Expanding knowledge of hothouse conditions through the study of paleosols in the southern Golfo San Jorge Basin
Keywords:
Ultisols, paleoclimate, Patagonia, Cretaceous, EoceneAbstract
Hothouse periods, such as the mid-Cretaceous and early Eocene, were times of global warming with high levels of greenhouse gases, elevated temperatures, and ice-free poles that provide a case study for understanding past climate dynamics. This study examines the paleo-Ultisols from the Bajo Barreal Formation (BBF; Cenomanian) and the Las Flores Formation (LFF; early Eocene) in central Patagonia (southern region of the Golfo San Jorge Basin). Due to their prolonged soil formation, these well-developed paleosols serve as valuable climate indicators. These paleosols were analyzed using a multi-proxy approach to understand their significance during those two periods in the Southern Hemisphere. The BBF Ultisols (mid-Cretaceous, ~51° paleo-S) display kaolinite-rich Bt horizons, formed under intense chemical weathering conditions and leaching processes, linked to a temperate and humid climate. On the other side, the LFF Ultisols (early Eocene, ~52° paleo-S) with kaolinite-dominated Bt and/or Btv horizons reflect their formation under higher chemical weathering and leaching processes, under a temperate-tropical and humid climate. For the times of formation of both BBF and LFF paleo-Ultisols, both localities were within the Warm Temperate climate zone. In contrast, this zone currently extends to approximately 40° N and S latitude. Present-day Patagonia is in the Arid climate zone, with much drier and cooler climate that contrasts with the warmer, wetter conditions of the Cenomanian and early Eocene localities analyzed. These findings highlight significant latitudinal displacement of climate zones during hothouse periods, emphasizing their importance in understanding past climate dynamics and providing insights into future climate change scenarios.
References
Barcat, C., Cortinas, J. S., Nevistic, V. A., and Zucchi, H. E. (1989). Cuenca Golfo San Jorge. In G. A. Chebli, and L. A. Spalletti, L. A. (Eds.), Cuencas Sedimentarias Argentinas (Vol. 6, pp. 319–345). Serie de Correlación Geológica.
Boucot, A. J., Xu, C., Scotese, C. R., and Morley, R. J. (2013). Phanerozoic paleoclimate: an atlas of lithologic indicators of climate. In G. J. Nichols, and B. Ricketts (Eds.), Concepts in Sedimentology and Paleontology (Vol. 11, pp. 1–30). Society for Sedimentary Geology (SEPM).
Buol, W. S., Southard, R. J., Graham, R. C., and McDanield, P. A. (2011). Soil Genesis and Classifications (6th ed). Wiley-Blackwell.
Filippi, G., and Luciani, V. (2025). Planktic foraminiferal response to the Early Eocene Climatic Optimum (EECO) from southern mid-to-high latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, 659, 112660. https://doi.org/10.1016/j.palaeo.2024.112660
Fitzgerald, M. G., Mitchum, R. M., Uliana, M. A., and Biddle, K. T. (1990). Evolution of the San Jorge Basin, Argentina. American Association of Petroleum Geologists Bulletin, 74(6), 879–920. https://doi.org/10.1306/0C9B23C1-1710-11D7-8645000102C1865D
Gallagher, T. M., and Sheldon, N.D. (2013). A new paleothermometer for forest paleosols and its implications for Cenozoic climate. Geology, 41(6), 647–650. https://doi.org/10.1130/G34074.1
Huber, B. T., MacLeod, K. G, and Wing, S. L. (Eds.). (2000). Warm climates in Earth history. Cambridge University Press.
INTA DIGITAL GEO. Visor INTA. https://visor.inta.gob.ar/es
Jenkyns, H. C., Gale, A. S., and Corfield, R. M. (1994). Carbon-and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine 131(1), 1–34. https://doi.org/10.1017/S0016756800010451
Krause, J. M., Clyde, W. C., Ibanez-Mejía, M., Schmitz, M. D., Barnum, T., Bellosi, E., and Wilf, P. (2017). New age constraints for early Paleogene strata of Central Patagonia, Argentina: implications for the timing of South American Land Mammal Ages. Geological Society of America Bulletin, 129(7–8), 886–903. https://doi.org/10.1130/B31561.1
Lizzoli, S., Raigemborn, M. S., Varela, A. N., and Paredes, J. M. (2025). Paleosols as paleoclimate proxies to reconstruct mid-Cretaceous paleoclimate conditions in Central Patagonia, Argentina. Sedimentary Geology, 478, 106836. https://doi.org/10.1016/j.sedgeo.2025.106836
Mack, G. H., James, W. C., and Monger, H. C. (1993). Classification of paleosols. Geological Society of America Bulletin, 105(2), 129–136. https://doi.org/10.1130/0016-7606(1993)105%3C0129:COP%3E2.3.CO;2
Merhabi, H., Navidtalab, A., Enayati, A., and Bagherpour, B. (2022). Age, duration, and geochemical signatures of paleo-exposure events in Cenomanian-Santonian sequences (Sarvak and Ilam formations) in SW Iran: Insights from carbon and strontium isotopes chemostratigraphy. Sedimentary Geology, 434, 106136. https://doi.org/10.1016/j.sedgeo.2022.106136
Muggler, C. C., Buurman, P., and van Doesburg, J. D. (2007). Weathering trends and parent material characteristics of polygenetic oxisols from Minas Gerais, Brazil. Geoderma 138(1–2), 39–48. https://doi.org/10.1016/j.geoderma.2006.10.008
Panigatti, J. L. (2010). Argentina 200 años, 200 suelos. Instituto Nacional de Tecnología Agropecuaria (INTA). http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=19496
Paredes, J. M., Foix, N., Allard, J. O., Valle, M. N., and Giordano, S. R. (2018). Complex alluvial architecture, paleohydraulics and controls of a multichannel fluvial system, Bajo Barreal Formation (Upper cretaceous) in the cerro Ballena anticline, Golfo San Jorge basin, Patagonia. Journal of South American Earth Sciences, 85, 168–190. https://doi.org/10.1016/j.jsames.2018.05.007
Paredes, J. M., Foix, N., Allard, J. O., Lizzoli, S., Olazábal, S. X., and Tunik, M. A. Stratigraphy of the Chubut Group (Cretaceous, Golfo San Jorge Basin, Argentina): impacts of allogenic controls on the alluvial macro-architecture (in press). Latin American Journal of Sedimentology and Basin Analysis.
