Basic petrophysics of the Precuyano Cycle, Cara Cura hills, Mendoza

Authors

  • Marina Drosina Instituto Tecnológico de Buenos Aires, Av. E. Madero 399. CABA.
  • Silvia Barredo Instituto Tecnológico de Buenos Aires, Av. E. Madero 399. CABA.
  • Luis Stinco Instituto Tecnológico de Buenos Aires, Av. E. Madero 399. CABA.
  • Laura Giambiagi CONICET-IANIGLA-CCT Mendoza. Adrián Leal s/n, Parque San Martín, Mendoza

Keywords:

Volcaniclastics rocks, Porosity, Permeability, Precuyano Cycle.

Abstract

In the ninetieth, the discovery of hydrocarbons in volcanic or volcaniclastic rocks was not consid- ered economically viable in the petroleum explora- tion because of the lack of reservoir quality. However, during last decades many examples from our country proved to be real targets like, Campo Océano, Octógono, Cupén Mahuida (Sruoga et al., 2004; Sruoga and Rubinstein, 2007; Schiuma et al., 2011; Velo et al., 2014). These latter and the need to increase gas/oil production challenged industry to deepen into the knowledge of the pore structure of their deposits.

Volcanic and volcaniclastics deposits can develop porosity in different ways. The more elemental process that lead to the possible formation of porosity takes place once fragments have been ejected from the volcano edifice. As they are deposited mechanically by gravity or fluid transport, porosity results from the degree of sorting of fragments and their type of packaging. After deposition pore space will be modified by diagenetic processes being the more important burial and compactation and cement/clay formation similar to clastics deposits. But unlike typical sedimentary rocks, the nature and style of the eruption and subsequent cooling of these rocks add significant controlling factors over the evolution of the porosity. Some of the most relevant are the alteration of chemically unstable minerals during volcanic processes, the welding of hot material after deposition and fracturing due to cooling. Primary porosity comprises gas voids, vesicles, intergranular pores and some cooling joints; secondary porosity includes intracrystalline dissolution, matrix dissolu- tion pores, fractures, fissures, weathering cracks and interstices. The secondary porosity is frequently the only kind present and may be the result of hydrothermal alteration, fracturing and late-stage diagenetic mineral alteration.

The main purpose of this contribution is to characterize a volcaniclastic and volcanic sequence of the Precuyano Cycle in the north flank of Sierra de la Cara Cura, Neuquén Basin (Fig. 1). The region holds block and ash flows and lava facies detailed previously by Drosina et al. (2017) (Fig. 2, 3). Re- sults of core observation, thin section analysis and scanning electronic microscope (SEM) indicate that the quality of volcanic rock reservoirs is controlled not only by their lithofacies but also by the diagenetic and tectonic processes affecting them. Detailed petrophysical laboratory studies permitted us to additionally arrive to numerical values of the porosity and permeability of the most representative levels of volcaniclastics and volcanic deposits of the Precuyano Cycle.

The volcaniclastics levels are composed of block and ash deposits (Figs 2 and 3). There are poorly sorted, massive mixtures of decimeter- to meter-sized blocks set within a fine lapilli to medium ash-grade matrix; thickness range from 12.50 to 0.95 meters in the SE-NW direction. Primary porosity is controlled by vesiculation in the andesitic pyroclasts and some and scarce columnar jointing. Secondary porosity is represented by micro structures in the andesitic blocks frequently filled-in with iron oxides. Meso- fractures are prevalent and cut through multiple lava flows and block and ash deposits. Another secondary porosity corresponds to crystalloclast dissolution with the consequent intracrystalline and vuggy types porosities (0.004 – 0.62 mm, micropores) (Fig. 4). The effective porosity and permeability to gas, for the sequence varies between 9.7 to 21.46% and 0.288 to 1.339 mD respectively (Table 1 and Fig. 8).

