The Carboniferous succession of the quebrada Agua de la Peña (Valle Fértil hill): Sedimentary environments, fossiliferous content and stratigraphic importance.
Keywords:
Stratigraphy, Glaciation, Paleoflora, MTD, Valle-Fértil-alignmentAbstract
The Tuminico Formation is 1128 m thick in the Agua de la Peña creek and characterizes Late Carboniferous sedimentation linked to the Valle Fértil lineament (Fig. 1). For the characterization of the unit, 21 sedimentary facies (Table 1) were defined which correspond to diamictites (four facies), sandstones (eight facies), mudstones (five facies) and deposits with syn-sedimentary deformation (four facies). Diamictite facies corresponds to sandy massive diamictites (DSm facies), muddy massive diamictites (DFm), stratified diamictites (Ds) and thinly stratified diamictites (Dl). Sandstone facies include massive gravelly sandstones (SGm), coarse-grained, cross-bedded sandstones (Sge), medium-grained sandstones with hummocky/swaley cross-lamination (Smw), fine-grained, ripple cross-laminated sandstones containing dropstones (Sfrd), fine-grained, ripple cross-laminated sandstones (Sfr), fine-grained, horizontal-laminated sandstones (Sfh), muddy-sandstones showing heterolithic lamination (SFe) and rare cross-bedded conglomerates. Mudstone facies are composed of massive mudstones (Fm), shales (Fl), shales with dropstones (Fld), massive marls and massive muddy-marls (FMm) and rhythmites (R). Finally, rocks displaying intense syn-sedimentary deformation were divided in those dominated by folded sandstones (SXp), faulted sandstones (SXf), sandy lenses encapsulated in mudstones (SXl), and those exhibiting sedimentary boudinage (SXb).
The Tuminico Formation, deposited in transitional to shallow marine environments, was divided in four stratigraphic intervals (Fig. 5 and 6). Section 1 is composed of 490 m of diamictites, pebbly-sandstones, and mudstones; all these rocks exhibit intense deformation (Fig. 9) and are interpreted as mass transport deposits (MTDs) deposited in subaqueous environments. The MTDs intervals are interstratified with non-deformed, thinly laminated diamictites and shales, which frequently contain dropstones. The alternation of highly deformed diamictites with undeformed shales indicates the recurrence of high-energy mass transport events within an overall low-energy environment fine-grained sedimentation (Fig. 9).
Section 2 begins with a flooding surface that is overlain by a coarsening-and thickening-upward succession 185 m thick. The lower part of Section 2 displays a monotonous succession of shales and very fine-grained laminated sandstones, that pass upward to interbedded sandstones and mudstones. The uppermost part of the succession is comprised of cross-bedded coarse-grained sandstones and conglomerates. Section 2 is interpreted as being deposited in a prograding delta.
Section 3 is 285 m thick and is divided in two intervals. The lower half consists of highly deformed MTDs deposits, that include all types of deformed diamictites, pebbly sandstones and mudstones. The upper half is composed of shales, fine-and medium-grained, laminated sandstones and some fine-grained, massive and cross-stratified conglomerates, forming a coarsening-upward cycle that is several meters thick. This upper part of the section 3 records the deposits of a progradational delta system with the common occurrence of syn-sedimentary deformation in both delta-front and platform deposits. In this stratigraphic level, fault-dominated deformation prevails, in the form of imbricate faults or slide blocks. This deformed interval is in some cases incised by fluvial channels that form the top of Section 3.
Section 4 comprises 168 m of laminated and massive mudstones together with laminated very fine-and fine-grained sandstones. This stratigraphic interval, which corresponds to an important base-level rise, displays at least four transgressive-regressive cycles.
The age of the studied deposits was determined by the presence of plant and palynological assemblages. Plant fossils collected in Section 3 (Fig. 5) correspond to the Nothorhacopteris/Botrychiopsis/ Ginkgophyllum (NBG) Biozone of Carboniferous age. Palynomorphs recovered from Sections 1, 2 and 3 correspond to the A subzones of the Raistrickia densa/ Convolutispora muriornata (DM) Biozone. The new paleontological data suggest a late Serpukhovian-early Bashkirian age for the Tuminico Formation.
Regarding to the origin of the MTDs we suggest that tectonism could have triggered and/or amplified these events in late Carboniferous. This interpretation is supported by the recurrence of the MTDs intervals in the stratigraphic column, the high degree of deformation they display, and their considerable regional extent along Valle Fértil lineament of the MTDs.
