Petrology and diagenetic evolution of the silicoclastic facies of the Sierras Bayas Group, Tandilia System, Argentina.
Keywords:
Silicoclastic Microfacies, Diagenesis, Neoproterozoic, Tandilia System, Argentina.Abstract
The Neoproterozoic sedimentary sequences of the Tandilia System Basin are represented in the Olavarría area by interstratified shallow marine, silicoclastic and carbonate units comprising, from oldest to youngest, for the Villa Mónica, Cerro Largo and Olavarría formations of the Sierras Bayas Group (Fig. 1). These almost undeformed and unmetamorphosed siliciclastics sedimentary units allowed studying the different diagenetic regimes due to the preservation of postdepositional features and, also, of many depositional and eodiagenetic ones. In the study area de Sierras Bayas Group is composed of the Villa Mónica (conglomerates, sandstones, shales and dolostones), Cerro Largo (chert breccias, quartz-sandstones and siltstones), Olavarría (mudstones) and Loma Negra (limestones) Formations with a thickness up to 185 m (Figs. 2 and 3; Iñiguez, et al., 1989; Poiré, 1987a, 1993; Gómez Peral, 2008). The siliciclastics facies of the Sierras Bayas Group are composed of conglomerates, sandstones and mudstones, represented in the basal section of the Villa Mónica Formation and the Cerro Largo and Olavarría formations (Fig. 4). The objective of the present study was to reveal the sequence of diagenetic processes represented in the silicoclastic facies from a detailed petrological analysis. It included the recognition of the allogenic and authigenic components, the characterization of the diagenetic microfabrics (chemical and compactational), the definition of microfacies and the interpretation of the postdepositional burial history from the determination of paragenetic sequences. Besides, a revision of the classical depositional facies chart was performed. Considering that different factors may influence the diagenesis of sediments at different times during its evolution (Kantorowicz, 1985), the general controls on diagenesis include the depositional mineralogy, the depositional-water chemistry, the change in pore fluid composition, the inferred burial pressures and the temperatures and subaerial exposure. From the lithofacial analisys we remark the presence of some facies with potential glacial origin here described as laminated gravelly mudstone (Fig. 5; facies FGh) in the basal section of the Villa Mónica Formation and the “Colombo” diamictite (Fig. 6; Ds) in the base of the Cerro Largo Formation. Other interesting level is present in the base of the Olavarría Formation where we recognized an intraformational conglomerate (Fig. 6; facies MCh) likely associated with a volcanic arc affinity by geochemical data (Zimmerman et al., 2011). The quartz-arkosic facies of the lower section of the Villa Mónica Formation can be separated in three petrofacies according with its detrital mineralogy: i) subarkosic sandstones (arenites and wackes) at the base; ii) lithic and sublithic sandstones rich in polycrystalline quartz (arenites and wackes) in the middle part and iii) quartz sandstones in the upper section (Table 1 and Fig. 7). A detailed analysis of the microfacies allowed the interpretation of the interaction of diagenetic processes with sediments during an important geological time interval (Tables 2, 3 and Figs. 8, 9 and 10). In the same sense, the identification of diagenetic facies permitted the differentiation of sections of the succession characterized by different diagenetic modifications. Clay minerals were analyzed since illite crystallinity, identification of interestratified illite/smectite and its smectite proportion help to assess the relative depth of burial reached for these sedimentary rocks. The main detrital and authigenic components, as well as the definition of their microstructures, allowed identifying 25 microfacies in the silicoclastic section of the Villa Mónica Formation (Table 2) and the interpretation of the evolution of the processes occurred during the different diagenetic regimens. The eodiagenetic regime involved degradation of K-feldspars to kaolinite, smectite, cementation with opal and hematite, as the result of the interaction with meteoric waters between surface and shallow burial depths. Subsequently, basinal brines controlled the diagenetic evolution of the sandstones and resulted in the initial transformation of smectite into