Deformation structures (sismites?) in the Río Negro Formation, Río Negro province, Argentina

Authors

  • Roberto Schillizzi IADO-CONICET, CC840, B8000FWB Bahía Blanca, Argentina.
  • Liliana Luna Departamento de Geología, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Argentina.
  • Juan Ignacio Falco Departamento de Geología, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Argentina.

Keywords:

Soft-sediment deformation structures; Río Negro Formation; Miocene-Pliocene; Río Negro province.

Abstract

Soft-sediment deformation structures (SSD) are alterations produced almost simultaneously with sedimentation. They are directly related to internal characteristics of sedimentary materials as well as to external factors acting on them. Results derived from such alterations are evidenced as injections, fractures, volcanoes and convolute laminations, among other forms, affecting stratification either totally or partially. Soft-sediment deformation structures resulting from seisms are known as seismites. The present study aims at determining for the first time the presence of SSD structures in the Río Negro Formation, located in the northern area of San Matías Gulf, near Río Negro Lighthouse, Argentina (Fig. 1). To this end, structures were firstly identified and further described. Samples were subsequently collected for the determination of grain-size, mineralogy and organic matter content. Photographs of the different sectors evidencing deformations were taken in order to determine further comparative models. Morphology in the study area is associated to cliffs with vertical, fractured fronts and with an average height of 70 m in whose base torn-down blocks are accumulated. The geological structure of the study area is related to the Cuenca del Colorado and the Comarca Nordpatagónica, whose basement is mainly composed of Paleozoic and Mesozoic crystalline rocks. The sedimentary tertiary cover from the Miocene-Pliocene is represented by light-blue sandstones of the Río Negro Formation (Andreis, 1965). This unit was formed in an aeolian environment with intercalations of clay-silt shallow lagoons and a marine episode located in the mid area of the Río Negro Formation.

At the top of the Río Negro Formation there are Pleistocene-Holocene sedimentites having a thickness of up to 5 m. Within the local structural framework of our study area there are fractures with a NE-SW and a NW-SE direction, which are related with fractures N55º, N90º and N350º azimuth located in the abrasion platform. According to Dzulinsky and Walton (1965), Lowe (1975), Brencley and Newall (1977), Clauss (1993), van Loon (2002), Owen (2003), Neuwerth et al. (2006), Alfaro et al. (2006), Montenat et al.(2007), among others (Table 1), and, taking into account the geometry of deformations, laboratory reconstructions and field observations from our study area, it can be concluded that the classifications of SSD structures tend to establish morphologic and genetic systematizations.

The following characteristics were identified in our study area: limited deformations among stratigraphic horizons; a lateral continuity of SSD structures at considerable distances; and a confinement between non-deformed strata and its lithological association with psamitic-pelitic sediments.

The study area, which is 4 km long and is located between Río Negro Lighthouse and the beginning of Banco Verde, is from the morphological point of view, a cliffed front with an ENE-WSW orientation. Different types of SSD structures were identified in this area. For example, from the morphological point of view and according to the loading mechanisms observed, simple-load structures (Fig. 2), attached and detached pseudonodules (Figs. 3, 4 and 5) and complex structures (Fig. 6) were identified. Furthermore, from the genetic point of view and according to the intrusion processes observed in soft sediments, water-escape structures (Fig. 7) and plate- or fountain-like deformations (Fig. 8) were found. From the genetic point of view, and based on the collapse and pressure mechanisms observed, basal slumping (Fig. 9) and directed-pressure structures (Fig. 11) were also found. The above-mentioned SSD structures were analyzed and interpreted following Strachan´s model (2002) (Fig. 10) and Laird´s model (1968) (Fig. 12).

The origin of SSD structures depends on the characteristics of sedimentites and on the mechanisms that produce them. In the study area, the materials susceptible to deformation come from an interdune environment that is characterized by granulometric variations derived from the fluctuating and restrictive climatic conditions (Cojan and Thiry, 1992) that typify the Río Negro Formation. Fine-grained materials having low cohesion and poor sorting such as the sediments of deformed strata (Fig. 13) produced SSD structures as a result of high pore pressure and liquefaction effects (Tsuchida and Hayashi, 1971; Obermeier, 1996). Grain packing with a porous value as that allows intercommunication among grains and saturated material, is also crucial to the formation of SSD structures.