Finally, the significance of the unconformity that separates the Tuminico Formation (Late Carboniferous) and the overlying Talampaya Formation (Late Permian) is considered. In most of the Paganzo Basin the Talampaya Formation overlies the Early Permian Patquía Formation along a slight erosional unconformity. In the case of the Agua de La Peña creek exposures, not only the entire Patquía Formation is absent, but the underlying Pennsylvannian Tupe Formation is missing as well. Such a high level of erosion has been previously unrecognized in this area and may indicate also activity on the Valle Fértil lineament during the early stages of Permo-Triassic rift basin development in the region.
References
Aceituno Cieri, P., M.E. Zeballos, R.J. Rocca, R.D. Martino, C. Carignano, A. Guereschi y M. Giambastiani, 2015. Condicionantes Geológicos en el cruce de la Sierra de Valle Fértil. San Juan. Revista de Geología Aplicada a la Ingeniería y al Ambiente 35:57-69.
Andreis R.R., L. Spalletti y M. Mazzoni, 1975. Estudio geológico del Subgrupo Sierra de Maz, La Rioja, República Argentina. Revista Asociación Geológica Argentina 30 (3):247-273.
Archangelsky, S., C.L Azcuy y R.H. Wagner, 1981. Three dwarf Iycophytes from the Carboniferous of Argentina. Scripta Geologica 64:1-35.
Arrondo, O.G. y B. Petriella, 1979. El género Lycopodiopsis (Lycopodiopsidaceae, Lepidodendrales), del Carbónico Medio-Pérmico Inferior de Argentina. Ameghiniana, 16(1-2):121-133.
Ashley, G.M., J.C. Boothroyd y H.W. Borns Jr, 1991. Sedimentology of late Pleistocene (Laurentide) deglacial-phase deposits, eastern Maine; an example of a temperate marine grounded ice-sheet margin. Geological Society of America Special Paper 261:107-125.
Azcuy, C.L. y J. Morelli, 1970. Geología de la comarca Paganzo-Amaná. El Grupo Paganzo. Formaciones que Io componen y sus relaciones. Revista Asociación Geológica Argentina 25:405-429.
Azcuy, C.L., J. Morelli, D. Valencio y J. Vilas, 1979. Estratigrafía de la comarca Amaná-Talampaya. Actas VII Congreso Geológico Argentino 1:243-246.
Bodenbender, G., 1911. Constitución geológica de la parte meridional de La Rioja y regiones limítrofes, República Argentina. Boletín Academia Nacional de Ciencias, Córdoba 19:5-221.
Bossi, G. y R.R. Andreis, 1983. Secuencias deltaicas y lacustres del Carbónico del centro-oeste argentino. Dexième Congrès International de Stratigraphie et de Géologie du Carbonifère: 285-308. Madrid.
Bracaccini, O., 1950. Investigaciones tectónicas en la Precordillera sanjuanina. Boletín de Informaciones Petroleras 301:1-36.
Caselli, A.T. y C.O. Limarino, 2002. Sedimentología y evolución paleoambiental de la Formación Patquía (Pérmico) en el extremo sur de la sierra de Maz y cerro Bola, provincia de La Rioja, Argentina. Revista de la Asociación Geológica Argentina 57(4):415-436.
Césari, S.N., y P.R. Gutiérrez, 2001. Palynostratigraphy of upper Paleozoic sequences in central-western Argentina. Palynology 24(1):113-146.
Césari, S.N., y C.O. Limarino, 2002. Palynology of glacial sediments from the Guandacol formation (Middle Carboniferous) in the Cerro Bola area, Paganzo Basin, Argentina. Alcheringa 26(1):159-176.
Césari, S.N., E. Brussa, y J.L. Benedetto, 1989. Malanzania nana Archangelsky, Azcuy y Wagner (Lycophyta) en la Formación Guandacol, al oeste del Cerro del Fuerte, provincia de San Juan. Ameghiniana 26(3-4):225-228.
Césari S.N., P.R. Gutiérrez, N. Sabattini, A. Archangelsky y C.L. Azcuy, 2007. Paleozoico Superior de Argentina un registro fosilífero integral en el Gondwana occidental. Publicación Especial de la Asociación Paleontológica Argentina 11:35-54.
Césari S.N., C.O. Limarino y E. Gulbranson, 2011. An Upper Paleozoic bio– chronostratigraphic scheme for the western margin of Gondwana. Earth–Science Reviews 106:149-160
Chaloner, W.G., K.U. Leistikow y A. Hill, 1979. Brasilodendron gen. nov. and B. pedroanum (Carruthers) comb. nov., a Permian lycopod from Brazil. Review of Palaeobotany and Palynology 28(2):117-136.