interestratified illite-smectite, precipitation of quartz overgrowths, and recrystallization of siliceous cements. During further burial the most important alterations included transformation of interestratified illite-smectite in ordered type (R1) containing 70- 80% of illite in relation with authigenic growth of illite; scarce authigenic chlorite as replacement of biotite and amphibole, illitization of kaolinite (inferred), pervasive stylolitization added to the formation of sutured contact grains, and later with hematite replacements and late calcite cements. All these features indicate an equilibrium of the fluids with very deep burial and high temperatures (Fig. 11; > 5 km and >150ºC). An important uplift is registered related to a period of intense erosion and weathering with the generation of a karstic surface on top of dolostones of the Villa Mónica Formation which constitutes a telodiagenetic surface. This important unconformity was situated in 595 Ma according to paleomagnetic studies, (Rapallini et al., 2008) and was characterized by dedolomitization, intense dissolution and precipitation of goethite, hematite, chert and calcite, which produce a typical reddish to pink coloration (Gómez Peral, 2008). Sandstones of the Cerro Largo Formation were divided in two petrofacies (Table 1; Fig. 7); the quartzose lower one is mostly composed of monocrystalline quartz with low proportion of matrix (< 10%), very scarce policrystaline quartz, chert and mudstone intraclasts. The analysis of detrital and diagenetic mineralogy, and the different microstructures allowed the recognition of 5 microfacies (Table 3). The diagenetic evolution of this unit began with eodiagenetic processes related to the formation of euhedral pyrite, infiltration of smectite, authigenic glauconite and chert cementation. The most important mesodiagenetic modifications included quartz cementation, which complete the pore-filling, followed of partial dissolution of quartz and replacement by subhedral hematitic cement. Progressive burial drove the transformation of detrital and eodiagenetic smectite, first into poorly and then into better-ordered, mixed-layer illite/ smectite (I/S). In the Cerro Largo Formation the I/S reaches a low ordered (R0) containing near of 40- 50% of illite, added to the authigenic generation of illite with crystallinity index typical of diagenetic zone. Furthermore, these features can be related to a middle-deep mesodiagenesis (Fig. 11; ?4 km and ? 120ºC). However, this process was restricted to intercalated mudstones with clayminerals. Sparse stylolites and tangential to planar grain contacts are the most conspicuous chemical compaction indicators. Uplift and incursion of meteoric waters constrained the telodiagenetic alterations including kaolinitization and smectite generation as well as degradation of mixed-layer illite/smectite which increment their smectite proportion. One prominent telodiagenetic products in this quartz-sandstones was the dissolution of quartz cements in presence of pervasive fluids and its replacement by hematite, goethite and chalcedony. In the mudstones levels the presence of a clay association of smectite, kaolinite and pyrofillite was related to an advanced argillic alteration due to possibly hydrothermal influence. One of the most important inferences was the recognition of different burial diagenetic histories in the siliciclastic units of the lower part of the Sierras Bayas Group (lower section if the Villa Mónica Formation) respect to the upper successions (Cerro Largo and Olavarría formations) which implies that the discordance on top of the Villa Mónica Formation could represent a long period of erosion and subaerial exposure.
References
Abrajevich, A., R. Van der Voo y D.K. Rea, 2009. Variations in relative abundances of goethite and hematite in Bengal Fan sediments: Climatic vs. diagenetic signals. Marine Geology 267:191-206.
Andreis, R.R., P.E. Zalba, A.M. Iñiguez Rodriguez y M. Morosi, 1996. Estratigrafía y evolución paleoambiental de la sucesión superior de la Formación Cerro Largo, Sierras Bayas (Buenos Aires, Argentina). VI Reunión Argentina de Sedimentología, Actas:293-298, Bahía Blanca.
Barrio, C.A., D.G. Poiré y A.M. Iñiguez Rodriguez, 1991. El contacto entre la Formación Loma Negra (Grupo Sierras Bayas) y la Formación Cerro Negro: un ejemplo de Paleokarst, Olavarría, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 46:69-76.