The mineralogic content of deformed levels is composed of i) quartz, chalcedony, orthose, plagioclase, pyroxenes and biotite, opaques (magnetite and ilmenite, autigenic pyrite) in crystalline aggregates; ii) undetermined Fe oxides; and iii) colorless and light-brown unaltered volcanic glass shards, clays identified as smectite-illite interstratified and scarce kaolinite. Grains are mainly subangular and, to a lesser extent, sub-round and round. The surface of the majority of grains in the study area was found clean and with some marks. The percentage of CaCO3 was found to vary from 0.5 to 3% and that of total organic carbon (TOC) was found to reach 1.5%.

Deformations may be produced as a result of load deformation mechanisms, fluid escape, basal slumping or pressure-directed displacements. Due to load deformation mechanisms, structures are linked to gravity-related movements occurring during the initial stages of deposition. For these deformations to occur, grain-size at the overlaying levels should be thicker than at the underlying levels, for example, sandstones rather than silstones or claystones. These deformations are related to water saturation at the deformed level (fluidization-liquefaction). Therefore, deformation mechanisms, which involve both expulsion and rotation of fragments as well as fluid escape, are characterized by the action of lithostatic pressure which produces movement (deformation) and by the action of the underlying sedimentary levels.

Deformations may also result from a fluid escape mechanism, i.e., from a mechanism associated to i) the spatial arrangement of grains (packing), ii) their shape, iii) their tendency to inequigranularity, and iv) the communication among macro- and micro- pores as well as the high or low sinuosity connection among themselves (Net and Limarino, 2000). Further requirements for deformations to occur include particular thixotrophic conditions, especially the presence of colloids among grains. The rupture of unions of particles either by hitting or by shearing is, among others, a cause which produces an unbalance between hydrostatic pressure and lithostatic pressure. If the latter is altered, the energetic unbalance makes fine sediments flow among the weakly lithified sandstones whose extrusion will occur via both vertical and horizontal pore ducts (Lopez Gamundi, 1986; Clauss, 1993).

Basal slumping produces deformations that are associated not only to soft sediments deposited in natural slopes but also to interbedded sand- and mud-levels. Layers tend to have a prismatic-shaped geometry whose materials are under ductile-to-fragile conditions, in which antique layers support younger ones. Once horizontality is affected, movement, which is marked by a rupture of the original slope, begins. The lower levels are expected to transport the upper ones without affecting the original succession of layers. At the delay of movement derived from the compressive effect of the displacement front, fluids extrude forming cones or cut dikes (Fig. 10). Several deformations of this type initiate movement as a result of differences in the hydrostatic gradient (Strachan, 2002).

Deformations may be also produced as a result of pressure-directed displacements which are conditioned by the compaction level, thickness and ability of materials to deform. Thus, deformations occur because the original level is saturated in water as a result of the ductile behavior of materials (Bracco et al., 2005). Laird (1968) claims that SSD structures should meet some of the following requirements to be considered of seismic origin: slightly curved strata walls and floors to follow the original stratification and interruption of continuity of the stratum that is marked by a scar in which the sedimentary fillings keep their characteristics both above and below stratification. There could be rotated sediment clasts below the discontinuity as a result of a thrust-induced drag of the upper sedimentary packing. These processes could be, in turn, triggered either by the charge or pressure of the lithologic column, storm waves and seismicity. Storm-wave impact may also produce deformation in soft sediments. Nonetheless, no high energy structures such as cross-beddings or tsunami-type chaotic sedimentation were observed in our study area. Noteworthily, for stormwave-derived liquefaction to occur, waves should reach magnitudes higher than 6 m (Alfaro et al., 2002), this being a phenomenon that was not recorded in our study area.

Taken together, findings from the present study indicate that SSD structures in our study area are seismic alterations that occurred in an event during the Andean cycle whose beginnings are traced approximately 45 My ago. The fact that i) both the roofs and bottoms of these structures are not associated to other processes of deformation, ii) their thickness does not exceed one meter, and iii) they are confined to a transitional area between the middle and top members of the Río Negro Formation, lying in some cases on claystones and in some other cases, on siltstones, originated in an interdune paleorelief, confirms their seismic origin.