The volcanic levels are composed of abundant tabular andesitic flows facies that are laterally continuous along several kilometers (Figs. 2 and 3). Their thicknesses range from 5.2 to 8.4 meters. Individual lava flows can be divided into base, core and top facies, with lava piles comprising repeated cycles of these distinct facies. The best reservoir quality concerning primary porosity occurs in andesitic flow tops where vesicular interconnected porosity dominates but significantly decreases to the core of due to compactation and mineral alteration. Secondary porosity results mainly from jointing and fracturing from both tectonic and long-lasting coo- ling. They cut throughout multiple flows to connect the flow tops (the favorable reservoir) horizons and even with the flow core. Syn- and post-depositional hydrothermal alteration induces a hydraulic local fracture network. Weathering alteration products also fill-in open spaces like dissolution cavities, vesicles, fractures and form mineral aggregates as part of phenocrystal replacement (Figs. 4 and 5). The effective porosity and permeability to gas, for the sequence varies between 8.6 and 19.5%, 0.014 and

0.009 mD with anomalous values of up to 32.182 mD (Table 1 and Fig. 6).

The results obtained herein permit to propose the existence two types of reservoirs in the Precuyano Cycle of the Cara Cura depocenter. One observed in the volcaniclastics deposits that proved to be complex enough to be compare with that observed in fractured carbonate reservoirs and the other is associated with the volcanic deposits. Significant pore reduction was observed in numerous levels results from compactation, tuff welding and mineral alteration, commonly of sericite type, induced by the volcanic process itself and by diagenesis. These latter point to a grade of “uncertainty” when exploring and producing these oil fields due to the resulting lateral and vertical heterogeneities in the texture and structure of the rock bodies that greatly condition the drilling and seismic operations and lately, the production programs.

 

References

Barredo, S. y L. Stinco, 2013. A Geodynamic View of Oil and Gas Resources Associated to the Unconventional Shale Reservoirs of Argentina. Unconventional Resources Technology Confe¬ rence (URTEC). American Association of Petroleum Geolo- gists, Estados Unidos.

Barredo, S. y L. Stinco, 2014. Unconventional reservoir geology of the Neuquén Basin, Argentina. Society of Petroleum Engineer Annual Technical Conference and Exhibition SPE-170905-MS, 1-11.

Branney, M. y B. Kokelaar, 2002. Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society, London. Memoirs 27, 152 pp.

Cas, R. y J. Wright, 1987. Volcanic Successions: Modern and Ancient. Chapman and Hall, London, 528 pp.

Catalano, J. y N. Rubinstein, 2011. Procesos geológicos vincu- lados a la generación de porosidad en rocas volcánicas del precuyano, Cuenca Neuquina, Argentina. XVIII Congreso Geológico Argentino Abstract: S11, Neuquén.

Corbera, R. y P. Kraemer, 2001. Aplicación de Sísmica 3D en un Reservorio no Convencional de Rocas Ignimbríticas. Cuenca Neuquina, Argentina, EXITEP Exposición Internacional de Tecnología Petrolera Actas 1-14, D.F. México.

Cashman, K. y J. Kauahikaua, 1997. Reevaluation of vesicle distributions in basaltic lava flows. Geology 25:419-422.

D’Elia, L. y J. Franzese, 2005. Caracterización litológica y estructural de ignimbritas precuyanas en la sierra de Chacaico, Neuquén, con énfasis en su potencial petrolero. VI Congreso de Exploración de Hidrocarburos, Actas en CD. Mar del Plata.

Drosina, M., S. Barredo, A. Sosa Massaso y F. Bergese, 2014. Porosidad en rocas volcánicas. Un caso de estudio el Ciclo Precuyano. En D. Astesiano, E. Breda, A. Montagna, J. Paris, y D. Pérez (Eds.), Simposio de Evaluación de Formaciones de Archie a los No Convencionales. IX Congreso de Exploración y Desarrollo de Hidrocarburos, Trabajos Técnicos: 375-398.

Drosina. M., S. Barredo, A. Martinez y L. Giambiagi, 2017. Facies volcaniclásticas del Ciclo Precuyano en el sector norte de la Sierra de la Cara Cura, Mendoza. Revista de la Asociación Geológica Argentina 74 (2): 179-190.

Fisher, R. y H. Schmincke, 1984. Pyroclastic Rocks. Springer- Verlag, Berlín, 472 pp.

Franzese, J. y L. Spalletti, 2001. Late Triassic-early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. Journal of South American Earth Sciences 14: 257-270.