Bathurst, R.G.C., 1991. Cycles and Events in Stratigraphy. Cap. 3 Pressure-Dissolution and Limestones Bedding: the influence of Stratified Cementation, pp 450-463.
Beitler, B., W.T. Parry y M.A. Chan, 2005. Fingerprints of fluid flor: chemical diagenetic history of the Jurassic Navajo Sandstone, Southern UTA, USA. Journal of Sedimentary Research 75:547- 561.
Bennett, M.R., P. Doyle y A.E. Mather, 1996. Dropstones: their origin and significance. Palaeogeography, Palaeoclimatology and Palaeoecology 121:331-339.
Boles, J.R. y S.G. Frank, 1979. Clay diagenesis in Wilcox Sandstone of southwest Texas: Implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology 49:55-70.
Borrello, A.V., 1966. Trazas, restos tubiformes y cuerpos fósiles problemáticos de la Formación La Tinta, Sierras Septentrionales de la Provincia de Buenos Aires. Paleontografía Bonaerense, Fasc. 5, Comisión de Investigaciones Científicas, Provincia de Buenos Aires, 1-42.
Brand, U. y J. Veizer, 1981. Chemical diagenesis of multicomponent carbonate system – 2: Stable isotopes. Journal of Sedimentary Petrology 51:987-997.
Burley, S.D. y J.D. Kantorowickz, 1986. Thin section and SEM textural criteria for recognition of cement-dissolution porosity in sandstones. Sedimentology 33:587-604.
Cingolani, C.A., 2011. The Tandilia System of Argentina as a southern extension of the Río de La Plata craton: an overview. International Journal of Earth Sciences, doi: 10.1007/s00531- 010-0611-5.
Dalla Salda, L. y A.M. Iñiguez, 1979. La Tinta, Precámbrico y Paleozoico de Buenos Aires. VII Congreso Geológico Argentino, Actas I: 539-550, Buenos Aires.
Dewers, T. y A. Hajash, 1995. Rate laws for water-assisted compactation and stress-induced water-rock interaction in sandstones. Journal of Geophysical research 100:13112.
Dickinson, W.R., 1970. Interpreting detrital modes of graywake and arkose. Journal of Sedimentary Petrology 40: 695-707.
Dickson, J.A.D., 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology 36:491- 505.
Dott, R.H., 1964. Wacke, graywacke and matrix-what approach to immature sandstone classification. Journal of Sedimentary Petrology 34:625-632.
Esquevin, J., 1969. Influencié de la composition chimique des illites sur leer cristallinite. Bulletin Centre Recherche Pau- SNPA 3 (1), 147-153.
Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. Journal of Geology 62:344-359.
Folk, R.L., 1968. Petrography of sedimentary rocks. Hemphill´s Boockstore, Austin, 170 pp.
Folk, R.L., P.B. Andrews y D.W. Lewis, 1970. Detrital sedimentary rock classification and nomenclature for use in New Zeland. New Zeland Journal of Geology and Geophysics 13:937-968.
Foscolos, A.E. y H. Kodama, 1974. Diagenesis of clay minerals from Lower Cretaceous shales of North Eastern British Columbia. Clay and Clay Minerals 22:319-335.
Foucalt, A. y J.F. Raoult, 1985. Diccionario de geología. Masson S.A., Paris, 309 pp.
Frakes, L.A. y J.E. Francis, 1988. A guide to Phanerozoic cold polar climates from high-latitude ice rifting in the Cretaceous. Nature 333:547-549.
Gaucher, C., y D.G. Poiré, 2009a. Palaeoclimatic events. Neo- proterozoic-Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E. (Eds): Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology 16, Elsevier, pp. 123-130.
Gaucher, C., y D.G. Poiré, 2009b. Biostratigraphy. Neoproterozoic- Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E. (Eds.): Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology, 16, Elsevier, pp. 103-114.