References

Alfaro, P., M. Moretti y J.M. Soria, 1997. Soft-sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix-Baza Basin, Central Betic Cordillera). Eclogae Geologicae Helveticae 90:531-540.

Alfaro, P., J. Delgado, A. Estévez, J.M. Molina, M. Moretti y J.M. Soria, 2002. Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Beltic Cordillera, southern Spain). International Journal Earth Science 91:505-513.

Alfaro, P., J. Zaldivar, A. Jabaloy, A. Lopez Garrido y C. Galdeano, 2006. Estructuras sedimentarias de deformación interpretadas como sismitas en el Mioceno Superior (Turoliense) de la cuenca de Granada (Cordillera Bética). Geogaceta 40:235-260.

Andreis, R. R., 1965. Petrografía y paleocorrientes de la Formación Río Negro (tramo Gral Conesa-boca del Río Negro). Revista del Museo de La Plata. V. Geología 36:245-310.

Bowman, D., A. Korjenkov y N. Porat, 2004. Late-Pleistocene seismites from Lake Issyk-Kul, the Tien Shan range, Kyrghyzstan. Sedimentary Geology 163:211-228.

Bracco, A., L. Peruca, V. Contreras y A. Perez, 2005. Estructuras indicadoras de paleosismicidad en el área de Acequion, Departamento Sarmiento, San Juan. XVI Congreso Geológico Argentino. Actas IV:485-492.

Brenchley, P.J. y G. Newall, 1977. The significance of contorted bedding in the Upper Ordovician sediments of the Oslo region, Norway, Journal of Sedimentology and Petrology 47:819-833.

Clauss, F.L., 1993. Estructuras indicadoras de paleosismicidad en el Neógeno de Arcos de la Frontera (SO de la depresión del Guadalquivir). Boletín Geológico y Minero 104-6:613-620.

Cojan, I.. y M. Thiry, 1992. Seismically inducent deformation structures in Oligocene shallow-marine and eolian coastal sands (Paris Basin). Tectonophysics 206:79-89.

Corrales Zarauza, I., J.R., Rosell Sanuy, L. Sánchez de la Torre, J.A. Vera Torres y L. Vilas Minondo, 1977. Estratigrafía. Rueda (Ed.), Madrid. Estructuras de deformación. Cap. 8:147-162.

Deev, E.V., I.D. Zolnikov y S.A. Gus´kov, 2009. Seismites in Cuaternary sediments of sotheastern Altai. Russian Geology and Geophysics 50:546-561.

Dzulinsky, S. y E. K. Walton, 1965. Sedimentary features to flysh and greywackes. Elsevier (Ed.). Amsterdam. 274 p.

Farinatti, E., S. Aramayo y J. Terraza, 1981. La presencia de un nivel marino en la Formación Río Negro (Plioceno superior) Prov. de Río Negro, Argentina. Anales Segundo Congreso Latinoamericano Paleontología 1:651-665. Porto Alegre. Brasil [ Links ]

Foix, N., J.M. Paredes y R. Giacosa, 2008. Paleo-earthquakes in passive-margin settings, an example from the Paleocene of the Golfo San Jorge Basin, Argentina. Sedimentary Geology 205:67-78.

Gelós, E., J. Spagnuolo y R. Schillizzi, 1988. Las unidades morfológicas de la costa norte del Golfo San Matías y su evolución. Revista Asociación Geológica Argentina 43:315-326.

Greb, S.F., 2002. Developing a classification scheme for seismites. North-Central Section (36th) and Southeastern Section (51st), GSA Annual Meeting, Kentucky. Session 42: 228.

Hermanns, R. y A. Villanueva García, 2005. Did large earthquqkes cause massive landsliding and near surface deformation in the Calchaquies Valleys, Argentina. XVI Congreso Geológico Argentino, Actas IV 467-474. La Plata.

