Soil-geomorphic relationships in a northeastern Patagonian tidal salt marsh, Península Valdés, Argentina
Keywords:
pyrite framboids, potential acid sulfate soils, carbon stable isotopesAbstract
Salt marshes ecosystems have been studied extensively based on the interaction between geo-morphological and geo-ecological processes, but a soil-geochemistry approach is currently unknown in Patagonia. This work was conducted in Riacho salt marsh, Patagonia, Argentina, and, its aim was to establish the soil-geomorphology relationship with a focus on geochemical analysis and vegetation changes (C3 vs. C4 photosynthesis pathway plants). The geochemical analysis was focused on sulfidic material occurrence and their potential acid generation, while the vegetation-geomorphology relationship was determined through the ?13C composition from soil organic matter. To achieve this, soil descriptions and laboratory analyses of soil samples were performed. Riacho salt marsh soils correspond to the Entisol Order and the Suborder Aquents. Soils corresponding to Sarcocornia perennis and Limonium brasiliense vegetation units were classified as Sodic Hydraquents, which were associated with tidal flats between Holocene beaches-ridges systems. On the other hand, the soil corresponding to the Spartina alterniflora vegetation unit was classified as Haplic Sulfaquents related to salt marsh lower levels, where waterlogging soil conditions favor the sulfidic materials formation. These soils are considered potential acid sulfate soils (PASS) due to the generation of sulfuric acid by oxidation processes. Consequently, extreme oxidation of these soils could release metals. The ?13C isotope composition of soil organic matter, in combination with the C/N ratio, indicates that the sandy C horizons from soils corresponding to high salt marsh levels would constitute pioneer salt marshes, which is consistent with the Holocene salt marshes development. The plant zonation model responds to ecological succession according to geomorphology evolution. However, future isotopic studies will be necessary to determine the contributions of different sources, both surface runoff of organic matter from continental ecosystems and organic matter from marine origin.
References
Adam, P. (1993). Saltmarsh ecology. Cambridge University Press, UK. 461 pp.
Ahern, C.R., Powell B. and Ahern, M.R. (1998). Guidelines for sampling and analysis of lowland acid sulfate soils (ASS) in Queensland. Department of Natural Resources, Resource Sciences Centre, Queensland Acid Sulfate Soils Investigation Team. Indooroopilly. 33 pp.
Aguirre, M.L., Hlebszevitsch Savalscky, J.C., and Dellatorre, F. (2008). Late Cenozoic Invertebrate Paleontology of Patagonia and Tierra del Fuego, with Emphasis on Molluscs. In: J. Rabassa, (Ed.), The Late Cenozoic of Patagonia and Tierra Del Fuego, Elsevier, 14: 285-326.
Alvarez, M.D.P., Carol, E., and Dapeña, C. (2015). The role of evapotranspiration in the groundwater hydrochemistry of an arid coastal wetland (Península Valdés, Argentina). Science of The Total Environment, 506: 299-307.
Álvarez-Rogel, J., Silla, R.O., and Ariza, F.A. (2001). Edaphic characterization and soil ionic composition influencing plant zonation in a semiarid Mediterranean salt marsh. Geoderma, 99: 81-98.
Amoroso, R.O., and Gagliardini D.A. (2010). Inferring complex hydrographic processes using remotesensed
images: turbulent fluxes in the Patagonian gulfs and implications for scallop metapopulation dynamics. Journal of Coastal Research, 26: 320-332.
Bertness, M.D., and Shumway, S.W. (1993). Competition and facilitation in marsh plants. The American
Naturalist, 142: 718-724.
Bocco, G., Cinti, A., and Urquijo, P. (2013). La construcción social del paisaje en comunidades de pescadores artesanales. El caso de la Península de Valdés, provincia del Chubut, Argentina. Biblio 3w: Revista Bibliográfica de Geografía y Ciencias Sociales, Vol. XVIII, Nº 1012.