Gaucher, C., D.G. Poiré, L.E. Gómez Peral y L. Chiglino, 2005. Litoestratigrafía, bioestratigrafía y correlaciones de las sucesiones sedimentarias del Neoproterozoico-Cámbrico del Cratón del Río de La Plata (Uruguay y Argentina). Latin American Journal of Sedimentology and Basin Analysis 12:145-160.
Gaucher C., S.C. Finney, D.G. Poiré, V.A. Valencia, M. Grove, G. Blanco, K. Pamoukaghlian y L.E. Gómez Peral, 2008a. Detrital zircon ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: insights into the geological evolution of the Río de la Plata Craton. Precambrian Research 167:150- 170.
Gaucher, C., G. Blanco, L. Chiglino, D.G. Poiré y G.J.B. Germs, 2008b. Acritarchs of Las Ventanas Formation (Ediacaran, Uruguay): implications for the timing of coeval rifting and glacial events in western Gondwana. Gondwana Research 13:488-501.
Gaucher, C., A.N. Sial, D. Poiré, L.E. Gómez-Peral, V.P. Ferreira y M.M. Pimentel, 2009. Chemostratigraphy. Neoproterozoic- Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E. (Eds.): Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology, 16, Elsevier, pp. 115-122.
Gier, S., R.H. Worden, W.D. Johns y H. Kurzweil, 2008. Diagenesis and reservoir quality of Miocene sandstones in Viena Basin, Austria. Marine and Petroleum Geology 25:681-695.
Gómez Peral, L.E., 2008. Petrología y diagénesis de las unidades sedimentarias precámbricas de Olavarría, Provincia de Buenos Aires. Tesis doctoral, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata Tomo I: 327pp y tomo II: 292 pp. (inédito).
Gómez Peral L., y D.G. Poiré, 2003. Petrographic and diagenetic features of the dolomitic facies of Villa Mónica Formation (Precambrian), Tandilia System, Argentina. 3rd Latin American Congress of Sedimentology Abstracts:43-44, Belem.
Gómez Peral, L., D.G. Poiré, U. Zimmermann, H. Strauss y J.M. Canallicchio, 2004. Petrología, geoquímica y diagénesis de las unidades carbonáticas neoproterozoicas del Grupo Sierras Bayas. Olavarría. Provincia de Buenos Aires, Argentina. Actas X Reunión Argentina de Sedimentología, 74-75, San Luis.
Gómez Peral, L.E., D.G. Poiré, H. Strauss H. y U. Zimmermann, 2007. C-O Isotope data and diagenetic constraints of the Neoproterozoic Sierras Bayas Group, (SW Gondwana), Argentina. Chemical Geology 237:127-146.
Gómez Peral, L.E., A.N. Sial, D.G. Poiré, M.J. Arrouy y J.M. Canalicchio, 2010a. C-O Isotopes of the Ediacarian Loma Negra Fomration, diagenetic implications: Barker area, Tandilia System, Argentina. XVIII International Sedimentological Congress, Abstract volumen: 398, Mendoza, Argentina.
Gómez Peral, L.E., D.G. Poiré y A.J. Kaufman, 2010b. REE of Neoproterozoic - early Cambrian Phosphate concretions and their digenetic implications. Tandilia System, Argentina. XVIII International Sedimentological Congress, Abstract volumen: 397, Mendoza, Argentina.
Gómez Peral, L.E., M.S. Raigemborn, F. Ganem, D.G. Poiré y J.M. Canalicchio, 2011. Argilofacies con pirofilita en el Grupo Sierras Bayas, área de Olavarría, Argentina: implicancias genéticas. XVIII Congreso Argentino de Geología, Actas: 1100- 1101. Neuquén, Argentina.
Grathoff, G.H. y D.M. Moore, 1996. Illite polytype quantification using WILDFIRE? Calculated X-Ray Diffraction paterns. Clays and Clay Minerals 44:835-842.
