Variations in geochemical proxies (rare earth elements and carbon stable isotopes) related to paleodepth: examples of marine deposits from the Neuquén and Austral basins.
Keywords:
Paleodepths, Stable isotopes, Rare earth elements, Neuquén Basin, Austral Basin.Abstract
The facies analysis and the study of the way of life of the organisms have been historically considered as the conventional methods for the study of the sedimentary environment and therefore for paleodepth estimations. The aim of this work is, first to rule out possible diagenetic alterations of the fossil material and to confirm the ability of the organisms to precipitate their shells in equilibrium with the environment. Secondly, to show how geochemical composition of water varies with depth considering previous paleoenvironmental models obtained from the facies analysis and the way of life of organisms, using innovative geochemical methods such as the study of carbon stable isotopes and rare earth elements plus yttrium in fossils. Finally, it aims to establish the reasons that produce variations in the geochemical composition of waters related to depth.
In the present work, we present two case studies from contemporary marine successions deposited in different paleodepths: Arroyo Loncoche (Neuquén Basin; Fig. 1a) and Río Guanaco (Austral Basin; Fig. 1b). In both cases, paleodepths were defined based on the facies analysis and the way of life of organisms. The Arroyo Loncoche sedimentary section (Neuquén Basin) includes the complete succession of the Vaca Muerta and Chachao Formations (Fig. 2) and has been defined as ramp deposits that include different environments from basin to proximal middle ramp. The Chachao Formation is composed mainly of oyster biostromes of the genus Aetostreon sp. (Kietzmann et al., 2008, 2014; Kietzmann and Palma, 2009; Gómez Dacal et al., 2018). From the study of the way of life of oysters, Hernández-Ocaña et al. (2015) showed that this genus lived under shallow-water conditions, from the intertidal zone to 30 m depth maximum. The Río Guanaco sedimentary section of the Austral Basin is found in the southeastern area of the Santa Cruz Province, and includes the complete Springhill Formation and the lower member of the Río Mayer Formation (Fig. 2; Richiano et al., 2012). From the fossils and facies analyses, this sequence has been characterized as an external platform composed mainly of black shales, rich in belemnites of the Belemnopsis sp. fauna (Richiano et al., 2015). Jarvis (1980) postulates, that belemnites lived in depths between 120 and 330 m.
A representative sedimentary succession of each study area was carried out, selecting the best and most complete outcrops of the formations (Fig. 3). In addition, a systematic analysis of the fossil material was made in order to stablish their petrographic (cathodoluminscence and scanning electron microscopy) and geochemical characteristics (rare earth elements and yttrium and stable isotopes of C and O).
From cathodoluminescence and scanning electron microscopy studies it was possible to demonstrate that selected samples of Aetostreon sp. and Belemnopsis sp. were well preserved (Fig. 4).
The REY results, obtained from belemnites, show that the Río Guanaco section contains higher HREY, Y/Ho ratios and the La and Eu anomalies than Arroyo Loncoche section (Fig. 5; Table 1). Oysters and belemnites precipitate their shells in equilibrium with the sea-water composition, where the difference in REY values recorded is attributed to the greater influence of continental sediment supply at the time of the formation of the oyster shells.
Chemostratigraphic curves were obtained from the isotopic results (Fig. 6; Table 2). The curve of ?13C from the Río Guanaco section shows more negative values and less variations than the curve of the Arroyo Loncoche section (Fig. 6). This difference Is considered as response of the belemnites may have precipitated their shells under deeper environmental conditions, where the export of carbon from the surface to the deep ocean is continuous and generates an enrichment of 12C.
From the results of the present study the following conclusions are obtained:
- According to the way of life of the organisms and the interpreted environments in the sedimentary successions, we suggest that belemnites lived in a deeper marine environment, while oysters lived from the intertidal to the 30 m depth.
- Both cathodoluminescence and scanning electron microscopy studies indicate a good preservation for selected samples of Aetostreon sp. and Belemnopsis
The Río Guanaco section (Austral Basin) shows higher HREY values, Y/Ho rations and Eu and La anomalies than those recorded in Arroyo Loncoche (Neuquén Basin). These differences
agree with the environmental conditions in relation to the continental sedimentary supply during the precipitation of the shells.
- The chemostratigraphic curve from Río Guanaco section shows more negative and more homogeneous values than those recorded in the curve of Arroyo Loncoche section. This difference is attributed to belemnites having precipitated their shells in deeper environments, where the export of carbon from the surface to the deep ocean is continuous and generates an enrichment of 12C.