Bogazzi, E., Baldoni, A., Rivas, A., Martos, P., Reta, R., Orensanz, J.M., Lasta, M., Dell P’Arciprete, P., and Werner, F. (2005). Spatial correspondence between areas of concentration of Patagonian scallop
(Zygochlamys patagonica) and frontal systems in the southwestern Atlantic. Fisheries Oceanography, 14(5): 359–376
Bortolus, A. (2006). The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. Journal of Biogeography, 33: 158-168.
Bortolus, A., Schwindt, E., Bouza, P.J., and Idaszkin, Y.L. (2009). A characterization of Patagonian salt marshes. Wetlands, 29: 772-780.
Bortolus, A., Carlton, J.T., and Schwindt, E. (2015). Reimagining South American coasts: unveiling the hidden invasion history of an iconic ecological engineer. Diversity and Distributions, 21: 1267-1283.
Bortolus, A., Adam, P., Adams, J.B., Ainouche, M.L., Ayres, D., Bertness, M.D., Bouma, T.J., Bruno, J.F., Caçador, I., Carlton, J.T., Castillo, J.M., Costa, C.S.B., Davy, A.J., Deegan, L., Duarte, B., Figueroa, E., Gerwein, J., Gray, A.J., Grosholz, E.D., Hacker, S.D., Hughes, A.R., Mateos-Naranjo, E., Mendelssohn, I.A., Morris, J.T., Muñoz-Rodríguez, A.F., Nieva, F.J.J., Levin, L.A., Li, B., Liu, W., Pennigs, S.C., Pickart, A., Redondo-Gómez, S., Richardson, D.M., Salmon, A., Schwindt, E., Silliman, B.R., Sotka, E.E., Stace, C., Sytsma, M., Temmerman, S., Turner, R.E., Valiela, I., Weinstein, M.P., and Weis, J.S. (2019). Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus. Ecology 100: e02863. https://doi.org/10.1002/ecy.2863
Boschi, E.E. (1979). Geographic distribution of Argentinian marine decapods crustaceans. Bulletin of the Biological Society of Washington, 3: 134-143.
Boutton, T.W. (1991). Stable carbon isotopes ratios of soil organic matter and their use as indicators of vegetation and climate change. In: T.W. Boutton and S.I. Yamasaki (Eds.), Mass Espectrometry of Soils. Marcel Dekker, New York, 2: 47–82.
Bouyoucos, G.W. (1927). The hydrometer as a new method for the mechanical analysis of soils. Soil Science, 23: 343-353.
Bouza, P.J., Ríos, I., Idaszkin, Y.L., and Bortolus, A. (2019). Patagonian salt marsh soils and oxidizable pedogenic pyrite: solid phases controlling aluminum and iron contents in acidic soil solutions. Environmental Earth Sciences, 78, 1-14.
Bouza, P.J., Sain C.L., Bortolus, A., Ríos, I., Idaszkin, Y.L., and Cortés, E.G. (2008). Geomorfología y características morfológicas y fisicoquímicas de suelos hidromórficos de marismas patagónicas. XXI Congreso Argentino de la Ciencia del Suelo. Actas: 450, Potrero de los Funes, San Luis.
Cabrera, A.L. (1976). Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería (2nd. Ed.). Tomo n, Fase l. ACME, Buenos Aires. 85 pp.
Carvajal, A.F., Feijoo, A., Quintero, H., and Rondón, M.A. (2013). Soil organic carbon storage and dynamics after C3-C4 and C4-C3 vegetation changes in sub- Andean landscapes of Colombia. Chilean Journal of Agricultural Research, 73: 391- 398.
Chmura, G., and Aharon, P. (1995). Stable carbon isotope signatures of sedimentary carbon in coastal wetlands as indicators of salinity regime. Journal of Coastal Research, 11: 124–135
Choi, Y., Wang, Y., Hsieh, Y.P., Robinson, L. (2001). Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: evidence from carbon isotopes. Global Biogeochemical Cycles, 15: 311–319.
