. According to King et al. (1982) (Fig. 9) the magnetic grains would be less than 1 micron diameter, and are considered of single domain (SD). Samples of horizons A and B present smaller magnetic particles than the parent materials (C horizons). Besides, the frequency- dependent susceptibility indicates that the relative presence of ultrafine particles (SP) increase in the solum horizons, in which there is also recorded, taking into account the inter-parametric relations, an increase of fine magnetic particles (SD and SD- SP limit) (Fig. 10). Finally, the decline of Hcr values at the A and B horizons would indicate that the magnetic particles of pedogenetic origin formed in these horizons have low coercivity (Fig. 8b). An aspect to remark is that the magnetic concentration in the parent material of the analyzed soils presents differences between the soils of north and south of the same province (Fig. 11). It is lower in the north and higher in the south; this would be related to the sediment distribution mechanisms at the regional level and the sources areas, corro- borating the utility of magnetic parameters for provenance analyses. In our case, it seems that the deposits register the highest magnetic concentrations as closer to the source area, in the flood plains of the Colorado and Negro Rivers, but in the north of Buenos Aires is also possible a contribution of poorly magnetic sediments of a cratonic origin related to the Paraná River basin. In respect to the pedogenetic magnetic signal, the behavior corresponds to the so-called magnetic enhancement, linked to an enrichment of ultrafine (SP) to fine (SD) magnetic particles by the effect of pedogenesis. The same behavior was determined in soils in the south of the province of Buenos Aires; while in the north of this province the opposite (depletion) dominates. Such difference seems to be related to the time of permanence of the water in the soil, an aspect that integrates climate, topography and hydraulic characteristics of the material. It is considered that a prolonged permanence of water in the soil favors the loss of lithogenic magnetite by oxidation. On the other hand, the alternation of wetting-drying cycles of short duration in a predominance of aerobic conditions, leads to the neoformation of magnetite (and/or maghemite) particles, as well as a greater conservation of the detrital magnetite.
References
Avramov, V., D. Jordanova, V. Hoffman y W. Roesler, 2006. The role of dust source area and pedogenesis in three loess- paleosol sections from north Bulgaria: a mineral magnetic study. Studia Geophysica et Geodaetica 50:259-282.
Ball, D.F., 1964. Loss-on-Ignition as an estimate of organic matter and organic carbon in non-calcareous soils. Journal of Soil Science 15:84-92.
Bautista, F., R. Cejudo-Ruiz, B. Aguilar-Reyes y A. Gogichaishvili, 2014. El potencial del magnetismo en la clasificación de suelos: una revisión. Boletín de la Sociedad Geológica Mexicana 66:365-376.
Bartel, A.A., 2009. Caracterización magnética de una climosecuen¬ cia de suelos entre el sureste de la provincia de La Pampa y el litoral atlántico. Tesis Doctoral, Universidad Nacional del Sur, 325 pp. (inédito).
Bartel, A., J.C. Bidegain y A.M. Sinito, 2005. Propiedades mag- néticas de diferentes suelos del partido de La Plata, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 60:591-598.
Bartel, A., J.C. Bidegain y A.M. Sinito, 2011. Magnetic parameter analysis of a climosequence of soils in the Southern Pampean Region, Argentina. Geofísica Internacional 50:9-22.
Bidegain, J.C. y Y. Rico, 2004. Mineralogía magnética y registros de susceptibilidad en sedimentos cuaternarios de polaridad normal (Brunhes) y reversa (Matuyama) de la cantera de Juárez, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 59:451-461.
Bidegain, J.C., L. Terminiello, Y. Rico, R.C. Mercader y E. Aragon, 2004. Mineralogía magnética en la transición Brunhes/ Matuyama. Pleistoceno de la provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 59:193-199.
Bidegain, J.C., M.E. Evans y A.J. van Velzen, 2005. A magnetocli- matological investigation of Pampean Loess. Geophysics Journal International 160:55-62.
Bidegain, J.C., A.J. van Velzen y Y. Rico, 2007. The Brunhes/ Matuyama boundary and magnetic parameters related to climatic changes in Quaternary sediments of Argentina. Journal of South American Earth Sciences 23:17-29.
Bidegain, J.C., Y. Rico, A. Bartel, M.A.E. Chaparro y S.S. Jurado, 2009. Magnetic parameters reflecting pedogenesis in Pleistocene loess deposits of Argentina. Quaternary International 209:175-186.
Blanchet, C., N. Thouveny, L. Vidal, G. Leduc, K. Tachikawa, E. Bard y L. Beaufort, 2007. Terrigenous input response to glacial/interglacial climatic variations over southern Baja California: a rock magnetic approach. Quaternary Science Review 26:3118-3133.