Harris, N.B., 2006. Low-porosity haloes at stylolites in the feldespatic Upper Jurassic Ula sandstone, Norwegian North Sea: an integrated petrographic and chemical mass-balance approach. Journal of Sedimentary Research 76:444-459.
Hendry, J.M., M.J. Pearson, N.H. Trewin y A.E. Fallick, 2006. Jurassic septarian concretions from NW Scotland record interdependent bacterial, physical and chemical processes of marine mudrock diagenesis. Sedimentology 53:537-565.
Iñiguez, A.M., 1999. La Cobertura Sedimentaria de Tandilia. In: Caminos R. (Ed), Geología Argentina. SEGEMAR, Anales 29, Buenos Aires, 101–106.
Iñiguez, A.M. y P.E. Zalba, 1974. Nuevo nivel de arcilitas en la zona de Cerro Negro, Partido de Olavarría, Provincia de Buenos Aires. Anales del LEMIT Serie 2:95-100.
Iñiguez, A.M., A. del Valle, D.G. Poiré, L.A. Spalletti y P.E. Zalba, 1989. Cuenca precámbrica-paleozoica inferior de Tandilia, Provincia de Buenos Aires. En: G. Chebli y L.A. Spalletti (Eds.), Cuencas Sedimentarias Argentinas. Serie Correlación Geológica 6:245-263. Universidad Nacional de Tucumán, Instituto Superior de Correlación Geológica.
Kantorowickz, J.D., 1985. The petrology and diagenesis of Middle Jurassic clastic sediments, Ravenscar group, Yorkshire. Sedimentology 32:833-853.
Kübler, B., 1967. La cristallinité de Illité et les zones tout á fair supérieures du métamorphisme. Etages Tectoniques-Colloque de Neuchatel 18-21(1966):105-122.
Lee, J.I., y Y.I. Lee, 2001. Kübler illite “crystallinity” index of the Cretaceous Gyeonsang Basin, Korea: Implications for Basin evolution. Clays and Clay Minerals 49(1):36-41.
Lee, Y.I. y D.H. Lim, 2008. Sandstone diagenesis of the Lower Cretaceous Sindong Group Gyeongsang basin, southeastern Korea: Implications for compositional and paleoenvironmental controls. Island Arc 17:152-171.
Limarino, C.O. y A. Caselli, 1995. Cherts (ftanitas) y niveles de silicificación en la sección superior del Grupo Paganzo (Pérmico), noroeste argentino. Asociación Argentina de Sedimentología Revista 2:37-56.
Limarino, C., L.N. Net, P. Gutiérrez, V. Barreda, A. Caselli y S. Ballenti, 2000. Definición litoestratigráfica de la Formación Ciénaga del Río Huaco (Cretácico Superior), Precordillera central, San Juan, Argentina. Revista de la Asociación Geológica Argentina 55(1):83-99.
McBride, E.F., 1963. A classification of common sandstones. Journal of Sedimentary Petrology 33:664-669.
McBride, E.F., 1989. Quartz cement in sandstones: a review. Earthz Science Reviews 26:69-112.
McKay, J.L, F.J. Longstaffe y A.G. Plint, 1995. Early diagenesis and its relationship to depositional environment and relative sea- level fluctuations (Upper Cretaceous Marshybank Formation, Alberta and British Columbia). Sedimentology 42:161-190.
Morad, S., H.N. Ben Ismail, L.F. De Ros, L.F., I.S. Al-Aasm y N.E. Sherrhini, 1994. Diagenesis and formation water chemistry of Triassic reservoir sandstones from southern Tunisia. Sedimentology 44:1253-1272.
Morad, S., J.M. Ketzer y F.L. De Ros, 2000. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology 47:95-120.
Perry, E.C.Jr., y L. Lefticariu, 2005. Formacion and Geochemistry of Precambrian Cherts. En: F.T. Mackenzie (Ed.), Sediments, Diagenesis and Sedimentary rocks, Treatise on Geochemistry, Elsevier, pp. 99-113.