Isla, F., 2007. Significado de las estructuras de deformación de la Formación Balcarce. VI Jornadas Geológicas y Geofísicas Bonaerenses. Mar del Plata. Actas. Resumen: 44.

Jones, A.P. y K. Omoto, 2000. Towards establishings criteria for identifiying trigger mechanisms for soft-sediment deformation: a case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan. Sedimentology 47:1211-1226.

Kostadinoff, J., 1992. Configuración litológica del basamento geofísico en el litoral comprendido entre Viedma y San Antonio Oeste. Provincia de Río Negro. Revista Asociación Geológica Argentina 47:317-321.

Kostadinoff, J. y C. Labudía, 1991. Algunas características el basamento en la desembocadura del río Negro a partir de datos gravimagnetométricos. Revista Asociación Geológica Argentina 46:173-180.

Laird, M., 1968. Rotational slumps and slump scars in Silurian rocks. Western Ireland. Sedimentology 10:111-120.

Lopez Gamundi, O.R., 1986. Sedimentología de la Fm. Tarija, Carbonífero de la Srra Aguarague, Prov. de Salta. Revista Asociación Geológica Argentina 41:334-355.

Lowe, D.R., 1975. Water escape structures in coarse grained sediments. Sedimentology 22:157-204.

Lowe, D.R y R.D. LoPiccolo, 1974. The characteristics and origins of dish and pillar structures. Journal of Sedimentary Petrology 44:484-501.

Mazunder, R., A. Van Loon y A. Makoto, 2006. Soft-sediment deformation structures in the Earth's oldest seismites. Sedimentary Geology 186:19-26.

Mills, P.C., 1983. Genesis and diagnostic value of soft-sediment deformation structures- a review. Sedimentary Geology 35:83-104.

Montenat, C., P. Barrier, P. Ott d' Estevou y C, Hibsch, 2007. Seismites: An attempt at critical analysis and classification. Sedimentary Geology 196:5-30.

Net, L.I. y C.O. Limarino, 2000. Características y origen de la porosidad en areniscas de la sección inferior del Grupo Paganzo (Carbonífero Superior). Cuenca Paganzo, Argentina. AAS Revista 7:49-72.

Neuwerth, R., F. Suter, C.A. Guzman y G.E. Gorin., 2006. Soft-sediment deformation in a tectonically active area: The Plio-Pleistocene Zarzal Formation in the Cauca Valley (Western Colombia). Sedimentary Geology 186:67-88.

Obermeier, S.F., 1996. Use of liquefaction-induced features for paleoseismic analysis-An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology 44:1-76 [ Links ]

Owen, G., 1987. Deformation processesin unconsolidated sands. En M.E. Jones y R.M. Preston (Eds.), Deformation of Sediments and Sedimentary Rocks. Geological Society Special Publication 29: 11-24.

Owen, G., 1996. Experimental soft-sediment deformation structures formed by liquefaction of unconsolidated sands and some ancient examples. Sedimentology 43:279-293.

Owen, G., 2003. Load structures: gravity-driven sediment mobilization in the shallow subsurface. En P. Van Rensebergen, R.R. Hillis,A.J. Maltman y C.K. Morley (Eds.), Subsurface Sediment Mobilization. Geological Society of London, 21:51-71.

Perucca, L., A. Perez y C. Navarro. 2006. Fenómenos de licuefacción asociados a terremotos históricos. Su análisis en la evolución del peligro sísmico en Argentina. Revista Asociación Geológica Argentina 61:567-578.

Quattrocchio, M., J. Kostadinoff, G. Martinez y A. Prieto, 1994. Evidencias de neotectónica en el Río Sauce Chico, Prov. de Buenos Aires. Revista Asociación Geológica Argentina 49:297-305.

Ramos, V., 1999. Rasgos estructurales del territorio argentino. Geología Argentina. Instituto de Geología y Recursos Naturales. Anales 29:715-784.

Ramos, V. y J.M. Cortés, 1984. Geología y Recursos Naturales de la provincia de Río Negro. Estructuras e interpretación tectónica. Relatorio del IX Congreso Geológico Argentino. Cap. 1.12:317-346.