Peel, M. C., Finlayson, B. L., and McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
Quattrocchio, M. E., Agüero, L. S., Iglesias, A., and Raigemborn, M. S. (2024). Palynostratigraphy of the early Paleogene at the Laguna Manantiales locality, southern Golfo San Jorge Basin, Argentina. Publicación Electrónica de la Asociación Paleontológica Argentina, 24(1), 108–128. http://dx.doi.org/10.5710/PEAPA.29.12.2023.491
Raigemborn, M. S., Krause, J. M., Bellosi, E., and Matheos, S. D. (2010). Redefinición estratigráfica del Grupo Río Chico (Paleógeno inferior), en el norte de la Cuenca del Golfo San Jorge, Chubut, Argentina. Revista de la Asociación Geológica Argentina, 67, 239–256.
Raigemborn, M. S., and Beilinson, E. (2020). Stratigraphic architecture and paleosols as basin correlation tools of the early Paleogene infill in central–South Patagonia, Golfo San Jorge Basin, Argentinean Patagonia. Journal of South American Earth Sciences, 99, 102519. https://doi.org/10.1016/j.jsames.2020.102519
Raigemborn, M., Lizzoli, S., Hyland, E., Cotton, J., Peral, L. E. G., Beilinson, E., and Krause, J. M. (2022). A paleopedological approach to understanding Eocene environmental conditions in southern Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 601, 111129. https://doi.org/10.1016/j.palaeo.2022.111129
Retallack, G. J. (2001). Soils of the Past (2nd ed.). Blackwell Science.
Rubel, F., and Kottek, M. (2010). Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, 19(2), 135.
Scotese, C. R., Song, H., Mills, B. J., and van der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503
Sheldon, N. D. (2006). Precambrian paleosols and atmospheric CO2 levels. Precambrian Research, 147(1-2), 148–155. https://doi.org/10.1016/j.precamres.2006.02.004
Sheldon, N. D., Retallack, G. J., and Tanaka, S. (2002). Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. The Journal of Geology, 110, 687–696. https://doi.org/10.1086/342865
Soil Survey Staff (2022). Keys to Soil Taxonomy (13th ed.). United States Department of Agriculture, Natural Resources Conservation Service.
Stinchcomb, G. E., Nordt, L. C., Driese, S. G., Lukens, W. E., Williamson, F. C., and Tubbs, J. D. (2016). A data-driven spline model designed to predict paleoclimate using paleosol geochemistry. American Journal of Science, 316, 746–777. https://doi.org/10.2475/08.2016.02
Stoops, G., Marcelino, V., and Mees, F. (2018). Interpretation of Micromorphological Features of Soils and Regoliths (2nd ed). Elsevier.
Tabor, N. J., and Myers, T. S., 2015. Paleosols as indicators of paleoenvironment and paleoclimate. Annual Review of Earth and Planetary Sciences, 43(1), 333–361. https://doi.org/10.1146/annurev-earth-060614-105355
van Hinsbergen, D. J., De Groot, L. V., van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., and Brinkhuis, H. (2015). A paleolatitude calculator for paleoclimate studies. PLoS One, 10 (6), e0126946. https://doi.org/10.1371/journal.pone.0126946
Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese, F., and Wonik, T. (2008). The Cenomanian-Turonian of the Wunstorf section-(North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2. Newsletters in Stratigraphy, 43 (1), 65–89. https://doi.org/10.1127/0078-0421/2008/0043-0065
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Palike, H., Rohl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369, 1383–1387. https://doi.org/10.1126/science.aba6853
Zachos, J. C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T. (2010). Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals. Earth and Planetary Science Letters, 299(1–2), 242–249. https://doi.org/10.1016/j.epsl.2010.09.004
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sabrina Lizzoli, María Sol Raigemborn

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.