Loessial soils influenced by Pleistocene shell deposits of the Pascua Formation, northeastern Buenos Aires province, Argentina
Keywords:
Calcareous Soils, Pedogenic Calcium Carbonate, Calcrete, Littoral Buenos Aires Province.Abstract
In the littoral area of Buenos Aires province two carbonate Quaternary lithostratigraphic units linked to marine transgressions are found. In the most recent unit (Las Escobas Formation, Holocene) lithogenic calcareous soils (Calciudolls and Rendolls) are developed, which have been studied in their taxonomic, mineralogical and micromorphologic aspects (Vargas Gil et al., 1972; Sánchez, 1976; Imbellone, 1996; Imbellone and Giménez, 1997; 1998). Conversely, little information on the soils associated to the oldest unit (Pascua Formation, middle to upper Pleistocene) is available. This unit is interbedded in the upper part of the loessial sediments of the Pampiano Formation, consisting of sandy sediments with high amounts of mollusk shells strongly cemented with calcium carbonate forming a coquina (Fidalgo et al., 1973). These deposits are overlain by sediments of the Pampiano Formation, over 2 m in thickness, where Mollisols and Vertisols have been affected by calcification, vertisolization and clay illuviation processes. The objectives of this article are: a) to analyze the properties of the soils developed in loessic sediments overlying the Pascua Formation, and b) to estimate the influence of the carbonate deposits of this formation in the soil genesis. Five pedons (four Mollisols and one Vertisol) located in the municipalities of La Plata, Magdalena and Punta Indio (Buenos Aires province, Argentina, Fig. 1) were studied. The soils have developed in an upland plain adjacent to coastal plains. The climate is temperate-humid, with a mean annual rainfall of 1040 mm, fairly well distributed; mean annual temperature is 16.2 oC (La Plata city, latitude 34o 55’ S, longitude 57o 56’ W, altitude 15 m a.s.l.). The monthly mean water balance shows a small deficit (7 mm) in summer and a substantial surplus (240 mm) between autumn and spring. The soil moisture regime is udic and the soil temperature regime is thermic. According to the classification of Thornthwaite (1948) the climate of the area is B1 B´2 r a´. Native vegetation is dominated by grasslands, largely modified by agriculture and grazing. The studied soils are polygenetic due to the geomorphologic evolution of the area. The sedimentary deposits include: a) transgressive deposits of the Querandinense ingression (humid climate) at the base; b) Postquerandinense eolian deposits (dry climate) and c) Postplatense deposits (dry climate) in the upper part. Pedons 2, 3, 4 and 5 have developed in loessial sediments. Unlike other carbonatic soils of the coastal plains, they are practically devoid of primary carbonate. On the other hand, Pedon 1 would have developed in a mixed deposit: an upper soil including shell fragments (Holocene), overlying a calcrete formed in a Pleistocene loessial deposit (Fig. 2, Table 1).
The presence of pedogenic carbonate is revealed by macromorphological features such as pseudomycelia, soft powdery masses, some concretions and diffuse accumulations in root pores in the upper part of the solum, whereas the horizons overlying the rock contain lithogenic calcareous pebbles and shell fragments, as well as some pedogenic carbonates (soft powdery masses). Pedons 2, 3, 4 and 5 have a similar distribution of CaCO3 equivalent in depth. The carbonate is absent or has <1% in the upper horizons, it increases in the middle horizons and may reach 70% at the soil base or 80% in the coquina. The morphological and chemical characteristics of the calcareous accumulations allow the following horizons to be differentiated: a) calcium carbonate- enriched horizons (all pedons); b) calcic horizons (pedons 4 and 5) and c) petrocalcic horizons (pedons 1, 3 and 4). All of them exhibit calcareous reorganization. The former two are developed in the loessial deposits, whereas the latter are developed in the upper part of the coquina by epigenic alteration. Its contact with the overlying loessial sediments is sharp (<2 cm in thickness), with level or undulating shape, forming a compact, structureless (massive) or platy calcrete, less than 10 cm thick. The carbonate-enriched and calcic horizons have randomly distributed pedogenic acicular calcite (Fig. 3); the former with <15% and the latter with ?15% of CaCO3 equivalent. The petrocalcic horizons are massive or platy with ordered tabular calcite and rhombohedra and scalenohedra in rock holes, where CaCO3 equivalent can be as high as 60-70%. Grain-size distribution in pedons 2, 3 and 4 is similar and typical of the soils developed across the Undulating Pampa. The histograms show a well- defined mode in the coarse silt fraction (62-32 µm, 4-5 Ø) ranging from 24.01 to 25.34% in the eluvial horizons and from 14.17 to 22.42% in the illuvial horizons (Fig. 4). There is also a high amount of <1 µm clay (below 10 Ø), with 19.32-20.18% in the eluvial horizons and 22.90-52.17% in the illuvial horizons. The sand fraction is much lower, with fine and very fine sand as the dominant subfractions. The grain-size distribution of pedon 1 is almost uniform up to the loess deposit because illuvial horizons are absent.
