Analysis of Markov Chains and Fourier Series in an Upper Jurassic Hemipelagic Sequence of the Antarctic Peninsula

Authors

  • Diego A. Kietzmann Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Pabellón II. Ciudad Universitaria (1428) Buenos Aires. Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).
  • José I. Cuitiño Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Pabellón II. Ciudad Universitaria (1428) Buenos Aires. Argentina. Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT)
  • Rubén A. Medina Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Pabellón II. Ciudad Universitaria (1428) Buenos Aires. Argentina. Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT)
  • Roberto A. Scasso Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Pabellón II. Ciudad Universitaria (1428) Buenos Aires. Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Keywords:

Microfacies; Markov chains; Fourier series, Ameghino Formation, Upper Jurassic, Antarctic Peninsula

Abstract

The Upper Jurassic strata of the Larsen Basin, in the northeastern tip of the Antarctic Peninsula (Fig. 1), consist of thin, well-bedded, radiolarian-rich shales, fallout tuffs and volcaniclastic sandstones,

grouped in a stratigraphic unit known as Ameghino Formation (or Nordenskjöld Formation for British

authors - see Whitham and Doyle, 1989). The Ameghino Formation succession records a fine-grained and high-rate continuous suspensive sedimentation in a quiet hemipelagic environment, with little reworking at the bottom. A 1.3 m-thick representative section for the Upper Member of the Ameghino Formation was sampled bed by bed and studied under petrographic microscopy for microfacies determination. Cyclicity was defined by means of Markov chain analysis and Fourier series (Blackman- Tukey and wavelet methods).

Microfacies: The succession is composed of a microfacies association of radiolarian-rich shales (P1), black shales (P2), bioturbated and peloidal shales (P3), tuffs (T) and sandstones (A) superbly preserved (Figs. 2 and 3). Sedimentation took place in an oxygen-depleted environment, periodically interrupted by rapid, event-sedimentation mostly caused by large explosive eruptions at the volcanic arc of the Antarctic Peninsula. The P1 and P2 microfacies are interpreted as the result of the deposition from pelagic suspensions during cycles of varying biological productivity or terrigenous dilution. The microfacies P3 represents similar conditions of sedimentation but higher oxygenation levels at the bottoms. On the other hand, microfacies T and A correspond to fallout deposits and distal turbiditic flows respectively. Microfacies T is associated with siliciclastic explosive volcanic eruptions and microfacies A with reworking of primary pyroclastic deposits.

Markov chain and Fourier series analysis: Markov chain analysis reveal cyclic relations between some

microfacies with single step transition dependence (Figs. 4 and 5). Transition diagram shows statistically

significant transitions from microfacies T and A to P1, between P1 and P2, and also a cycle T-P1-P2 (Fig.

6). Spectra from the Fourier series analysis on 37 pairs P1-P2 (Fig. 7 a) indicate a periodicity of 1140

years (Blackman-Tukey method, 95% confidence, Fig. 7b), and periodicities of 740 and 1160 years

(wavelet method, Fig. 7c). Ages were derived from sedimentation rates calculated by Scasso (2001) for

the Longing Member due to poor age determinations in the upper Member. A periodicity of about 1000

years may be associated with the Hallstatt cycle of solar activity that influence the intensity of solar

radiation reaching the Earth and cause surface temperature variations within the sub-Milankovitch

frequency band. A similar frequency was calculated by Scasso (2001) for large volcanic eruptions from

the tuff record in the Longing Member. Therefore, P1- P2 transitions are associated to climatic cycles that

influence productivity at the surface of the oceans. The accumulation of microfacies T and A are related

to events of siliciclastic sedimentation that modified environmental and early-diagenetic conditions avoiding dissolution of radiolarian skeletons in the water body and at the bottom and caused the T and A transitions to P1. P2-T transition might indicate that P2 environmental conditions lasted longer than P1

conditions in spite of the similar thickness observed for both microfacies.

