Recent disturbance events recorded in the sedimentary infill of Lago Guillelmo (Argentina): tephra falls and hydrogeomorphic processes

Authors

  • Pablo Amat Grupo de Estudios Ambientales (GEA-IPATEC, CONICET- UNCo)
  • Gustavo Villarosa Grupo de Estudios Ambientales (GEA-IPATEC, CONICET- UNCo); Centro Regional Universitario Bariloche, Universidad Nacional del Comahue
  • Débora Beigt Grupo de Estudios Ambientales (GEA-IPATEC, CONICET- UNCo)
  • Valeria Outes Grupo de Estudios Ambientales (GEA-IPATEC, CONICET- UNCo)
  • Julieta Cottet Grupo de Estudios Ambientales (GEA-IPATEC, CONICET- UNCo); Centro Regional Universitario Bariloche, Universidad Nacional del Comahue
  • Lucia Inés Dominguez Grupo de Estudios Ambientales (GEA-IPATEC, CONICET- UNCo)
  • Alex Cottescu Grupo de Estudios Ambientales (GEA-IPATEC, CONICET- UNCo)
  • Andres Barbosa Grupo de Estudios Ambientales (GEA-IPATEC, CONICET- UNCo)

Keywords:

disturbances, Lago Guillelmo, lacustrine sedimentation, tephras, hyperpycnites

Abstract

We studied two natural disturbances that affect the Parque Nacional Nahuel Huapi area: tephra fall  events from Andean volcanoes and hydrogeomorphic processes within catchments related to heavy rains. We carried out a surface
analysis, describing the main morphometric features of the selected watershed, informally called La Cantera watershed; analyzing satellite images and historical aerial photographs; looking for evidence of processes related to these disturbance events in the watershed and morphological changes in the alluvial fan generated over the delta. The subaqueous environment was analyzed through bathymetries,
sediment cores, and Ground Penetrating Radar (GPR) profiles, taken in the distal deltaic environment of the watershed. In the sedimentary record of the lake, we
identified 12 tephra layers deposited in the last 200 years, attributed to Cordón Caulle, Calbuco, and Osorno volcanoes. These were chronologically correlated with previously documented eruptions of these volcanic centers, using vitroclast morphology, mineral association, and stratigraphic position. We also identified 10 epiclastic layers corresponding to sediments with terrigenous components and terrestrial organic matter, interpreted as hyperpycnites. We assign two hyperpycnite deposits to a debris flow that occurred in the area in February 2015 that caused several damages and roadblocks, based on the stratigraphic position of these deposits in the cores, and the identification of sediments associated with this event on the lake surface in satellite images. After the correlation between the GPR radargram units with the lacustrine cores, we associated one major radar unit with a (1) tephra layer and (2) lobe-shaped morphologies, interpreted as a hyperpycnite deposits, located in front of the outflow of an abandoned river course. The results allow inferring a significant anthropic impact in the lacustrine record, as a result of the construction of Route 40 and gravel mining activities after 1969 that affected the distal drainage network of the La  Cantera watershed, generating topographic lows that make it difficult for subaerial flows to reach the lake. This work shows the importance of the integration between subaerial processes that occur throughout a basin with the underwater processes that take place in the deltaic environment, to understand the  extension and characteristics of these natural disturbances.

References

Alloway, B.V., Pearce, N.J.G., Villarosa, G., Outes, V., and Moreno, P.I. (2015). Multiple melt bodies fed the AD 2011 eruption of Puyehue-Cordón Caulle, Chile. Scientific reports, 5(1): 17589.

Alloway, B.V., Pearce, N.J., Moreno, P.I., Villarosa, G., Jara, I.A., Henríquez, C.A., and Outes, V. (2022). Refinement of the tephrostratigraphy straddling the northern Patagonian Andes (40–41° S): new tephra markers, reconciling different archives and ascertaining the timing of piedmont deglaciation. Journal of Quaternary Science, 37(3): 441-477.

Ariztegui, D., Bianchi, M.M., Masaferro, J., Lafargue, E., and Niessen, F. (1997). Interhemispheric synchrony of Late?glacial climatic instability as recorded in proglacial Lake Mascardi, Argentina. Journal of Quaternary Science, 12(4), 333-338.