Cornell R.M. y U. Schwertmann, 2003. The Iron Oxides, 2nd edn. Wiley-VCH, Weinheim, 664 pp.
Dearing, J.A., R.J.L. Dann, K. Hay, J.A. Lees, P.J. Loveland y K. O’Grady, 1996. Frequency-dependent susceptibility measu- rements of environmental materials. Geophysical Journal International 124:228-240.
Dearing, J.A., J. Hannam, A. Anderson y E. Wellington, 2001. Magnetic, geochemical and DNA properties of highly magnetic soils in England. Geophysical Journal International 144:183-196.
Evans, M.E. y F. Heller, 2003. Environmental Magnetism. Academic Press, Oxford, 312 pp.
Etchichury, M. y R. Tófalo, 2004. Mineralogía de arenas y limos en suelos, sedimentos fluviales y eólicos actuales del sector austral de la cuenca Chacoparanense. Regionalización y áreas de aporte. Revista de la Asociación Geológica Argentina 59:317-329.
Florindo F., A.P. Roberts y M.R. Palmer, 2003. Magnetite disso- lution in siliceous sediments. Geochemistry Geophysics Geosystems 4:13 p.
Gómez Samus, M.L., 2016. Magnetoestratigrafía y parámetros magnéticos en sedimentos del Cenozoico tardío del sector Tandil¬Balcarce¬Mar del Plata. Tesis Doctoral, Universidad Nacional de La Plata, 430 pp. (inédito)
Gómez Samus, M.L., Y. Rico y J.C. Bidegain, 2016. Magnetoestra- tigrafía en sucesiones del Cenozoico tardío del área de Sierras de Balcarce, Tandilia. Revista de la Asociación Geológica Argentina 73:588-607.
Gómez Samus, M.L., Y. Rico y J.C. Bidegain, 2017. Magnetostra- tigraphy and magnetic parameters in Quaternary sequences of Balcarce, Argentina. A contribution to understand the magnetic behaviour in Cenozoic sediments of South America. GeoResJ 13:66-82.
Hanesch, M. y N. Petersen, 1999. Magnetic properties of a recent parabrown-earth from Southern Germany. Earth and Planetary Science Letters 169:85-97.
Hoogsteen, M.J.J., E.A. Lantinga, E.J. Bakker, J.C. Groot y P.A. Tittonell, 2015. Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European Journal of Soil Science 66:320-328.
Instituto Nacional de Tecnología Agropecuaria (INTA), 1970. Carta de Suelos de la República Argentina, Hojas 3760-23, 3760-29 y 3760-30. Buenos Aires.
Instituto Nacional de Tecnología Agropecuaria (INTA), 1989. Mapa de suelos de la provincia de Buenos Aires. Instituto de Suelos. INTA. Buenos Aires. 525 pp.
Jordanova D., N. Jordanova, P. Petrov y T. Tsacheva, 2010. Soil development of three Chernozem-like profiles from North Bulgaria revealed by magnetic studies. Catena 83:158-169.
Liu, Q.S., J. Torrent, H. Morrás, A. Hong, Z.X. Jiang y Y.L. Su, 2010. Superparamagnetism of two modern soils from the northeastern Pampean region, Argentina and its paleoclimatic indications. Geophysical Journal International 183:695-705.
Liu, Q.S., A.P. Roberts, J.C. Larrasoa, S.K. Banerjee, Y. Guyodo, L. Tauxe y F. Oldfield, 2012. Environmental magnetism: Prin- ciples and applications. Reviews of Geophysics 50:RG4002 AGU.
Maher, B.A., 1986. Characterization of soils by mineral magnetic measurements. Physics Earth Planetary International 42:76-92.
Maher, B.A., 1998. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Paeleoecology 137:25-54.
Nabel, P., H. Morrás, N. Petersen, y W. Zech, 1999. Correlation of magnetic and lithologic features from soils and Quaternary sediments from the undulating Pampa, Argentina. Journal of
South American Earth Sciences 12:311-323
Orgeira, M.J. y R.H. Compagnucci, 2006. Correlation between paleosol-soil magnetic signal and climate. Earth, Planets and Space (EPS), Special Issue “Paleomagnetism and Tectonics in Latin America” 58:1373-1380.
Orgeira, M.J. y R.H. Compagnucci, 2010. Uso de la señal magné- tica de suelos y paleosuelos como función climática. Revista de la Asociación Geológica Argentina 65:612-623.