References

Bárcena, M.A., Sesma, J., Isla, E. y Palanques, A., 2005. Respuesta del registro sedimentario a la ciclicidad solar en el estrecho de Gerlache (península Antártica). Geogaceta 38:179-182.

Barron, J.A. y Bukry, D., 2007. Solar forcing of Gulf of California climate during the past 2000 yr suggested by diatoms and silicoflagellates. Marine Micropaleontology 62:115-139.

Berger, A. y Loutre, M.F., 1994. Astronomical forcing through geological time. En de Boer, P.L. y Smith, D.G. (Eds.), Orbital Forcing and Cyclic Sequences. International Association of Sedimentologist, Special Publication 19:15-24. Oxford.

Boltovskoy, D. y Pujana, I, 2008. Radiolaria. En Camacho, H.H. y Longobucco, M.I. (Eds.), Los Invertebrados Fósiles, I: 101-132. Vázquez Mazzini, Buenos Aires.

de Boer, P.L. y Smith, D.G., 1994. Orbital Forcing and cyclic sequences. En de Boer, P.L. y Smith, D.G. (Eds.), Orbital Forcing and cyclic sequences. International Association of Sedimentologist, Special Publication 19:1-14. Oxford.

del Valle, R.A., Elliot, D.H. y Macdonald, D.I.M., 1992. Sedimentary basins on the east flank of the Antarctic Peninsula: proposed nomenclature. Antactic Science 4:477-478.

Einsele, G., Ricken, W. y Seilacher, A., 1991. Cycles and Events in Stratigraphy - Basic Concepts and Terms. En Einsele, G., Ricken, W. y Seilacher, A. (Eds.), Cycles and Events in Stratigraphy. Springer Verlag, 1-23 pp. Berlin.

Farquharson, G.W., 1982. Late Mesozoic sedimentation in the northern Antartic Peninsula and its relationship to southern Andes. Journal of the Geological Society of London 139:721-728.

Farquharson, G.W., 1983. The Nordenskjöld Formation of the northern Antarctic Peninsula: an Upper Jurassic radiolarian mudstone and tuff sequence. British Atarctic Surey Bulletin 60:1-22.

Fischer, A.G., D’Argenio, B., Premoli-Silva, I., Weissert, H. y Ferreri, V., 2004. Cyclostratigraphy aproach to Earth’s history: an introduction. En D’Argenio, B., Fischer, A.G., Premoli-Silva, I., Weissert, H. y Ferreri, V. (Eds.), Cyclostratigraphy: Aproaches and Cases Histories. SEPM, Special Publication 81:5-16. Tulsa.

Haas, J. y Filácz, E. T., 2004. Facies changes in the Triassic–Jurassic boundary interval in an intraplatform basin succession at Csóvar (Transdanubian Range, Hungary). Sedimentary Geology 168:19-48.

Hathway, B., 2000. Continental rift to back-arc basin: Jurassic-Cretaceous stratigraphical and structural evolution of the Larsen Basin, Antartica Peninsula. Journal of the Geological Society of London 157:417-432.

Hu, F.S., Kaufman, D., Yoneji, S., Nelson, D., Shemesh, A., Huang, Y., Tian, J., Bond, G., Clegg, B. y Brown, T., 2003. Cyclic Variation and Solar Forcing of Holocene Climate in the Alaskan Subarctic. Science 301:1890-1893.

Kiessling, W., 1996. Facies Characterization of Mid-Mesozoic Deep-Water Sediments by Quantitative Análisis of Siliceous Microfaunas. Facies 35:237-274.

Kiessling, W., Scasso, R.A., Zeiss, A., Riccardi, A.C. y Medina, F.A., 1999. Combined radiolarian-ammonite stratigraphy for the Late Jurassic of the Antarctic Peninsula: implications for radiolarian stratigraphy. Geodiversitas 21:687-713.

Ma, L.H., 2007. Thousand-Year Cycle Signals in Solar Activity. Solar Physics 245:411-414.