Ariztegui, D., Anselmetti, F.S., Kelts, K., Seltzer, G.O., and D'Agostino, K. (2001). Identifying paleoenvironmental change across South and North America using high-resolution seismic stratigraphy in lakes. In: Markgraf, V. (Ed.), Interhemispheric climate linkages, pp. 227-240. Academic Press.

Ariztegui, D., Anselmetti, F.S., Gilli, A., and Waldmann, N. (2008). Late Pleistocene environmental change in Eastern Patagonia and Tierra del Fuego–A limnogeological approach. Developments in Quaternary Sciences, 11: 241-253.

Bariloche2000 (2015). https://www.bariloche2000.com/noticias/leer/cortan-el-transito-en-la-ruta-40-por-un-alud-en-el-lago-guillelmo/89252

Bates, C. (1953). Rational theory of delta formation. AAPG Bulletin, 37: 2119-2162.

Beigt, D., Villarosa, G., Outes, A.V., Dzendoletas, M.A., and Gomez, E.A. (2013). Tsunamis en el lago Nahuel Huapi: historias de deslizamientos y erupciones. Desde La Patagonia Difundiendo Saberes, 10: 10-15.

Beigt, D., Villarosa, G., and Gomez, E.A. (2014). Análisis de deslizamientos subacuáticos en deltas lacustres (Nahuel Huapi, Argentina) a partir de batimetrías de alta resolución. Cuadernos de Investigación Geográfica: 247-259.

Beigt, D., Villarosa, G., Gómez, E.A., and Manzoni, C. (2016). Subaqueous landslides at the distal basin of Lago Nahuel Huapi (Argentina): Towards a tsunami hazard evaluation in Northern Patagonian lakes. Geomorphology, 268: 197-206.

Beigt, D., Villarosa, G., De Luca, L., Barbosa Hetherington, A., Gómez, E.A., Raniolo, A. (2023). Inestabilidad de costas asociada a fenómenos gravitacionales en grandes lagos patagónicos: un análisis de eventos recientes. Revista de la Asociación Geológica Argentina. (In press).

Bengtsson, L., and Enell, M., (1986). Chemical analysis. In: Berglund, B.E. (Ed.), Handbook of Palaeoecology and Palaeohydrology, John Wiley and Sons, p. 423-451.

Bertrand, S., Castiaux, J., and Juvigné, E. (2008). Tephrostratigraphy of the late glacial and Holocene sediments of Puyehue Lake (southern volcanic zone, Chile, 40 S). Quaternary Research, 70(3): 343-357.

Bertrand, S., Daga, R., Bedert, R., and Fontijn, K. (2014). Deposition of the 2011–2012 Cordón Caulle tephra (Chile, 40 S) in lake sediments: Implications for tephrochronology and volcanology. Journal of Geophysical Research: Earth Surface, 119(12): 2555-2573.

Cabrera, A.L. (1976). Regiones fitogeográficas argentinas. Enciclopedia argentina de agricultura y jardinería, 2: 1-85.

Castruccio, A., Clavero, J., Segura, A., Samaniego, P., Roche, O., Le Pennec, J.L., and Droguett, B. (2016). Eruptive parameters and dynamics of the April 2015 sub-Plinian eruptions of Calbuco volcano (southern Chile). Bulletin of Volcanology, 78: 1-19.

Chanu, S.R., Chingkhei, R.K., Sanoujam, M., and Kumar, A. (2014). Lake sediment thickness estimation using Ground Penetrating Radar. International Journal of Research in Engineering and Technology, 3: 42.

Chapron, E., Ariztegui, D., Mulsow, S., Villarosa, G., Pino, M., Outes, V., and Crivelli, E. (2006). Impact of the 1960 major subduction earthquake in Northern Patagonia (Chile, Argentina). Quaternary International, 158(1): 58-71.

Chapron, E., Juvigné, E., Mulsow, S., Ariztegui, D., Magand, O., Bertrand, S., Pino, M. and Chapron, O. (2007). Recent clastic sedimentation processes in Lake Puyehue (Chilean Lake District, 40.5 S). Sedimentary Geology, 201(3-4): 365-385.

Collini, E., Osores, M.S., Folch, A., Viramonte, J.G., Villarosa, G., and Salmuni, G. (2013). Volcanic ash forecast during the June 2011 Cordón Caulle eruption. Natural hazards, 66: 389-412.

