Integrated mineralogical analysis (QEMSCAN and DRX) of transgressive black shales: Tithonian basal deposits of the Vaca Muerta Formation (Neuquén Basin, Argentina)

Authors

  • Luis Spalletti Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, CONICET. Calle 1 No.644, 1900 La Plata, Argentina.
  • Duncan Pirrie Helford Geoscience LLP. Menallack Farm, Treverva, Penryn, Cornwall, TR10 9BP, UK.
  • Gonzalo D. Veiga Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, CONICET. Calle 1 No.644, 1900 La Plata, Argentina.
  • Ernesto Schwarz Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, CONICET. Calle 1 No.644, 1900 La Plata, Argentina.

Keywords:

Dark grey mudstones, DRX, QEMSCAN, Vaca Muerta Formation, unconventional reservoirs.

Abstract

Recent studies have demonstrated that the mineralogical composition of shales plays an important role in unconventional hydrocarbon production (Chen et al., 2014). Mineralogy may influence the nature of the pore structure, the fracktability of these fine-grained deposits and pyrolysis reactions, all of them essential in the stimulation and extraction processes of low-permeability reservoirs (Karabakan and Yürüm, 2000; Jarvie et al., 2007; Ross and Bustin, 2009). This contribution describes and analyzes the mineralogical composition of the Tithonian basal deposits of the Vaca Muerta Formation, which resulted from two independent methodologies, QEMSCAN and DRX. The datasets comprises 19 samples distributed from the austral to the central sectors of the Neuquén Basin (Fig. 1a). The sampled sediments were deposited during the marine transgression of the early Tithonian (Fig. 1b) and accumulated under bottom conditions that favored the preservation of organic matter. The studied interval is the most important source rock of the basin. Previous geochemical studies (Spalletti et al., 2014) showed that the basal interval comprises fine-grained sediments with a very variable composition (Fig. 3), ranging from pure siliciclastic to mixed (carbonate/ siliciclastic) mudstones. Despite this compositional variability, macroscopically in the field only three main facies were recognized: greenish mudstones, yellowish mudstones and dark grey mudstones. The first two facies are commonly distributed in the marginal areas of the basin, whereas the latter is more characteristic of basinal regions (Fig. 2, Table 1). The samples were analyzed with conventional optical methods and by X-ray diffractometry (whole rock and <2 ?m fraction), as well as by a combination of SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive Spectrometry). This technique is known as QEMSCAN, which stands for Quantitative Evaluation of Minerals by SCANning electron microscopy. The integration of analytical methods revealed significant compositional variations between different lithologic types and lithofacies (Figs. 4-6, Table 2). Hybrid mudstones (especially marls and calcareous marls) show high calcite contents, whereas more siliciclastic deposits are dominated by quartz and feldspar, with clay minerals as illite and interstratified I/S dominant in the mudstones, together with minor contents of kaolinite and analcime. The mineralogical composition of identified lithofacies also shows changes, even among samples of the same lithofacies (Fig. 6). Greenish mudstones are characterized by illite, smectite and quartz, with subordinated contribution of kaolinite and interstratified I/S. For yellowish mudstones there are no clear trends, with a wide spectrum of quartz/calcite relationships (Fig. 6) and variable content of Illite, interstratified I/S and analcime. In turn, dark grey mudstones, which are typical of the depocentral sectors, have minerals which are indicative of low oxygenation (pyrite, siderite), but a broad compositional range in terms of calcite, quartz and clay minerals. This study has allowed establishing a significant equivalence between the information presented here (QEMSCAN and DRX), and the one gathered by means of inorganic geochemical analysis (Spalletti et al., 2014). The mineralogical composition of the sediments located toward marginal settings during the Tithonian transgression reflects a strong influence of terrigenous supply from hinterland (Fig. 7). In contrast, the sediments that accumulated in more basinal locations of the marine setting were heavily influenced by biogenic productivity (intrabasinal concentration of carbonate- and silicarich biota), anoxic conditions, and more likely, lower sedimentation rates (Fig. 7). These basinal, basal deposits (dark grey facies) of the Vaca Muerta Formation correspond to the highest total organic concentration across the basin (kitchen) and this interval was responsible for the expulsion of large quantities of hydrocarbons during different geological times (Villar et al., 1993, 2006). The mudstone mineralogy exerts a strong control in several processes such as organic matter conversion (pyrolysis-related reactions), expulsion of hydrocarbons, petrophysical properties and geomechanical attributes, that in turn influences the reservoir properties and extraction processes (cf. Patterson and Henstridge, 1990; Patterson et al., 1990). Therefore, the wide range of compositional variability that is inherent in the dark grey mudstones of the Vaca Muerta Formation (so-called “black shales”) is key in order to maximize its exploration and exploitation as an unconventional resource.