Orgeira, M.J.y S. Rouzaut, 2016. Evaluación cualitativa de la influencia del contenido volcánico del loess pampeano (Argentina) en diferentes paleosuelos desarrollados durante los MIS 5. Latinmag Letters 6 (Special Issue):D16, 1-4.
Orgeira, M.J., F.X. Pereyra, C. Vásquez, E. Castañeda y R. Compagnucci, 2008. Environmental magnetism in present soils, Buenos Aires province, Argentina. Journal of South American Earth Science 26:217-224.
Orgeira, M.J., C. Vásquez, R. Compagnucci, I. Raposo y F. Pereyra, 2009. Magnetismo de rocas en suelos actuales de la Pampa
Ondulada provincia de Buenos Aires, Argentina. Vinculación del clima en el comportamiento magnético. Revista Mexicana de Ciencias Geológicas 26:65-78.
Orgeira, M.J., R. Egli y R. Compagnucci, 2011. A quantitative model of magnetic enhancement in loessic soils. En E Petrovsky, D Ives, T Harinarayana y E Herrero-Bervera (Eds.), The Earth Magnetic Interior. IAGA special Sopron book series, Springer 25:361-368.
Pazos, M.S., 2014. Acumulaciones de carbonato de calcio en suelos del centro-SE bonaerense. En P. Imbellone (Ed.), Suelos con acumulaciones calcáreas y yesíferas de Argentina. Instituto Nacional de Tecnología Agropecuaria.
Peters, C. y M.J. Dekkers, 2003. Selected room temperature magnetic parameters as a function of mineralogy, concen- tration and grain size. Physics and Chemistry of the Earth 28:659-667.
Rabassa, J., 1973. Geología Superficial en la hoja “Sierras de Tandil”, provincia de Buenos Aires. Laboratorio de Ensayo de Materiales e Investigaciones Tecnológicas 2:115-160.
Rouzaut, S., M.J. Orgeira, C. Vásquez, G. Argüello y J. Sanabria, 2012. Magnetic properties in a loess-paleosol sequence of Corralito, Córdoba, Argentina. Revista de la Sociedad Geológica de España 25:57-65.
Rouzaut, S., M.J. Orgeira, C. Vásquez, R. Ayala, G.L, Argüello, A. Tauber, R. Tófalo, l. Mansilla y J. Sanabria, 2015. Rock magnetism in two loess–paleosol sequences in Córdoba, Argentina. Environmental Earth Science 73:6323-6339.
Ruiz de Galarreta, A., 2006. Geohidrología y balance hidrológico de la zona no saturada en la cuenca superior del arroyo Tandileofú, Provincia de Buenos Aires. Tesis doctoral. Universidad Nacional de La Plata, 181 pp. (inédito).
Ruiz de Galarreta, A., M. Varni, R. Banda Noriega y R. Barran- quero, 2007. Caracterización geohidrológica preliminar en la cuenca del Arroyo Langueyú, Partido de Tandil, Buenos Aires. V Congreso Argentino de Hidrogeología Actas:119-128, Paraná.
Sala, J.M., 1975. Recursos Hídricos. En V. Angelelli (Ed.), Relatorio de Geología Provincia de Buenos Aires. VI Congreso Geológico Argentino:178-193.
Schoeneberger, P.J., D.A. Wysocky, E.C. Benham y W.D. Broderson, 2000. Libro de campaña para descripción y muestreo de suelos. Versión 1.1. Instituto de Suelos, Centro de Recursos Naturales, Instituto Nacional de Tecnología Agro- pecuaria, Argentina. Traducción en español del “Field Book for Describing and Sampling Soils”, 1998. Centro Nacional de Relevamiento de Suelos, Servicio de Conservación de Recursos Naturales, Dto. de Agricultura EE.UU., Lincoln, Nebraska 9
(10) p.
Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th Edition. USDA, Washington DC. 362 pp.
Teruggi, M.E., L.A. Spalletti y L.H. Dalla Salda, 1973. Paleosuelos en la Sierra Bachicha, Partido de Balcarce. Revista del Museo de La Plata, Sección Geología 8:227-256.
Vasquez, C.A., M.J. Orgeira y A.M. Sinito, 2008. Origin of super- paramagnetic particles in Argiudolls developed on loess, Buenos Aires (Argentina). Environmental Geology 56:1653- 1661.
Zárate, M.A. y A. Blasi, 1991. Late Pleistocene and Holocene loess deposits of southeastern Buenos Aires province. Argentina. Geojournal 24:211-220.
Zárate, M.A. y A. Blasi, 1993. Late Pleistocene-Holocene eolian deposits of southern Buenos Aires Province. Argentina: a preliminary model. Quaternary International 17:15-30.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.