Cofaigh, C.O., D.J. Evans y J.F. Hiemstra, 2011. Formation of a stratified subglacial ‘till’ assemblage by ice-marginal thrusting and glacier overriding. Boreas 40:1-14.
Cuerda, A.J., C.A. Cingolani, R. Varela, y O.C. Schauer, 1979. Depósitos carbónicos en la vertiente occidental de la Sierra de Valle Fértil, provincia de San Juan: Revista de la Asociación Geológica Argentina 34(2):100-107.
Dávila, F.M., R.A. Astini y T.E. Jordan, 2005. Cargas subcorticales en el antepaís andino y la planicie pampeana: evidencias estratigráficas, topográficas y geofísicas. Revista de la Asociación Geológica Argentina 60(4):775-786.
de la Mota, H.F., 1946. Estudios geológicos en el Cerro Bola, al sur de Villa Unión, Depto. General Lavalle, provincia de La Rioja. Tesis Doctoral, Facultad Ciencias Naturales La Plata, Universidad Nacional de La Plata, 220 pp. (inédito).
Fallgatter, C., B. Kneller, P.S. Paim, y J.P. Milana, 2016. Transformation, partitioning and flow-deposit interactions during the run-out of megaflows. Sedimentology: 64(2):359-387.
Fernández Seveso, F., M. Pérez, I.E. Brisson y L. Álvarez, 1993. Análisis estratigráfico secuencial de la Cuenca de Paganzo– Depósitos marinos y continentales del Paleozoico Superior en el Oeste Argentino. Douzième Congrès International de la Stratigraphie et Gèologie du Carbonifère et Permien II: 223-260. Buenos Aires.
Fernandez-Seveso, F. y A.J. Tankard, 1995. Tectonics and stratigraphy of the late Paleozoic Paganzo Basin of western Argentina and its regional implications. En A.J. Tankard, R. Suarez Soruco, y Welsink (Eds.), Petroleum Basins in South America, AAPG Memoir 62: 285-301.
García, E., 1948. Observaciones geológicas en el flanco oriental del Bolsón Guandacol-Bermejo, provincia de San Juan-La Rioja. Informe YPF. (inédito).
Gulbranson, E.L., P.L. Ciccioli, I.P. Montañez, S.A. Marenssi, C.O. Limarino, M.D. Schmitz y V. Davydov, 2015. Paleoenvironments and age of the Talampaya Formation: The Permo-Triassic boundary in northwestern Argentina. Journal of South American Earth Sciences 63:310-322.
Gutiérrez, P.R. y V.D. Barreda, 2006. Palinología de la Formación El Trampeadero (Carbonífero Superior), La Rioja, Argentina: significado bioestratigráfico. Ameghiniana 43:71-84.
Gutiérrez, P.R. y C.O. Limarino, 2001. Palinología de la Formación Malanzán (Carbonífero Superior), La Rioja, Argentina: nuevos datos y consideraciones paleoambientales. Ameghiniana 38: 99-118.
Jackson, C.A., A.A. Zakaria, H.D. Johnson, F. Tongkul y P.D. Crevello, 2009. Sedimentology, stratigraphic occurrence and origin of linked debrites in the West Crocker Formation (Oligo-Miocene), Sabah, NW Borneo. Marine and Petroleum Geology 26 (10): 1957-1973.
Koch, Z.J., y J.L. Isbell, 2013. Processes and products of grounding-line fans from the Permian Pagoda Formation, Antarctica: insight into glacigenic conditions in polar Gondwana. Gondwana Research 24(1): 161-172.
Limarino, C.O., S.N. Césari, L.I. Net, S.A. Marenssi, R.P. Gutierrez y A. Tripaldi, 2002. The Upper Carboniferous postglacial transgression in the Paganzo and Río Blanco basins (northwestern Argentina): facies and stratigraphic significance. Journal of South American Earth Sciences 15(4):445-460.
Limarino, C.O., P.J. Alonso-Muruaga, P.L. Ciccioli, V.S. Loinaze y S.N. Césari, 2014. Stratigraphy and palynology of a late Paleozoic glacial paleovalley in the Andean Precordillera, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 412: 223-240.
Marenssi, S.A., A. Tripaldi, C.O. Limarino y A.T Caselli, 2005. Facies and architecture of a Carboniferous grounding-line system from the Guandacol Formation, Paganzo Basin, northwestern Argentina. Gondwana Research 8:187-202.