The mineralogy of the clay fraction in the loessial portion of Vertic Argiudolls (pedons 2 and 3) is mainly illitic, with well-defined reflections of this mineral and subordinate amounts of expandable minerals and kaolinite (Fig. 5). In addition to this general trend, a marked increase of expandable clays in B horizons was observed with respect to the A horizons. This would suggest, together with grain- size variations in the coarse fraction, a sedimentary discontinuity; thus, the soils of the area would have formed in two loess mantles with different grain-size composition and clay mineralogy. Micromorphological features revealed through optical microscopy include micritic and acicular calcite coatings and micritic nodular concentrations. SEM reveals recrystallization and dissolution morphologies in calcite crystals, which sometimes are found in the same horizon (Figs. 5, 6, 7). The pedons exhibit different crystallization morphologies; in the calcrete the cement has more or less equidimensional “rice grain”-shaped crystals and sparry and microsparitic calcite, whereas in the loessic horizons acicular calcite with variable morphology is mainly found. In the studied soils, acicular calcite presents different morphologies which may coexist in the same horizon: a) masses of disarranged crystals, 10- 50 µm long and 1 µm wide; b) needles with serrated irregular borders, c) complex morphologies of needles with serrated borders and irregular growths on the needles and, d) rhombohedric calcite en échelon. The calcrete in the petrocalcic horizons may present a laminar zone with tabular and rhombohedric calcite. The origin of pedogenic carbonate can be ascribed to various mechanisms, with different degree of influence: a) dissolution of carbonates in the upper part of the profile, downward translocation and precipitation; b) capillary rise and evaporation of carbonate water accumulated on the top of compact, almost impervious layers, c) in situ dissolution and reprecipitation of the coquina carbonates (petrocalcic horizons) and, d) biogenic precipitation due to the action of bacteria, fungi and plant roots, as a complementary process. The origin of the calcification process in the studied soils would be a mixed reorganization of the base rock and translocation under humid climate. In both cases the pedogenic carbonate would have had an abiotic origin with some biotic participation. Crystallization and recrystallization are dominant, either through dissolution of pre-existing deposits or through carbonate solutions moving vertically and laterally; biomineralization in organic structures has also an influence. In this way, the petrocalcic horizon is a pedogenic calcrete of humid climate.
References
Allison, L.E. y C.D. Moodie, 1965. Carbonate. En: Black, C.A., D.D. Evans, L.E. Ensminger, J.L. White y F.E. Clark (Eds.). Methods of Soil Analysis. American Society of Agronomy (Part 2): 1379-1396.
Ameghino, F., 1880-1881. La Antigüedad del Hombre en el Plata. En Obras Completas Vol. III. Cap. XX a XXIV (Ed. 1905). Oficina de Gobierno Provincia de Buenos Aires, 868 pp. La Plata.
Amiotti, N., M.C. del Blanco y L.F. Sánchez, 2001. Complex pedogenesis related to differential aeolian sedimentation in microenvironments of the southern part of the semiarid region of Argentina. Catena 43:137-156.
Birkeland, P.W., 1984. Soils and geomorphology. Oxford University Press. 372 pp.
Biscaye, P.E., 1965. Mineralogy and sea sedimentation of recent deep-sea clays in the Atlantic ocean and adjacent seas and oceans. Geological Society of America Bulletin 76:803-832.
Bouza, P.J., M. Simón, J. Aguilar, H. del Valle y M. Rostagno, 2007. Fibrous-clay mineral formation and soil evolution in Aridisols of Notheastern Patagonia, Argentina., Geoderma 139:38-50.
Buol, S.W., F.D. Hole y R.J. McCracken, 1989. Soil genesis and classification. Iowa State University Press, Ames. 3ª edición. 446 pp.
Buschiazzo, D.E., 1988. Estudio sobre la tosca. Parte II: evidencias de un movimiento descendente del carbonato, características micromorfológicas. Ciencia del Suelo 6:44-49.
Buschiazzo, D.E., 1990. Calcrete formations in soils of the Argentinean Pampas. Ernst-Schlichting Gedächtnis- Kolloquium. Tagungsband: 92-106. Hohenheim.