Giambiagi, L., M. Tunik, S. Barredo, F. Bechis, M. Ghiglione, P. Alvarez y M. Drosina, 2009. Cinemática de la apertura del sector norte de la Cuenca Neuquina. Revista de la Asociación Geológica Argentina 65 (2):278-282.

Gifkins, C. y R. Allen, 2001. Textural and chemical characteristics of diagenetic and hydrothermal alteration in glassy volcanic rocks - examples from the Mount Read Volcanics, Tasmania. Economic Geology 96: 973-1002.

Gifkins, C., W. Herrmann y R. Large, 2005. Altered Volcanic Rocks:

A guide to description and interpretation. CODES, University of Tasmania, 275 pp.

Groeber, P., 1933. Descripción de la Hoja 31 c “Confluencia de los

ríos Grande y Barrancas”. Boletín de la Dirección de Minas y Geología, 72pp.

Gulisano, C., A. Gutiérrez Pleimling y R. Digregorio, 1984. Esquema estratigráfico de la secuencia jurásica del oeste de la provincia del Neuquén. IX Congreso Geológico Argentino Actas I: 236-259, San Carlos de Bariloche.

Hon, K., J. Kauahikaua, R. Denlinger y K. Mckay, 1994. Emplacement and inflation of pahoehoe sheet flows: obser- vations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geological Society of America Bulletin 106: 351-370.

Komatsu, N., Y. Fujita y O. Sato, 1983. Cenozoic volcanic rocks

as potential hydrocarbon reservoirs. XI World Petroleum Congress 2:411-420.

Legarreta, L. y H. Villar, 2011. Las facies generadoras de hidro- carburos de la Cuenca Neuquina. Petrotecnia 14-39.

Mc Phie, J., M. Doyle y R. Allen, 1993. Volcanic textures: A guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposits and Exploration Studies, University of Tasmania, 198 pp.

Muravchik, M., L. D’ Elia, A. Bilmes y J. Franzese, 2008. Caracterización de los depocentros de rift (Ciclo Precuyano) aflorantes en el sector sudoccidental de la Cuenca Neuquina, Argentina. VII Congreso de Exploración y desarrollo de Hidrocarburos Trabajos Técnicos: 457-470.

Naipouer, M., L. Fennell, A. Folguera, M. Pimentel y V. Ramos, 2016. Edades U-Pb SHRIMP de volcanitas del Ciclo Precuyano: controles temporales en la extensión del depocentro Cara

Cura-Reyes (36°30’ls), norte de la Cuenca Neuquina. I Sim¬ posio de Tectónica Sudamericana Abstract: 32.

Narciso, F., G. Santa María y J. Zanettini, 2001. Hoja Geológica 3769-I Barrancas (Provincia de Mendoza). Programa Nacional de Cartas Geológicas de la República Argentina 1:250.000.

Németh, K. y U. Martin, 2007. Practical Volcanology. Lecture notes for understanding volcanic rocks from field based studies. Occasional Papers of the Geological Institute of Hungary 27: 221 pp.

Orton, G., 1996. Volcanic environments. En H. Reading, (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy Reading. Blackwell Science, Oxford, 485-567.

Pángaro, F., R. Corbera, O. Carbone y G. Hinterwimmer, 2002. Los reservorios del Precuyano. En: M. Schiuma, G. Hinterwimmer, y G. Vergani, (Eds.). Rocas Reservorio de las Cuencas Productivas Argentinas. Instituto Argentino del Petróleo y del Gas, Trabajos Técnicos: 229-254, Buenos Aires.

Pángaro, F., M. Pereira y M. Giorgetti, 2004. Relevamiento Geológico del Precuyano en las Sierras de Reyes y Cara Cura, Provincia de Mendoza, Argentina. Repsol-YPF, (informe iné-

dito), 22 p., Buenos Aires.

Petford, N., 2003. Controls on primary and permeability development in igneous rocks. En: N. Petford, y K. McCafrey, (Eds.), Hydrocarbons in Crystalline Rocks. Geological Society, London, Special Publications 214:93-107.