Martínez, M., 1993. Hallazgo de fauna marina en la Formación Guandacol (Carbonífero) en la localidad de Agua Hedionda, San Juan, Precordillera nororiental, Argentina. Congrés International de la Stratigraphie et Géologie du Carbonifere et Permien 12:291-296.
Net, L.I., M.S. Alonso y C.O. Limarino, 2002. Source rock and environmental control on clay mineral associations, Lower Section of Paganzo Group (Carboniferous), Northwest Argentina. Sedimentary Geology 152(3-4):183-199.
Ortiz, A., 1964. Observaciones geológicas en el Bolsón del río Bermejo y zona de Marayes. (inédito) YPF.
Pazos, P., 1993. Estratigrafía de la secuencia sedimentaria basal aflorante en el cerro Guandacol: su implicancia tectónica y paleoambiental, Sierra de Maz, Provincia de La Rioja, Argentina. XII Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos Actas l:148-156, Mendoza.
Pazos, P., 1996. Facies de talud en el Carbonífero de Agua de la Peña. Sierra de Valle Fértil San Juan. VI Reunión Argentina de Sedimentología Actas I:147-153.
Perez Loinaze, V., 2009. New palynological data from the Malanzán Formation (Carboniferous), La Rioja Province, Argentina. Ameghiniana 46:495–512.
Perez Loinaze, V.S. y S.N. Césari, 2012. Palynology of late Serpukhovian glacial and postglacial deposits from Paganzo Basin, northwestern Argentina. Micropaleontology 58:335-350.
Perez Loinaze, V.S., C.O. Limarino y S.N. Césari, 2011. Palynological study of the Carboniferous sequence at Río Francia Creek, Paganzo Basin, Argentina. Ameghiniana 48(4):589-604.
Perucca, L.P., K. Espejo, M.Y.E., Angillieri, M., Rothis, F., Tejada y M. Vargas, 2018. Neotectonic controls and stream piracy on the evolution of a river catchment: a case study in the Agua de la Peña River basin, Western Pampean Ranges, Argentina. Journal of Iberian Geology 44(2):207-224.
Playford, G., 2016. Mississippian palynoflora from the northern Perth Basin, Western Australia: systematics and stratigraphical and palaeogeographical significance. Journal of Systematic Palaeontology 14(9): 731-770.
Powell, R. D. (1990). Glacimarine processes at grounding-line fans and their growth to ice-contact deltas. Geological Society, London, Special Publications 53(1): 53-73.
Rolleri, E.A., 1969. Rasgos tectónicos generales del valle de Matagusanos y de la zona entre San Juan y Jocolí, Provincia de San Juan, República Argentina. Revista de la Asociación Geológica Argentina 24(4):408-412.
Salfity, J. A. y S.A. Gorustovich, 1983. Paleogeografía de la cuenca del Grupo Paganzo (Paleozoico superior). Revista de la Asociación Geológica Argentina 38(3-4):437-453.
Sawyer, D. E., P.B. Flemings, B. Dugan y J.T. Germaine, 2009. Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico. Journal of Geophysical Research: Solid Earth: 114(B10).
Sobiesiak, M.S., B. Kneller, G.I. Alsop y J.P. Milana, 2016. Internal deformation and kinematic indicators within a tripartite mass transport deposit, NW Argentina. Sedimentary Geology 344:364-381.
Sobiesiak, M. S., G.I. Alsop, B. Kneller y J.P. Milana, 2017. Sub-seismic scale folding and thrusting within an exposed mass transport deposit: A case study from NW Argentina. Journal of Structural Geology 96:176-191.
Stow, D.A.A., 1986. Deep clastic seas. En: H.G. Reading Ed. Sedimentary environments and facies. Blackwell, Oxford: 399-444.
Valdez Buso, V., J.P. Milana y B. Kneller, 2015. Megadeslizamientos gravitacionales de la Formación Guandacol en Cerro Bola y Sierra de Maz y su relación con la glaciación del PaleozoicoTardío, La Rioja, Argentina. Latin American journal of sedimentology and basin analysis 22(2):109-133.
Vergel, M.D.M., G.A. Cisterna y A.F. Sterren, 2015. New palynological records from the glaciomarine deposits of the El Paso Formation (Late Serpukhovian Bashkirian) in the Argentine Precordillera: Biostratigraphical implications. Ameghiniana 52(6):613-624.
Wopfner, H., 1996. Gondwana origin of the Baoshan and Tengchong terranes of west Yunnan. Geological Society of London, Special Publications 106(1): 539-547.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.