References

Algeo, T.J. y J.B. Maynard, 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansastype cyclothems. Chemical Geology 206:289-318.

Armstrong-Altrin, J.S., Y.I. Lee, S.P. Verma y S. Ramasamy, 2004. Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research 74:285-297.

Asikainen, C.A., P. Francus y J. Brigham-Grette, 2007. Sedimentology, clay mineralogy and grain-size as indicators of 65 ka of climate change from El’gygytgyn Crater Lake, Northeastern Siberia. Journal of Paleolimnology 37:105-122.

Berkovich, A.J., J.H. Levy, S.J. Schmidt y B.R. Young, 2000. Heat capacities and enthalpies for some Australian oil shales from non-isothermal modulated DSC. Thermochimica Acta 357- 358:41-45.

Bhargava, S., A. Awaja y N.D. Subasinghe, 2005. Characterisation of some Australian oil shale using thermal, X-ray and IR techniques. Fuel 84:707-715. Biscaye, P.E., 1965. Mineralogy and sedimentation of Recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of American Bulletin 76:803-831.

Chen, Y., A. Furmann, M. Mastalerz y A. Schimmelmann, 2014. Quantitative analysis of shales by KBr-FTIR and micro-FTIR. Fuel 116:538-549.

Desborough, G.A., J.R. Hatch y J.S. Leventhal, 1992. Some mineralogical and geochemical aspects of middle and upper Pennsylvanian marine black shales of the Midcontinent Region. En W.C. Day y D.E. Lane (Eds.), Strategic and Critical Minerals in the Midcontinent Region, United States. U.S. Geological Survey Bulletin 1989-A-C, Denver:B1-B21.

Digregorio, R.E., C.A. Gulisano, A.R. Gutiérrez Pleimling y S.A. Minitti, 1984. Esquema de la evolución geodinámica de la Cuenca Neuquina y sus implicancias paleogeográficas. 9°Congreso Geológico Argentino Actas II:147-162. San Carlos de Bariloche.

Faas, R.W. y S.I. Wartel, 1977. Sedimentology and channel slope morphology of an anoxic basin in Southern Netherlands. En M. Wiley (Ed.), Estuarine Processes: Volume II. Circulation, Sediments, and Transfer of Material in the Estuary. Academic Press, New York:136-149.

Fagel, N., C. Robert y C. Hillaire-Marcel, 1996. Clay mineral signature of the NW Atlantic boundary undercurrent. Marine Geology 130:19-28.

Fisher, Q.J. y P.B. Wignall, 2001. Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata; England. Chemical Geology 175:605-621.

Gasparini, Z., L. Spalletti, M. Fernández y M. De la Fuente, 1999. Tithonian marine reptiles from the Neuquén Basin: diversity and paleoenvironments. Revue de Paleobiologie 18:335-345.

Gasparini, Z., L. Spalletti, S. Matheos, S. y M. Fernández, 2002. Reptiles marinos y paleoambiente del Jurásico Superior - Cretácico Inferior en la Yesera del Tromen (Neuquén, Argentina): un caso de estudio. 15° Congreso Geológico Argentino Actas I:473-478. Calafate.

Greensmith, J.T., 1989. Petrology of the Sedimentary Rocks. Springer, Berlin, 288 pp. Grauch, R.I., D.D. Eberl, A.R. Butcher y P.W.S.K. Botha, 2008. Quantitative mineralogy of fine-grained sedimentary rocks: a preliminary look at QEMSCAN®. Microscopy and Microanalysis 14:532-533.

Grossman, R.H., R.S. Liebling y H.S. Scherp, 1979. Chlorite and its relationship to pyritization in anoxic marine environments. Journal of Sedimentary Petrology 49:611-613.

Howell, J., E. Schwarz, L. Spalletti y G. Veiga, 2005. The Neuquén Basin: An overview. En G. Veiga, L. Spalletti, J. Howell y E. Schwarz (Eds.), The Neuquén Basin: a Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society of London, Special Publication 252:1-14.