Petford, N. y K. McCaffrey, 2003. Hydrocarbons in crystalline rocks. En: N. Petford, y K. McCafrey, (Eds.), Hydrocarbons in Crystalline Rocks. Geological Society, London, Special Publications 214:1-5.

Porras, J., M. Agüerra, A. Pérez, F. Pagán y H. Belotti, 2011. Caracterización geológica y potencial petrolífero de los Cuerpos Ígneos intrusivos de la Cuenca Austral, Argentina. VIII Congreso de Exploración y Desarrollo de Hidrocarburos Trabajos Técnicos: 519-548. Mar del Plata.

Schiuma, M. y E. Llambías, 2008. New ages and chemical

analysis on Lower Jurassic volcanism close to the Huincul High, Neuquén. Revista de la Asociación Geológica Argentina 63 (4): 644-652.

Schiuma, M., E. Rodríguez, L. Tórtora y E. Llambías, 2011. Depó- sitos de origen volcánico en el Yacimiento Cupén Mahuida, Cuenca Neuquina Argentina. VIII Congreso de Exploración y Desarrollo de Hidrocarburos. Trabajos Técnicos: 147-167, Mar del Plata.

Schwarzkopf, L., H. Schmincke y S. Cronin, 2005. A conceptual model for block and ash flow basal avalanche transport and deposition, based on deposit arquitecture of 1998 and 1994 Merapi flows. Journal of Volcanology and Geothermal Research 129:117-134.

Sigismondi, M., 2012. Estudio de la deformación litosférica de la cuenca Neuquina: estructura termal, datos de gravedad y sísmica de reflexión. Tesis doctoral. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, 381 pp. (inédita).

Sissini, V., S. López y M. Lavia, 2011. Yacimientos de gas no convencionales en el Ciclo Precuyano y en el basamento en el área de la Dorsal de Huincul en la Cuenca Neuquina. VIII Congreso de Exploración y Desarrollo de Hidrocarburos Trabajos Técnicos: 693-710.

Sruoga, P. y N. Rubinstetin, 2007. Processes controlling porosity

and permeability in volcanic reservoir from the Austral and Neuquén basins, Argentina. American Association of Petroleum Geologist Bulletin 91(1):115-129.

Sruoga, P., N. Rubinstetin y G. Hinterwimmer, 2004. Porosity and Permeability in volcanic rocks: a case study on the Serie Tobífera, South Patagonia, Argentina. Journal of Volcanology and Geothermal Research 132, 31-43.

Velo, D., R. Manceda, F. Creus, R. Ugarte, D. Narrillos, L. Ciancio, O. Pioli y M. Mallaviabarrena, 2014. Caracterización del reservorio en el basamento cristalino de la Cuenca Neuquina. Petrotécnia 24-43.

Vergani, G., A. Tankard, H. Belotti y H. Weisink, 1995. Tectonic evolution and paleogeography of the Neuquén basin, Argentina. En: A. Tankard, S. Suárez y H. Welsink, (Eds.), Petroleum basins of South America. American Association of Petroleum Geologist. Memoir 62:383-402.

Wilson, M. y E. Pittman, 1977. Aythigenic clays in sandstones: recognition and influence on reservoir properties and paleoen- vironmental analisys. Journal Sedimentology Petrology 47:3-31.

Winchester, W. y P. Floyd, 1977. Geochemical discrimination of different magma series and their differentiation products using inmobile elements. Chemical Geology 20:325-343.

Zubiri, M. y J. Silvestro, 2007. Fracture Modeling in a Dual Porosity Volcaniclastic Reservoir: A Case Study of the Precuyo Group in Cupen Mahuida field, Neuquén, Argentina. American Association of Petroleum Geologist, Annual Convention, Long Beach, California.

Published

2021-03-31

How to Cite

Drosina, M. ., Barredo, S. ., Stinco, L. ., & Giambiagi , L. . (2021). Basic petrophysics of the Precuyano Cycle, Cara Cura hills, Mendoza. atin merican ournal of edimentology and asin nalysis, 24(2), 75–91. etrieved from https://lajsba.sedimentologia.org.ar/lajsba/article/view/116

Issue

Section

Research Papers