Cabrera, A.L. y E.M. Zardini, 1993. Manual de la flora de los alrededores de Buenos Aires. Ed. Acmé. Buenos Aires. 755 pp.
Cailleau, G., E.P. Verrecchia, O. Braissant y E. Laurent, 2009. The biogenic origin of needle fibre calcite. Sedimentology 56:1858- 1875.
Cappannini, D.A., 1949. Estudio geoedafológico del curso inferior del río Salado (provincia de Buenos Aires) y zonas adyacentes. Tesis Doctoral. Facultad de Ciencias Naturales y Museo, UNLP. La Plata (inédito). 89 pp.
Cappannini, D.A., 1952. Geoedafología del curso inferior del río Salado de la provincia de Buenos Aires. IDIA 50-51:1-54.
Colado, U.R., A.J. Figini, F. Hidalgo y E. Fucks, 1995. Los depósitos marinos del Cenozoico Superior aflorantes en la zona comprendida entre Punta Indio y el río Samborombón, provincia de Buenos Aires. IV Jornadas Geológicas y Geofísicas Bonaerenses, Junín. Actas 1:151-158.
Cortelezzi, C., 1993. Sobre la edad de los depósitos de conchilla que afloran en las proximidades de Puente de Pascua, partido de Castelli, provincia de Buenos Aires. 12 Congreso Geológico Argentino. Actas, 249-251.
Del Valle, H.F. y C.A. Beltramone, 1987. Morfología de acumu- laciones calcáreas en algunos paleosuelos de Patagonia oriental (Chubut). Ciencia del Suelo 5:77-87.
FAO, 2009. Guía para la descripción de suelos. 4ª edición. U.N. Food and Agriculture Organization. Roma. 111 pp.
Fidalgo, F., 1983. Algunas características de los sedimentos superficiales de la Cuenca del Río Salado y en la Pampa Ondulada. Coloquio Internacional de Hidrología de Grandes Llanuras, UNESCO, Olavarría. Actas II:1043-1068.
Fidalgo, F., U. Colado y F. De Francesco, 1973. Sobre ingresiones marinas en los Partidos de Castelli, Chascomús y Magdalena, Provincia de Buenos Aires. Actas V Congreso Geológico Argentino. Buenos Aires. III: 227-240.
Frenguelli, J., 1957. Neozoico. En Geografía de la República Argentina. Sociedad de Estudios Geográficos GAEA. T. 2, 3a Parte. Buenos Aires. 1-218.
Fucks, E.E., Schnack E.J. y M.L. Aguirre, 2010. Nuevo ordenamiento estratigráfico de las secuencias marinas del sector continental de la Bahía Samborombón, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 67 (1):27-39.
Gile, L., F.F. Peterson y R.B. Grossman, 1966. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Science 101:347-360.
Goudie, A.S., 1983. Calcrete. En A.S. Goudie y K. Pye (Eds.) Chemical sediments and geomorphology: precipitates and residua in the near surface environment. Academic Press. 83- 131.
Imbellone, P.A., 1996. Redistribución de carbonato de calcio en sucesiones cuaternarias de la llanura costera bonaerense. AAS Revista 3:63-76.
Imbellone, P.A. y J.E. Giménez, 1997. Micromorphology of soils in quaternary littoral sequences. Northeastern Buenos Aires Province, Argentina. En S. Shoba, M. Gerasimova y R. Miedema (Eds.) Soil Micromorphology: studies on soil diversity, diagnostic and dynamics. Moscú-Wageningen. 93-105.
Imbellone, P.A. y J.E. Giménez, 1998. Suelos calcáreos litogénicos del NE de la provincia de Buenos Aires. Ciencia del Suelo 16:20-29.
Imbellone, P.A., J.E. Giménez y J.L. Panigatti, 2010. Suelos de Región Pampeana. Procesos de formación. Ediciones INTA. 320 pp.
Isla, F.I., N. Rutter, E.J. Schnack y M.A. Zárate, 2000. La transgresión Belgranense en Buenos Aires. Una revisión a 100 años de su definición. Revista Cuaternario y Ciencias Ambientales. Publicación Especial Nº 4:3-14.
IUSS Grupo de Trabajo WRB, 2007. Base Referencial Mundial del Recurso Suelo. Primera actualización 2007. Informes sobre Recursos Mundiales de Suelos No 103. (Traducción al español de M.S. Pazos). FAO, Roma.
James, N.P., 1972. Holocene and Pleistocene calcareous crust (caliche profiles: criteria for subaereal exposure. Journal of Sedimentary Petrology 42:817-836.