Coronato, F.R. (1994). Clima del nordeste del Chubut. Séptima Reunión de Campo del Comité Argentino para el Estudio del Cuaternario (CADINQUA). Puerto Madryn, Argentina: CENPAT-CONICET, 13-20.
Coronato, F.R., Pessacg, N., and Alvarez, M.P. (2017). The Climate of Península Valdés within a regional frame. In: P.J. Bouza and A. Bilmes (Eds.), The Late Cenozoic of Península Valdés, Patagonia, Argentina: an interdisciplinary approach. Springer Earth System Sciences, 4: 85-104.
Committee on Characterization of Wetlands. (1995). Wetlands: characteristics and boundaries. National Research Council. 328 pp.
Coplen, T.B., Brand, W.A., Gehre, M., Gröning, M., Meijer, H.A., Toman, B., and Verkouteren, R.M. (2006). New guidelines for ?13C measurements. Analytical Chemistry, 78: 2439-2441.
Dacey, J.W., and Howes, B.L. (1984). Water uptake by roots controls water table movement and sediment oxidation in short Spartina marsh. Science, 224: 487-489.
Davies, B.E. (1974). Lost on ignition as an estimate of soil organic matter. Soil Science, 38: 150 -151.
DeFlaun, M.F., and Mayer, L.M. (1983). Relationships between bacteria and grain surfaces in intertidal sediments. Limnology and Oceanography 28(5): 873–881.
Devesa-Rey, R., and Barral, M.T. (2011). Allochthonous versus autochthonous naturally occurring organic matter in the Anllóns river bed sediments (Spain). Environmental Earth Science, 66: 773–782.
Ehleringer, J.R., and Cerling, T.E. (2002). C3 and C4 photosynthesis. Encyclopedia of Global Environmental Change, 2: 186-190.
Esteves, J.L., and Varela, D.E. (1991). Dynamics of nutrient cycling of the Valdes Bay-Punta Cero pond system (Peninsula Valdés, Patagonia) Argentine. Oceanologica Acta, 14: 51-58.
Farquhar, G.D., Ehleringer, J.R., and Hubick, K.T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40: 503–537.
Faulkner, S., Patrick, W., and Gambrell, R. (1989). Field techniques for measuring wetland soil parameters. Soil Science Society of America Journal, 53: 883–890.
Ferreira, T.O., Nóbrega, G.N., Albuquerque, A.G.B.M., Sartor, L.R., Gomes, I.S., Artur, A.G., and Otero, X.L. (2015). Pyrite as a proxy for the identification of former coastal lagoons in semiarid NE Brazil. Geo-Marine Letters, 35: 355–366
Gagliardini, D.A. (2011). Medium resolution microwave, thermal and optical satellite sensors: characterizing coastal environments through the observation of dynamical processes. In: D. Tang (ed.), Remote Sensing of the Changing Oceans, DOI 10.1007/978-3-642-16541-2_13.
Giblin, A.E. (1988). Pyrite formation in marshes during early diagenesis. Geomicrobiology Journal, 6: 77-97.
Haller, M.J. (2017). Geology of Peninsula Valdés. In: P.J. Bouza and A. Bilmes (Eds.), The Late Cenozoic of Península Valdés, Patagonia, Argentina: an interdisciplinary approach. Springer Earth System Sciences, 2: 23-46.
Haller, M.J. (1981). Descripción geológica de la Hoja 43 h, Puerto Madryn, provincia del Chubut. Servicio Geológico Nacional, Boletín, Buenos Aires, 184pp.
Idaszkin, Y.L., and Bortolus, A. (2011). Does low temperature prevent Spartina alterniflora from expanding toward the austral-most salt marshes? Plant Ecology, 212: 553-561.
Hattersley, P.W. (1983). The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57: 113–12.
Idaszkin, Y.L., Bortolus, A., and Bouza, P.J. (2011). Ecological processes shaping Central Patagonian salt marsh landscapes. Austral Ecology, 36: 59-67.