Ramos, V.A., M. Cegarra y E. Cristallini, 1996. Cenozoic tectonics of the High Andes of west-central Argentina, (30°- 36°S latitude). Tectonophysics 259:185-200 [ Links ]

Ringrose, P.S., 1988. Palaeoseismic (?) liquefaction event in late Quaternary lake sediment at Glen Roy, Scotland. Terra Nova Research 1:57-62.

Rodríguez-Pascua, A., J.P, Calvo, G. De Vicente y D. Gomez-Gras, 2000. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potencial use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology 135:117-135.

Rossetti, D.F., 1999. Soft-sediment deformation structures in the Late Albian a Cenomanian deposits, Sao Luis Basin, northern Brazil: evidence for palaeoseismicity. Sedimentology 46:1065-1081.

Rossetti, D.F. y A.M. Góes, 2000. Deciphering the sedimentological imprint of paleoseismic events: an example from the Aptian Codó Formation, northern Brazil. Sedimentary Geology 135:137-156.

Sabbione, N. Carmona, J., Palau, R. y L.García, 2007. Aceleraciones del terreno registradas en la estación sismológica de La Plata, efecto en los edificios de gran altura. VI Jornadas Geológicas y Geofísicas Bonaerenses. Resúmenes: 37.

Sagripanti, G., H. Schiavo, C. Costa, D. Villalva, R, Daga y C. Rodríguez, 2005. Paleoterremotos en el sector sudeste de las Sierras Pampeanas orientales revelado por deformaciones de depósitos lagunares holocenos. XVI Congreso Geológico Argentino, Actas 4:452-462.

Schillizzi, R., 1996. Estratigrafía y geomorfología de las formaciones cenozoicas aflorantes en el litoral patagónico, entre Punta Ninfas y Punta Lobos, Prov. del Chubut. Tesis doctoral. Universidad Nacional del Sur, 129 pp. (inédito).

Schillizzi, R. y L. Luna, 2008. Paleoambientes lacustres en la sección inferior de la Formación Río Negro (Mioceno-Plioceno) Río Negro, Argentina. Geoacta 33:55-63.

Schillizzi, R., J. Kostadinoff, y C. Labudia, 1986. Interpretación geofísica y geológica del basamento en el noroeste de la provincia de Río Negro. Revista Asociación Geológica Argentina 41:1-6.

Seilacher, A., 1969. Fault graded beds interpreted as seismites. Sedimentology 13:155-159.

Sims, J.D., 1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29:144 -152.

Stipanicic, P. y J. Methol, 1980. Comarca Nordpatagónica. Simposio de Geología Regional Argentina, Córdoba. Vol. 2: 1071-1099.

Strachan, L., 2002. Slump initiated and controlled syndepositional sandstone removilization: and example from the Namurian of Country Clare, Ireland. Sedimentology 49:25-41.

Tsuchida, H. y S. Hayashi, 1971. Estimation of liquefaction potential of sandy soils. Proceedings of the Third Joint Meeting, US-Japan Panel on Wind and Seismic Effects, UJNR; Tokyo: 91-109.

Van Loon, A.J., 2002. Soft-sediment deformations in the Kleszczów Graben (central Poland). Sedimentary Geology 147:57-70.

Vanneste, K., M. Meghrauoi y T. Camelbeeck, 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 309:57-79.

Yrigoyen, M.R., 1979. Cordillera Principal. Actas del II Simposio de Geología Regional Argentina, Córdoba. Vol. 1:651-694.

Zambrano, J., 1980. Comarca de la cuenca cretácica de Colorado. Geología Regional Argentina. Vol. 2:1933-1070.

Zavala, C. y H. Freije, 2005. Geología de los acantilados rionegrinos. En R.F. Massera, J. Lew y G. Serra Pairano (Eds.). Las Mesetas patagónicas que caen al mar: La costa rionegrina. 1º Edición. Gobierno de Río Negro. 187-199.

Published

2021-03-31

How to Cite

Schillizzi, R. ., Luna, L. ., & Falco, J. I. . (2021). Deformation structures (sismites?) in the Río Negro Formation, Río Negro province, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 17(1), 17-32. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/175

Issue

Section

Research Papers