Cotelo, M.A. (2019). Análisis de riesgo por eventos de remoción en masa, propuesta de Plan de Mitigación. Ruta Nacional 40 sur, Lago Guillelmo, Departamento Bariloche (Doctoral dissertation, Unpublished).

Daga, R., Guevara, S.R., Sánchez, M.L., and Arribére, M. (2008). Source identification of volcanic ashes by geochemical analysis of well preserved lacustrine tephras in Nahuel Huapi National Park. Applied Radiation and Isotopes, 66(10): 1325-1336.

Daga, R., Guevara, S.R., Poire, D.G., and Arribére, M. (2014). Characterization of tephras dispersed by the recent eruptions of volcanoes Calbuco (1961), Chaitén (2008) and Cordón Caulle Complex (1960 and 2011), in Northern Patagonia. Journal of South American Earth Sciences, 49: 1-14.

De Fontaine, C.S., Kaufman, D.S., Anderson, R.S., Werner, A., Waythomas, C.F., and Brown, T.A. (2007). Late Quaternary distal tephra-fall deposits in lacustrine sediments, Kenai Peninsula, Alaska. Quaternary Research, 68(1): 64-78.

Del Valle, R.A., Lirio, J.M., Nunez, H.J., Tatur, A., and Rinaldi, C.A. (2000). Sedimentary cores from Mascardi Lake, Argentina: a key site to study Elpalafquen paleolake. In: Smolka, P. and Volkheimer, W. (Eds.), Southern Hemisphere Paleo-and Neoclimates: Key Sites, Methods, Data and Models: 275-286.

Deng, Y.N., Rioual, P., Jones, V.J., Sun, C., and Mingram, J. (2023). A palaeoecological study investigating the impacts of multiple tephra depositions on a lacustrine ecosystem in Northeast China, using diatoms as environmental indicators. Journal of Paleolimnology, 70(1): 1-22.

El Cordillerano (2013). https://www.elcordillerano.com.ar/noticias/2013/09/08/8580-ruta-a-el-bolson-cortada-por-alud-de-barro

Fisher, R.V., and Schmincke, H.U. (2012). Pyroclastic rocks. Springer Science and Business Media, 472 p.

Flint, R.F., and Fidalgo, F. (1964). Glacial geology of the East flank of the Argentine Andes between -Latitude 39 10? S. and Latitude 41 20? S. Geological Society of America Bulletin, 75(4): 335-352

Fontijn, K., Lachowycz, S.M., Rawson, H., Pyle, D.M., Mather, T.A., Naranjo, J.A., and Moreno-Roa, H. (2014). Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quaternary Science Reviews, 89: 70-84.

Fontijn, K., Rawson, H., Van Daele, M., Moernaut, J., Abarzúa, A.M., Heirman, K., Bertrand, S., Pyle, D.M., Mather, T.A., De Batist, M., Naranjo, J.A., and Moreno, H. (2016). Synchronisation of sedimentary records using tephra: A postglacial tephrochronological model for the Chilean Lake District. Quaternary Science Reviews, 137: 234-254.

Giacosa, R.E., Heredia Carballo, N., Zubía, M.A., González, R., Faroux, A.J., Césari, O., and Franchi, M. 2001. Hoja Geológica 4172-IV San Carlos de Bariloche. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Boletín 279, 77 p. Buenos Aires.

Giardino, C., Oggioni, A., Bresciani, M., and Yan, H. (2010). Remote sensing of suspended particulate matter in Himalayan lakes. Mountain Research and Development, 30(2): 157-168.

Global Volcanism Program, (2023). [DatabaGlobal Volcanism Program, 2023. [Database] Volcanoes of the World (v. 5.0.2; 23 Jan 2023). Distributed by Smithsonian Institution, compiled by Venzke, Ese.

González-Ferrán, O. (1995). Volcanes de Chile. Instituto Geográfico Militar, 640 p, Santiago de Chile.

Gordon, A. and Ort, M.H. (1993). Edad y correlación del plutonismo subcordillerano en las provincias de Río Negro y Chubut (41°-42°30'L.S). Congreso Geológico Argentino, No. 12, Actas 4: 120-127. Mendoza.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202: 18-27.

Guilizzoni, P., Massaferro, J., Lami, A., Piovano, E.L., Guevara, S.R., Formica, S.M., Daga, R., Rizzo, A., and Gerli, S. (2009). Palaeolimnology of Lake Hess (Patagonia, Argentina): Multi-proxy analyses of short sediment cores. Hydrobiologia, 631: 289–302.