Jarvie, D.M., R.J. Hill, T.E. Ruble y R.M. Pollastro, 2007. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. American Association of Petroleum Geologists Bulletin 91:475-499.

Karabakan, A. y Y.Yürüm, 2000. Effect of the mineral matrix in the reactions of shales. Part 2. Oxidation reactions of Turkish Göynük and US Western Reference oil shales. Fuel 79:785- 792.

Kietzmann, D.A. y R.M. Palma, 2009. Tafofacies y biofacies de la Formación Vaca Muerta en el sector surmendocino de la Cuenca Neuquina: implicancias paleoecológicas, sedimentológicas y estratigráficas. Ameghiniana 46:321-343.

Kietzmann, D.A. y R.M. Palma, 2011. Las tempestitas peloidales de la Formación Vaca Muerta (Tithoniano-Valanginiano) en el sector surmendocino de la Cuenca Neuquina, Argentina. Latin American Journal of Sedimentology and Basin Analysis 18:121-149.

Kietzmann, D.A. y V.V. Vennari, 2013. Sedimentología y estratigrafía de la Formación Vaca Muerta (TithonianoBerriasiano) en el área del cerro Domuyo, norte de Neuquén, Argentina. Andean Geology 40:41-65.

Kietzmann, D.A., R.M. Palma y G.S. Bressan, 2008. Facies y microfacies de la rampa tithoniana-berriasiana de la Cuenca Neuquina (Formación Vaca Muerta) en la sección del Arroyo Loncoche - Malargüe, provincia de Mendoza. Revista de la Asociación Geológica Argentina 63:696-713.

Leanza, H.A., 1973. Estudio sobre los cambios faciales de los estratos limítrofes Jurásico - Cretácicos entre Loncopué y Picún Leufú, provincia del Neuquén, República Argentina. Revista de la Asociación Geológica Argentina 28:97-132.

Leanza, H.A., 1980. The Lower and Middle Tithonian ammonitefauna from Cerro Lotena, province of Neuquén, Argentina. Zitteliana 5:1-49. Leanza, H.A., 1981. The Jurassic/Cretaceous boundary beds in west central Argentina and their ammonite zones. Neues Jahrbuch für Geologie und Paläontologie, Abhandlugen 161:62-92.

Leanza H.A. y C.A. Hugo, 1978. Sucesión de ammonites y edad de la Formación Vaca Muerta y sincrónicas entre los paralelos 35° y 40° l.s. Cuenca Neuquina-Mendocina. Revista Asociación Geológica Argentina 32:248-264.

Leanza, H.A. y J. Wiedmann, 1989. Nuevos ammonites del Berriasiano/Valanginiano (Cretácico Inferior) del Neuquén, Argentina. En J. Wiedmann (Ed.), Cretaceous of the Western Tethys. Proceedings International Cretaceous System Symposium No. 3:793-810. Stuttgart.

Leanza, H.A., H.G. Marchese y J.C. Riggi, 1978. Estratigrafía del Grupo Mendoza con especial referencia a la Formación Vaca Muerta entre los paralelos 35° y 40° l.s. Cuenca NeuquinaMendocina. Revista de la Asociación Geológica Argentina 32:190-208.

Leanza, H.A., F. Sattler, R.S. Martínez y O. Carbone, 2011. La Formación Vaca Muerta y equivalentes (Jurásico tardíoCretácico temprano) en la Cuenca Neuquina. En H.Leanza, J. Vallés, C. Arregui y J.C. Danieli (Eds.), Geología y Recursos Naturales de la provincia del Neuquén. 18° Congreso Geológico Argentino:113-129.

Legarreta, L. y C.A. Gulisano, 1989. Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior). En G. Chebli y L. Spalletti (Eds.), Cuencas Sedimentarias Argentinas. Serie Correlación Geológica 6:221-243.

Legarreta, L. y M.A. Uliana, 1991. Jurassic-Cretaceous marine oscillations and geometry of a back-arc basin fill, central Argentine Andes. En D.I. Macdonald (Ed.), Sedimentation, Tectonics and Eustasy. Sea level Changes at Active Plate Margins. International Association of Sedimentologists, Special Publication 12:429-450.

Legarreta, L. y M.A. Uliana, 1996. The Jurassic succession in west-central Argentina: stratal patterns, sequences and paleogeographic evolution. Palaeogeography, Palaeoclimatology and Palaeoecology 120:303-330.