Pettijohn, F.J., P.E. Potter y R. Siever, 1987. Sand and sandstones. Second Edition. Springer Verlag, New York, 553 pp.
Poiré, D.G., 1987a. Mineralogía y sedimentología de la Formación Sierras Bayas en el Núcleo Septentrional de las sierras homónimas, partido de Olavarría, provincia de Buenos Aires. Tesis Doctoral 494, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata: 271 pp. (Inédito).
Poiré, D.G., 1987b. Dolomitización estromatolítica / enterramiento tardío en el Precámbrico de Olavarría, provincia de Buenos Aires, Argentina. X Congreso Geológico Argentino, Actas II:25-28. San Miguel de Tucumán.
Poiré, D.G., 1993. Estratigrafía del Precámbrico sedimentario de Olavarría, Sierras Bayas, provincia de Buenos Aires, Argentina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Actas 2:1-11. Mendoza,Argentina.
Poiré, D.G. y L.A. Spalletti, 2005. La cubierta sedimentaria precámbrica/paleozoica inferior del Sistema de Tandilia. EnR.E. De Barrio, R.O. Etcheverry, M.F. Caballé y E.J. Llambías (Eds.), Geología y Recursos Minerales de la provincial de Buenos Aires. Relatorio del XVI Congreso Geológico Argentino: 51-68. La Plata.
Poiré, D.G. y C. Gaucher, 2009. Lithostratigraphy. Neoproterozoic- Cambrian evolution of the Río de la Plata Palaeocontinent. En:C. Gaucher, A.N. Sial, G.P. Halverson y H.E. Frimmel (Eds.), Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology 16:87-101. Elsevier
Poiré, D.G., L.E. Gómez Peral, S. Bertolino y J.M. Canalicchio, 2005a. Los Niveles con pirofilita de la Formación Villa Mónica, Precámbrico de Olavarría, Sistema de Tandilia, Argentina. XVI Congreso Geológico Argentino. La Plata. Actas II: 863-866.
Poiré, D.G., N.D. Canessa, G.J. Scillato-Yané, A. Carlini, J.M. Canalicchio y E.P. Tonni, 2005b. La Formación El Polvorín: una nueva unidad del Neógeno de Sierras Bayas, Sistema de Tandilla, Argentina. XVI Congreso Geológico Argentino, Actas I: 315-322, La Plata, Argentina.
Poiré D.G., C. Gaucher y G. Germs, 2007. La superficie “Barker” y su importancia regional, Neoproterozoico del Cratón del Río de La Plata. VI Jornadas Geológicas y Geofísicas Bonaerenses, Actas: 36. Mar del Plata, Argentina.
Praekelt, H.E., G.J.B. Germs y J.H. Kennedy, 2008. A distinct unconformity in the Cango Caves Group of the Neoproterozoic to early Paleozoic Saldania Belt in South Africa: its regional significance. South African Journal of Geology 111:357-368.
Rapalini, A.E., D.G. Poiré, R. Trindade y D. Ficharte, 2008. Geochronologic and geodynamic implications of palaeo- magnetic results from the Sierras Bayas Group, Rio de La Plata Craton (Argentina). VI South American Symposium on Isotope Geology. Short Paper: 1-3. San Carlos de Bariloche.
Rapela, C.W., R.J. Pankhurst, C. Casquet, C.M. Fanning, E.G. Baldo, J.M. González-Casado, C. Galindo y J. Dahlquist, 2007. The Río de la Plata Craton and the assembly of SW Gondwana. Earth Science Reviews 83:49-82.
Rezaee, M.R. y P.R. Tingate, 1997. Origin of quartz cement in the Tirrawarra sandstone, Southern Cooper Basin, South Australia. Journal of Sedimentary Research 67:168-177.
Salem, A.M., J.M. Ketzer, S. Morad, R.R. Rizk e I.S. Al-Aasm, 2005. Diagenensis and reservoir-quality evolution of incised- valley Sandstones: evidence from the Abu Madi Gas reservoirs (Upper Miocene), The Nile Delta Basin, Egypt. Journal of Sedimentary Research 75:572-584.