Heiken, G. (1974). Atlas of volcanic ash. Smithsonian Contributions to the Earth Sciences, 101 p.

Heiri, O., Lotter, A. F., and Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of paleolimnology, 25: 101-110.

Iglesias, V., Whitlock, C., Bianchi, M.M., Villarosa, G., and Outes, V. (2012). Climate and local controls of long-term vegetation dynamics in northern Patagonia (Lat 41 S). Quaternary Research, 78(3): 502-512.

Iglesias, V., and Whitlock, C. (2014). Fire responses to postglacial climate change and human impact in northern Patagonia (41–43 S). Proceedings of the National Academy of Sciences, 111(51): E5545-E5554.

Katsui, Y., and Katz, H.R. (1967). Lateral fissure eruptions in the southern Andes of Chile. Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and mineralogy, 13(4): 433-448.

La Nación (2014). https://www.lanacion.com.ar/sociedad/parte-de-la-ruta-40-cortada-tras-un-alud-de-barro-y-piedras-en-bariloche-nid1715219/

Lara, L.E., Moreno, H., Naranjo, J.A., Matthews, S., and De Arce, C.P. (2006). Magmatic evolution of the Puyehue–Cordón Caulle Volcanic Complex (40 S), Southern Andean Volcanic Zone: from shield to unusual rhyolitic fissure volcanism. Journal of Volcanology and Geothermal Research, 157(4): 343-366.

Lara, L.E., Naranjo, J.A., and Moreno, H. (2004). Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5 S) after the 1960 (Mw: 9.5) Chilean earthquake: a structural interpretation. Journal of Volcanology and Geothermal Research, 138(1-2): 127-138.

Lara, L.E., Orozco, G., and Piña-Gauthier, M. (2012). The 1835 AD fissure eruption at Osorno volcano, Southern Andes: Tectonic control by the intraarc stress field instead of remote megathrust-related dynamic strain. Tectonophysics, 530: 102-110.

Lopez-Escobar, L., Parada, M.A., Moreno, H., Frey, F.A., and Hickey-Vargas, R.L. (1992). A contribution to the petrogenesis of Osomo and Calbuco volcanoes, Southern Andes (41° 00'-41° 30'S): comparative study. Andean Geology, 19(2): 211-226.

Mancini, P.G., and Cordo, O.V. (2023). Propuestas de control de acarreos en Ruta Nacional 40. Lago Guillelmo-Bariloche: Debris control proposals on National Route 40. Lake Guillelmo-Bariloche. Infraestructura Vial, 25(44): 1-10.

Maruddani, B., and Sandi, E. (2019). The development of ground penetrating radar (GPR) data processing. International Journal of Machine Learning and Computing, 9: 768-773.

Matta, E., Giardino, C., Boggero, A., and Bresciani, M. (2017). Use of satellite and in situ reflectance data for lake water color characterization in the Everest Himalayan region. Mountain research and development, 37(1): 16-23.

Mermoz, M., Kitzberger, T., and Veblen, T.T. (2005). Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology, 86(10): 2705-2715.

Mizerit, I. (2017). Evaluación de la susceptibilidad a procesos de remoción en masa en los alrededores de los lagos Mascardi y Guillelmo, Parque Nacional Nahuel Huapi, Río Negro. Ph.D. dissertation (Unpublished).

Morgado Bravo, E.E. (2019). Pre-eruptive conditions, crustal processes, and magmatic timescales recorded in products of Calbuco and Osorno volcanoes, Southern Andes. Ph.D. dissertation, University of Leeds (Unpublished).

Mulder, T., Syvitski, J.P., Migeon, S., Faugères, J. C., and Savoye, B. (2003). Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20(6-8): 861-882.

Naranjo, J.A., Singer, B.S., Jicha, B.R., Moreno, H., and Lara, L.E. (2017). Holocene tephra succession of Puyehue-Cordón Caulle and Antillanca/Casablanca volcanic complexes, southern Andes (40–41 S). Journal of Volcanology and Geothermal Research, 332: 109-128.

New, M., Lister, D., Hulme, M., and Makin, I. (2002). A high-resolution data set of surface climate over global land areas. Climate research, 21(1): 1-25.