Littke, R., B.M Krooss, A.K. Uffmann, H. Schulz y B. Horsfield, 2011. Unconventional gas resources in the Paleozoic of Central Europe.- Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 66:953-977.

Liu, Y., R. Gupta, A. Sharma, T. Wall, A. Butcher, G. Miller, P. Gottlieb, P. y D. French, 2005. Mineral matter-organic matter association characterisation by QEMSCAN and applications in coal utilization. Fuel 84:1259-1267.

März, C., B. Beckmann, C. Franke, C. Vogt, T. Wagner y S. Kasten, 2009. Geochemical environment of the Coniacian-Santonian western tropical Atlantic at Demerara Rise. Palaogeography, Palaeoclimatology, Palaeoecology 273:286-301.

Parent, H., A.C. Garrido, G. Schweigert y A. Scherzinger, 2011a. The Tithonian ammonite fauna and stratigraphy of Picún Leufú, southern Neuquén Basin, Argentina. Revue de Paléobiologie 30:45-104.

Parent, H., A. Scherzinger y G. Schweigert, 2011b. The TithonianBerriasian ammonite fauna and stratigraphy of Arroyo Cieneguita, Neuquén-Mendoza Basin, Argentina. Boletín del Instituto de Fisiografía y Geología 79-81:21-94.

Passey, Q.R., K.M. Bohacs, W.L. Esch, R. Klimentidis y S. Sinha, 2012. My source rock is now my reservoir – Geologic and petrophysical characterization of shale-gas reservoirs. Search and Discovery article #80231:1-47.

Patterson, J.H. y D.A. Henstridge, 1990. Comparison of the mineralogy and geochemistry of the Kerosene Creek Member, Rundle and Struart oil shale deposits, Queensland, Australia. Chemical Geology 82:319–339.

Patterson, J.H., H.J. Hurst, J.H. Levy y J.S. Killingley, 1990. Mineral reactions in the processing of Australian Tertiary oil shales. Fuel 69:1119-1123.

Pirrie, D., A.R. Butcher, M. R. Power, P. Gottlieb y G.L. Miller, 2004. Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QemSCAN); potential applications in forensic geoscience. En K. Pye y D.J. Croft (Eds.), Forensic Geoscience: Principles, Techniques and Applications. Geological Society of London, Special Publication 232:123-136.

Rippen, D., R. Littke, B. Bruns y N. Mahlstedt, 2013. Organic geochemistry and petrography of Lower Cretaceous Wealden black shales of the Lower Saxony Basin: the transition from lacustrine oil shales to gas shales. Organic Geochemistry 63:18-36.

Ross, D. y R.M. Bustin, 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology 26:916-927.

Scasso, R.A., M.S. Alonso, S. Lanés, H.J. Villar y H. Lippai, 2002. Petrología y geoquímica de una ritmita marga-caliza del Hemisferio Austral: El Miembro Los Catutos (Formación Vaca Muerta), Tithoniano medio de la Cuenca Neuquina. Revista de la Asociación Geológica Argentina 57:143-159.

Shi, X., S. Liu, X. Fang, S. Qiao, S. Khokiattiwong y N. Kornkanitnan, 2015. Distribution of clay minerals in surface sediments of the western Gulf of Thailand: sources and transport patterns. Journal of Asian Earth Sciences 105:390- 398.

Spalletti, L., G. Veiga, Z. Gasparini, E. Schwarz, M. Fernández y S. Matheos, 1999a. La rampa marina de la transición JurásicoCretácico en la Cuenca Neuquina (Argentina): Facies anóxicas, procesos deposicionales y herpetofauna. Simposio Cretácico do Brasil y Primer Simposio sobre Cretácico de América del Sur, UNESP Boletin No. 5:345-348. Campus Río Claro.

Spalletti, L., Z. Gasparini, G. Veiga, E. Schwarz, M. Fernández y S. Matheos, 1999b. Facies anóxicas, procesos deposicionales y herpetofauna de la rampa marina titoniano-berriasiana en la Cuenca Neuquina (Yesera del Tromen), Neuquén, Argentina. Revista Geológica de Chile 26:109-123.

Spalletti, L., J. Franzese, S. Matheos y E. Schwarz, 2000: Sequence stratigraphy of a tidally-dominated carbonatesiliciclastic ramp: The Tithonian of the southern Neuquén Basin, Argentina. Journal of the Geological Society 157:433- 446.