Scasso, R.A. y C.O. Limarino, 1997. Petrología y Diagénesis de Rocas Clasticas. Asociación Argentina de Sedimentología, Publicación especial 1, 260 pp.
Sheldon H.E., J. Wheeler, R.H. Worden y M.J. Cheadle, 2003. An analysis of the roles of stress, temperature, and pH in chemical compaction of sandstones. Journal of Sedimentary Research 73 (1):64-71.
Sibley, D.F. y H. Blatt, 1976. Intergranular pressure solution and cementation of the Tuscarora orthoquarcite. Journal of Sedimentary Petrology 46:881-896.
Surdam, R.C., L.J. Crossey, E.S. Hagen y H.P. Heasler, 1989. Organic-inorganic interactions and sandstone diagénesis. American Association of Petroleum Geologists Bulletin 73:1-23.
Teruggi, M.E. y J.O. Kilmurray, 1975. Tandilia. VI Congreso Geológico Argentino, Relatorio: 55-77. Buenos Aires.
Teruggi, M.E. y J.O. Kilmurray, 1980. Sierras Septentrionales de la provincia de Buenos Aires. En: Turner, J. (Ed.), Geología Regional Argentina. Academia Nacional de Ciencias 2:919- 965. Córdoba.
Vagle, B.G., A. Hurst y H. Dypvik, 1994. Origin of quartz cements in some sandstone from the Jurassic of the Inner Moray Firth (UK). Sedimentology 41:363-377.
Wanless, H.R., 1979. Limestone response to stress: pressure solution and dolomitization. Journal of Sedimentary Petrology 49:437-462.
Warr, L.N. y A.H.N. Rice, 1994. Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology 12:141-152.
Worden, R.H. y S.D. Burley, 2003. Sandstone diagenesis: from sand to stone. En: Burley, S.D. y R.H. Worden (Eds.), Clastic Diagenesis: Recent and Ancient. International Association of Sedimentologists 4:3-44. Blackwell, Oxford.
Worden, R.H. y S. Morad, 2000. Quartz cementation in sandstones. Internacional Association of Sedimentologists Special Publication 29, 342 pp.
Worden, R.H. y S. Morad, 2003. Clay Minerals Cements in Sandstones. International Association of Sedimentologists Special Publication 34, 509 pp.
Worden, R.H., M.J. Mayall e I.J. Evans, 1997. Predicting reservoir quality during exploration: lithic grains, porosity and permeability in Tertiary clastics of south China Sea basin. En: Fraser, A.J., S.J. Matthews y R.W. Murphey (Eds.), Petroleum Geology of South East Asia. Spec. Publ. Geol. Soc. London, 124:107-115. Geological Society Publishing House, Bath.
Worden, R.H., M. Mayall e I.J. Evans, 2000. The effect of ductile compaction and quartz cementation on porosity and permeability in the Tertiary clastics, South China Sea: prediction of reservoir quality. American Association of Petroleum Geologists Bulletin 84:345-359.
Zalba, P.E., R.R. Andreis y F. Lorenzo, 1982. Consideraciones estratigráficas y paleoambientales de la secuencia basal eopaleozoica en Cuchilla de las Aguilas, Barker, Argentina. V Congreso Latinoamericano de Geología, Actas II:389-409.
Zalba, P.E., M. Manassero, E. Laverret, D. Beaufort, A. Meunier, M. Morosi y L. Segovia, 2007. Middle Permian Telodiagenetic proceses in neoproterozoic Sequences, Tandilia System, Argentina. Journal of Sedimentary Research 77, 525-538.
Zimmermann, U., D.G. Poiré y L.E. Gómez Peral, 2011. Neoproterozoic to Lower Palaezoic successions of Tandilia System in Argentina: Implication for the palaeotectonic framework of southwest Gondwana. International Journal of Earth Sciences 100:489-510.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.