Paruelo, J.M., Beltrán, A., Jobbágy, E., Sala, O.E., and Golluscio, R.A. (1998). The climate of Patagonia: general patterns and controls on biotic processes. Ecología austral, 8(02): 85-101

Pereyra F., Elissondo M., López C., Dzendoletas A., Roverano D. y Wilson C. (2009). Carta de Peligrosidad Geológica 4172-IV San Carlos de Bariloche. Servicio Geológico Minero Argentino. Programa Nacional de Cartas Geológicas de la República Argentina. Dirección de Geología Ambiental y Aplicada. Boletín N° 390.

Perez, L., Castruccio, A., and Diaz, D. (2019). Eruptive dynamics of the 1835 Osorno volcano flank eruption, Chile (41° S). AGU Fall Meeting Abstracts: pp. V23F-0268.

Petit-Breuilh, S. (1995). Evaluación del impacto de erupciones históricas en algunos volcanes de alto riesgo de los Andes del Sur: Nevados de Chillán, Cordón Caulle, Osorno, Calbuco y Hudson, Chile. Informe final. Temuco, Chile, 98 p.

Petit-Breuilh, M.E. (1999). Cronología Eruptiva Histórica de los volcanes Osorno y Calbuco. Servicio Nacional de Geología y Minería, Boletín No. 53, 45p. Santiago.

Quirós, R. (1988). Mapas batimétricos y parámetros morfométricos de lagos patagónicos de Neuquén, de Río Negro y del Chubut (Argentina). Instituto Nacional de Investigación y Desarrollo Pesquero. Informe Técnico Nº 5.

Rabassa, J., and Coronato, A. (2009). Glaciations in Patagonia and Tierra del Fuego during the Ensenadan stage/age (early Pleistocene–earliest middle Pleistocene). Quaternary International, 210(1-2), 18-36.

Reichert, F. (1917). Las regiones inexploradas o poco conocidas de la cordillera norpatagónica. Sociedad Científica Alemana: Santiago, Chile, 119 p.

Reynolds, J.M. (2011). An introduction to applied and environmental geophysics. John Wiley and Sons, p. 539 - 551.

Romero, J.E., Alloway, B.V., Gutiérrez, R., Bertín, D., Castruccio, A., Villarosa, G., Schipper, C.I., Guevara, A., Bustillos, J., Pisello, A., Daga, R., Monitel, M., Gleeman, E., González, M., Morgavi, D., Ribeiro Guevara, S. and Mella, M. (2021). Centennial-scale eruptive diversity at Volcán Calbuco (41.3° S; Northwest Patagonia) deduced from historic tephra cover-bed and dendrochronologic archives. Journal of Volcanology and Geothermal Research, 417: 107281

Romero, J.E., Morgavi, D., Arzilli, F., Daga, R., Caselli, A., Reckziegel, F., Perugini, D. (2016). Eruption dynamics of the 22–23 April 2015 Calbuco Volcano (Southern Chile): Analyses of tephra fall deposits. Journal of Volcanology and Geothermal Research: 317, 15-29.

Selles, D., and Moreno, H. (2011). Geología del volcán Calbuco, Región de Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 130: 38 p., 1 mapa escala 1: 50.000. Santiago.

Singer, B.S., Jicha, B.R., Harper, M.A., Naranjo, J.A., Lara, L.E., and Moreno-Roa, H. (2008). Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex, Chile. Geological Society of America Bulletin, 120(5-6): 599-618.

Soulié-Märsche, I., and García, A. (2015). Gyrogonites and oospores, complementary viewpoints to improve the study of the charophytes (Charales). Aquatic Botany, 120: 7-17.

Steen-McIntyre, V. (1977). A man ual for tephrochronology: Collection, preparation, petrographic description and approximate dating of tephra (volcanic ash). Steen-McIntyre, 167 p.

Pickett, S.T.A. and White, P.S. (1985) The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, Orlando. 472 p.

Published

2023-11-13 — Updated on 2023-12-30

How to Cite

Amat, P., Villarosa, G. ., Beigt, D., Outes, V., Cottet, J., Dominguez, L. I., Cottescu, A., & Barbosa, A. (2023). Recent disturbance events recorded in the sedimentary infill of Lago Guillelmo (Argentina): tephra falls and hydrogeomorphic processes. Latin American Journal of Sedimentology and Basin Analysis, 30(2), 163-184. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/233

Issue

Section

Special Issue