Idaszkin, Y.L., Bortolus, A., and Bouza, P.J. (2014). Flooding effect on the distribution of native austral cordgrass Spartina densiflora in Patagonian salt marshes. Journal of Coastal Research, 30: 59-62.
Idaszkin, Y.L., Lancelotti, J.L., Bouza, P.J., and Marcovecchio, J.E. (2015). Accumulation and distribution of trace metals within soils and the austral cordgrass Spartina densiflora in a Patagonian salt marsh. Marine Pollution Bulletin, 101: 457-465.
Idaszkin, Y.L., Alvarez, M.D.P., and Carol, E. (2017). Geochemical processes controlling the distribution and concentration of metals in soils from a Patagonian (Argentina) salt marsh affected by mining residues. Science of the Total Environment, 596: 230-235.
Lacaux, J.P., Tourre, Y.M., Vignolles, C., Ndione, J.A., and Lafaye, M. (2007). Classification of ponds from high-spatial resolution remote sensing: application to rift valley fever epidemics in Senegal. Remote Sensing of Environment, 106: 66–74.
Laffoley, D., and Grimsditch, GD. (2009). The management of natural coastal carbon sinks. IUCN, Gland, Switzerland. 53 pp.
Lamb, A.L., Wilson G.P., and Leng M.J. (2006). A review of coastal palaeoclimate and relative sea-level reconstructions using ?13C and C/N ratios in organic material. Earth Science Review, 75: 29-57.
Lamb, A.L., Vane, C.H., Wilson, G.P., Rees, J.G., and Moss-Hayes, V.L. 2007. Assessing ?13C and C:N ratios from organic material in archived cores as Holocene sea level and palaeoenvironmental indicators in the Humber Estuary, UK. Marine Geology, 244: 109-128.
Leeuw, J., Munck, W., Olff, H., and Bakker, J.P. (1993). Does zonation reflect the succession of salt marsh vegetation? A comparison of an estuarine and a coastal bar island marsh in The Netherlands. Acta botanica Neerlandica, 42(4): 435-445.
Li, S.H., Ge, Z.M., Xie, L.N., Chen, W., Yuan, L., Wang, D.Q., Li, X.Z., and Zhang, L.Q. (2018). Ecophysiological response of native and exotic salt marsh vegetation to waterlogging and salinity: Implications for the effects of sea-level rise. Scientific Reports, 5; 8(1): 2441. doi: 10.1038/s41598-017-18721-z.
Lin, C., and Melville, M.D. (1993). Control of soil acidification by fluvial sedimentation in an estuarine floodplain, eastern Australia. Sedimentary Geology, 85: 271-284.
Lindbo, D., Stolt, M.H. and Vepraska, M. (2010). Redoximorphic features. In: G. Stoops, V. Marcelino, F. Mees (Eds.), Micromorphological features of soils and regoliths. Their relevance for pedogenic studies and classifications. Elsevier, 8: 129-147.
Menni, R.C., and Gosztonyi, A.E. (1982). Benthic and semidemersal fish associations in the Argentine Sea. Studies on Neotropical Fauna and Environment, 17:1-29.
Mitsch, W.J., and Gosselink, J.G. (2000). The value of wetlands: importance of scale and landscape setting. Ecological Economics, 35: 25-33.
Mitsch, W.J., and Gosselink, J.G. (1993). Wetlands. Van Nostrand Reinhold, New York. 722 pp.
Nellemann, C., Corcoran, E., Duarte, C.M., Valdés, L., De Young, C., Fonseca, L., and Grimsditch, G. (2009). Blue Carbon: a rapid response assessment. United Nations Environment Programme, GRIDArendal. UNEP. Earth print.
Nie, M., Wang, M., and Li, B. (2009). Effects of salt marsh invasion by Spartina alterniflora on sulfate reducing bacteria in the Yangtze River estuary, China. Ecological Engineering, 35:1804–1808.