Spalletti, L., G. Veiga, E Schwarz y J. Franzese, 2008. Depósitos de flujos gravitacionales subácueos de sedimentos en el flanco activo de la Cuenca Neuquina durante el Cretácico Temprano. Revista de la Asociación Geológica Argentina 63:442-453.

Spalletti, L., C.O. Limarino y F. Colombo Piñol, 2012. Petrology and geochemistry of Carboniferous siliciclastics from the Argentine Frontal Cordillera: A test of methods for interpreting provenance and tectonic setting. Journal of South American Earth Sciences 36:32-54.

Spalletti, L.A., E. Schwarz y G.D. Veiga, 2014. Geoquímica inorgánica como indicador de procedencia y ambiente sedimentario en sucesiones de lutitas negras: los depósitostransgresivos titonianos (Formación Vaca Muerta) de la Cuenca Neuquina, Argentina. Andean Geology 41:401-435.

Subasinghe, N.D., F. Awaja y S.K. Bhargava, 2009. Variation of kerogen content and mineralogy in some Australian Tertiary oil shales. Fuel 88:335-339.

Tao, H., S. Sun, Q. Wang, X. Yang y L. Jiang, 2014. Petrography and geochemistry of Lower Carboniferous greywacke and mudstones in Northeast Junggar, China: Implications for provenance, source weathering, and tectonic setting. Journal of Asian Earth Sciences 87:11-25.

Trabucho-Alexandre, J., R. Dirkx, H. Veld, G. Klaver y P.L. de Boer, 2012. Toarcian black shales in the Dutch Central Graben: record of energetic, variable depositional conditions during an oceanic anoxic event. Journal of Sedimentary Research 82:104-120.

Tribovillard, N., A. Riboulleau, T. Lyons y F. Baudin, 2004. Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales. Chemical Geology 213:385-401.

Tucker, M.E., 2003. Sedimentary Petrology: an Introduction to the Origin of Sedimentary Rocks. 3rd edition, Blackwell Publishing, Oxford, 262 pp.

Uffmann, A.K., R. Littke y D. Rippen, 2012. Mineralogy and geochemistry of Mississippian and Lower Pennsylvanian black shales at the northern margin of the Variscan Mountain Belt (Germany and Belgium). International Journal of Coal Geology 103:92-108.

Vennari, V.V., I. Pujana y B. Aguirre-Urreta, 2014. Amonoideos y radiolarios del Jurásico Tardío-Cretácico Temprano de la Formación Vaca Muerta en el norte de la provincia de Neuquén. 19º Congreso Geológico Argentino Resúmenes en CD, Córdoba.

Vergani, G.D., A.J. Tankard, H.J. Belotti y H.J. Welsink, 1995. Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. En A.J. Tankard, R. Suárez Soruco y H.J. Welsink (Eds.), Petroleum Basins of South America. American Association of Petroleum Geologists, Memoir 62:383-402. Tulsa.

Villar, H.J., C. Barcat, S Talukdar y W. Dow, 1993. Facies generadora de hidrocarburos, correlación petróleo-roca madre y sistema petrolero en el área sudoriental del Engolfamiento Neuquino. 12° Congreso Geológico Argentino Actas I:382-394. Buenos Aires.

Villar, H.J., L. Legarreta, C.E. Cruz, G.A. Laffitte y G. Vergani, 2006. Los cinco sistemas petroleros coexistentes en el sector sudeste de la Cuenca Neuquina: definición geoquímica y comparación a lo largo de una transecta de 150 km. Boletín de Informaciones Petroleras, Cuarta época 3:50-66.

Weaver, C.E., 1931. Paleontology of the Jurassic and Cretaceous of West Central Argentina. University of Washington, Memoir 1, Seattle, 469 pp. Yrigoyen, M.R., 1991. Hydrocarbon resources of Argentina. Petrotecnia, 13th.World Petroleum Congress, Special Issue: 38- 54. Buenos Aires.

Published

2021-03-31

How to Cite

Spalletti, L. ., Pirrie, D. ., Veiga, G. D. ., & Schwarz, E. . (2021). Integrated mineralogical analysis (QEMSCAN and DRX) of transgressive black shales: Tithonian basal deposits of the Vaca Muerta Formation (Neuquén Basin, Argentina). Latin American Journal of Sedimentology and Basin Analysis, 22(1), 13-28. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/190

Issue

Section

Research Papers