Macdonald, D.I. Barcker, P.F., Garret, S.W., Ineson, J.R., Pirrie, D., Storey, B.C., Whitham, A.G., Kinghorn, R.R.F. y Marshall, J.E.A., 1988. A preliminary assessment of the hydrocarbon potential of the Larsen Basin, Antartica. Marine and Petroleum Geology 5:34-53.

Medina, F.A. y Ramos, A.M., 1981. Geología de las inmediaciones del Refugio Ameghino (64º26’S, 58º59’W) Tierra de San Martín, Península Antártica. Contribuciones del Instituto Antártico Argentino 293:1-18.

Miall, A.D., 1973. Markov chain analysis applied to an ancient alluvial plain sucession. Sedimentology 20:347-364.

Müller, R.A. y MacDonald, G., 2000. Ice ages and astronomical causes: data, spectral analysis and mechanisms. Springer Verlag, Londres, 318 pp.

Patterson, R.T, Prokoph, A. y Chang, A., 2004. Late Holocene sedimentary response to solar and cosmic ray activity influenced climate variability in the NE Pacific. Sedimentary Geology 172:67-84.

Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R.F., Brzezinski, M.A., DeMaster, D.J., Dugdale, R.C., Dymond, J., Fischer, G., Francois, R., Heinze, C., Maier-Reimer, E., Martin- Jézéquel, D., Nelson, D.M. y Quéguiner, B. 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change 26:317-365.

Santisteban, M., 1997. Análisis estratigráfico de la Formación Ameghino en el área de Longing Gap, Península Antártica. Trabajo Final de Licenciatura, Universidad de Buenos Aires, 102 pp. (inédito).

Scasso, R.A., 2001. High-frecuency explosive volcanic eruptions in a Late Jurassic volcanic arc: the Ameghino Formation, Antartica Peninsula. Journal of Sedimentary Research 71:101-106.

Scasso, R.A., Kiessling, W. y Santisteban, M., 1998. Ciclos Markovianos de Tobas - Radiolaritas con dependencia de transición simple en el Jurásico Superior de Antártida. 10° Congreso Latinoamericano de Geología y 6° Congreso Nacional de Geología Económica, Actas 1:84.

Weedon, G., 2003. Time-Series Analysis and Cyclostratigraphy. Examining stratigraphic record of environmental cycles. Cambridge University Press, New York, 259 pp.

Whitham, A.G., 1993. Facies and depositional processes in an Upper Jurassic to Lower Cretaceous pelagic sedimentary sequence, Antartica. Sedimentology 40:331-349.

Whitham, A.G. y Doyle, P., 1989. Stratigraphy of the Upper Jurassic-Lower Cretaceous Nordenskjold Formation of eastern Graham Land, Antartica. Journal of South American Earth

Sciences 2:371-384.

Wilson, I.R.G., 2006. Possible evidence of the de Vries, Gleissberg and Hale cycles in the Sun’s barycentric motion. Australian Institute of Physics 17th National Congress:3-8. Brisbane.

Zühlke, R., 2004. Integrated cyclostratigraphy of a model Mesozoic carbonate platform-the Latemar (Middle Triassic, Italy). En D’Argenio, B., Fischer, A.G., Premoli-Silva, I., Weissert, H. y Ferreri, V. (Eds.), Cyclostratigraphy: Aproaches and Cases Histories. SEPM, Special Publication 81:183-211. Tulsa.

Published

2021-03-31

How to Cite

Kietzmann, D. A. ., Cuitiño, J. I. ., Medina, R. A. ., & Scasso, R. A. . (2021). Analysis of Markov Chains and Fourier Series in an Upper Jurassic Hemipelagic Sequence of the Antarctic Peninsula. atin merican ournal of edimentology and asin nalysis, 16(1), 45–56. etrieved from https://lajsba.sedimentologia.org.ar/lajsba/article/view/104

Issue

Section

Research Papers