Jenny, H., 1994. Factors of soil formation. A system of quantitative pedology. Dover Publications, New York. 281 pp.
Klappa, C.F., 1980. Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27:613-629.
León, R.J.C., G.M. Rusch y M. Oesterheld, 1984. Pastizales pampeanos. Impacto agropecuario. Phytocoenologia 12:201- 218.
Monger, H.C., 2002. Pedogenic carbonate. Link between biotic and abiotic CaCO3. International Working Meeting on Soil Micromorphology. Simp. 20. Paper 937. Tailandia.
Monger, H.C., L. Daugherty, W. Lindemann y C. Liddell, 1991. Microbial precipitation of pedogenic calcite. Geology 19:997- 1000.
National Soil Survey Center, 1996. Soil survey laboratory methods manual. Soil Survey Investigations Report No 42. Version 3.0. U.S. Department of Agriculture. 693 pp.
Pazos, M.S., 1990. El horizonte Alfa: una capa desarrollada en la interfase suelo-tosca. Ciencia del Suelo 8:75-78.
Phillips, S.E. y P.G. Self, 1987. Morphology, crystallography and origin of needle fiber calcite in Quaternary pedogenic calcretes of South Australia. Australian Journal of Soil Research 25:429- 444.
Rabenhorst, M.C. y L.P. Wilding, 1986. Pedogenesis on the Edwards Plateau. Texas: III. New model of the Formation of Petrocalcic Horizons. Soil Science Society of America Journal 50:693-699.
Sánchez, R.O., 1976. Estudio bioquímico mineralógico y micromorfológico de suelos “Rendzina”. IDIA (Supl. 33):414- 424.
Schiavo, H.F.G., A.R. Becker, M. Grumelli y M. P. Cantú, 2010. Análisis micromorfológico del calcreto de la zona de Tosquita, departamento de Río Cuarto, provincia de Córdoba. XXII Congreso Argentino de la Ciencia del Suelo. Rosario. Resúmenes: 268.
Schnack, F.J, F.I. Isla, F.O. De Francesco y E.E. Fucks, 2005. Estratigrafía del Cuaternario marino tardío en la provincia de Buenos Aires. Relatorio del XVI Congreso Geológico Argentino: 159-181.
Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, y W.D. Broderson, 2000. Libro de campaña para descripción y muestreo de suelos. National Soil Survey Center, U.S. Department of Agriculture (Traducción por investigadores del Instituto de Suelos, INTA, Argentina).
Scoppa, C.O., 1978/79. Micropedología de series de suelos característicos del noreste bonaerense. Revista de Inves- tigaciones Agropecuarias. Serie 3, Clima y Suelo XIV:37-69.
Soil Survey Staff, 1999. Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys. Agricultural Handbook 436. 2nd edition. USDA. Washington DC. 869 pp.
Soil Survey Staff, 2010. Keys to Soil Taxonomy. 11th Edition. USDA. Washington DC. 338 pp.
Soil Survey Division Staff, 1993. Soil Survey Manual. Handbook No 18. USDA, Washington D.C., U.S.A. 437 pp.
Stoops, G.J., 1976. On the nature of “lublinite” from Hollanta (Turkey). American Mineralogist 61:172.
Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review 38:55-94.
Thornthwaite, C.W. y J.M. Mather, 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Institute of Technology. Climatology 10:185- 311.
Tricart, J.L.F., 1973. Geomorfología de la Pampa Deprimida. Base para los estudios edafológicos y agronómicos. Plan Mapa de Suelos de la Región Pampeana. Colección Científica Nº XII. INTA, Buenos Aires. 202 pp.
Vargas Gil, J.R; C.O. Scoppa y A.M. Iñiguez, 1972. Génesis de los suelos de la región norte de la Bahía de Samborombón. RIA, INTA. Buenos Aires. Serie 3, Clima y Suelo IX:29-52.
Verrecchia, E.P. y K.E. Verrecchia, 1994. Needle-fiber calcite; a critical rewiew and a proposed classification. Journal of Sedimentary Research 63:650-664.
Vervoost, F.B., 1967. La vegetación de la República Argentina. VII. Las comunidades vegetales de la Depresión del Salado (Provincia de Buenos Aires). Serie Fitogeográfica Nº 7. INTA. 262 pp.
Violante, R.A., G. Parker y J.L. Cavallotto, 2001. Evolución de las llanuras costeras del este bonaerense entre la Bahía de Samborombón y la laguna Mar Chiquita durante el Holoceno. Revista de la Asociación Geológica Argentina 56:51-66.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.