Osterrieth, M.L., Borrelli, N., Álvarez, F., Nóbrega, G., Machado, W., Ferreira, T.O., Soares Freire, A., and Santelli, R. (2016). Biochemistry of iron associated with pyritization in Holocene marshes, Mar Chiquita, Buenos Aires, Argentina. Environmental Earth Science, 75: 672. doi: 10.1007/s12665-016-5506-8.
Page, A.L., Miller, R.H., and Keeny, D.R. (1982). Methods of Soil Analysis. Part 2: Chemical and Microbiological properties. Second edition. American Society of Agronomy, Madison, Wisconsin.
Pennings, S.C., and Callaway, R.M. (1992). Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology, 73: 681-690.
Pye, K., and French, P.W. (1993). Erosion and accretion processes on British Salt Marshes. Vol. 1, Introduction: Saltmarsh Processes and Morphology. Cambridge Environmental Research Consultants, Cambridge.
Ríos, I. (2015). Relaciones edafo-geomorfológicas y geo-ecología de plantas vasculares en marismas patagónicas: propiedades morfológicas, físicas, químicas y biogeoquímicas. Ph.D. Thesis, Universidad Nacional de Córdoba. Córdoba, Argentina. 170 pp. (unpublished).
Ríos, I., Bouza, P.J., Bortolus, A., and Alvarez, M.P. (2018). Soil-geomorphology relationships and landscape evolution in a southwestern Atlantic tidal salt marsh in Patagonia, Argentina. Journal of South American Earth Sciences, 84: 385-398.
Schoeneberger, P.J., Wysocki, D.A., Benham E.C., and Soil Survey Staff. (2012). Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln.
Soil Survey Staff. (1999). Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys; 2nd edition. Agricultural Handbook 436. Natural Resources Conservation Service, USDA, Washington, 869 pp.
Soil Survey Staff. (2014). Keys to Soil taxonomy, 12th ed.: A basic system of soil classification for making and interpreting soil surveys. USDA-SCS Agric. Handbook. U.S. Gov. Printing Office, Washington, DC. 436 pp.
Tyson, R.V. (1995). Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman and Hall, Springer Science & Business Media. London, 615 pp.
U.S. Salinity Laboratory Staff. (1954). Diagnosis and Improvement of Saline and Alkali Soils, Handbook 60. U.S. Department of Agriculture, Washington, DC., 160 pp.
Van Breemen, N.V. (1982). Genesis, Morphology, and Classification of Acid Sulfate Soils in Coastal Plains. In: J.A. Kittrick, D.S. Fanning and L.R. Hossner (Eds.), Acid sulfate weathering. Soil Science Society of America, Special Publication No 10: 95-108.
Vepraskas, M., Wilding, L., and Drees, L. (1993). Aquic conditions for Soil Taxonomy: Concepts, soil morphology and micromorphology. Developments in Soil Science 22: 117-131. https://doi.org/10.1016/S0166-2481(08)70402-1
Weiler, N.E. (1998). Mid-Holocene Littoral Deposits at Southwest of the Golfo San Jose, Peninsula Valdes, Argentine Republic. Journal of Coastal Research, 26: 234-237.
Weiguo, L., Zisheng, A., Weijian, Z., Head, M.J., and Delin, C. (2003). Carbon isotope and C/N ratios of suspended matter in rivers: an indicator of seasonal change in C4/C3 vegetation. Applied Geochemistry, 18: 1241-1249.
White, I., Melville, M.D., Wilson, B.P., and Sammut, J. (1997). Reducing acidic discharges from coastal wetlands in eastern Australia. Wetlands Ecology and Management, 5: 55-72.
Zhang, Y.L., and Evangelou, V.P. (1998). Formation of ferric hydroxide-silica coatings on pyrite and its oxidation behavior. Soil Science, 163: 53–62.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ileana Ríos, Pablo José Bouza, Alejandro Bortolus, Yanina Idaszkin, Nicolás Scivetti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.