- Isotopic and REY trends corroborate that belemnites from Austral Basin lived in a deeper marine environment than oysters from Neuquén Basin.
References
Aguirre-Urreta, M.B., G.D. Price, A.H. Ruffell, D.G. Lazo, R.M. Kalin, N. Ogle y P.F. Rawson, 2008. Southern Hemisphere Early Cretaceous (Valanginian-Early Barremian) carbon and oxygen isotope curves from the Neuquén Basin, Argentina. Cretaceous Research 29:87-99.
Aguirre-Urreta, M.B., D.G. Lazo, M. Griffin, V.V. Vennari, A.M. Parras, C. Cataldo, R. Garberoglio y L. Luci, 2011. Megainvertebrados del Cretácico y su importancia bioestratigráfica. En H.A., Leanza, C. Arregui, O. Carbone, J.C. Danieli y J.M. Vallés (Eds), Geología y Recursos Naturales de la Provincia del Neuquén, 465-488.
Armstrong, H.A., D.G. Pearson y M. Griselin, 2001. Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements. Geochimica et Cosmochimica 65(3):35-441.
Arbe, H.A., 2002. Análisis estratigráfico del Cretácico de la Cuenca Austral. En M.J. Haller (Ed.), Geología y Recursos Naturales de Santa Cruz. Relatorio del Decimoquinto Congreso Geológico Argentino, 103-128.
Bertram, C.J., H. Elderfield, R.J. Aldridge y S.C. Morris, 1992. 87Sr/86Sr, 143Nd/144Nd and REEs in Silurian phosphatic fossils. Earth and Planetary Science Letters, 113(1):239-249.
Brand, U. y J. Veizer, 1980. Chemical diagenesis of a multicomponent carbonate system—1: trace elements. Journal of Sedimentary Petrology 51(3):987-997.
Carozzi, A.V., F. Berkowski, M. Rodriguez, M. Sanckes, M y T. Vonesht, 1981. Estudio de microfacies de la Formación Chachao (Valanginiano), Provincia de Mendoza. Actas del VIII Congreso Geológico Argentino 2:545-565.
Digregorio, J.H. y M.A. Uliana, 1980. Cuenca Neuquina. En J.C.M. Turner (Ed.), Geología Regional Argentina. Academia Nacional de Ciencias, Córdoba, 439-506.
Doyle, P., D.G. Poiré, L.A. Spalletti, D. Pirrie, P.Brenchley y S.D. Matheos, 2005. Relative oxygenation of the Tithonian- Valanginian Vaca Muerta- Chachao formations of the Mendoza Shelf, Neuquén Basin, Argentina. En G.D. Veiga, G.D., L.A. Spalletti, J.A. Howell, E. Schwarz (Eds.), The Neuquén Basin, Argentina: a Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society, London, Special Publication 252:185-206.
Erba, E., A. Bartolini y R.L. Larson, 2004. Valanginian Weissert oceanic anoxic event. Geology 32:149-152.
Frimmel, H.G., 2009. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology 258:338-353.
Girard, C. y C. Lécuyer, 2002. Variations in Ce anomalies of conodonts through the Frasnian/Famennian boundary of Poland (Kowala–Holy Cross Mountains): implications for the redox state of seawater and biodiversity. Palaeogeography, Palaeoclimatology, Palaeoecology 181(1):299-311.
Gómez Dacal, A.R., 2018. Petrología, geoquímica y diagénesis de sedimentitas y fósiles carbonáticos del Jurásico superior - Cretácico inferior de las Cuencas Neuquina y Austral, Argentina. Tesis doctoral, Universidad Nacional de La Plata, 299 pp.
Gómez Dacal, A.R., L.E. Gómez Peral, L.A. Spalletti, A.N. Sial, A. Siccardi y D.G. Poiré, 2018. First record of the Valanginian positive carbón isotope anomaly in the Mendoza shelf, Neuquén Basin, Argentina: Paleoclimatic implications. Andean Geology 45(2):111-129.
Gómez Dacal, A.R., S.M. Richiano, L.E. Gómez Peral, L.A. Spalletti, A.N. Sial y D.G. Poiré, 2019. Evidence of warm seas in high latitudes of the southern South America during the lower Cretaceous. Cretaceous Research 95:8-20.
Gómez Peral, L.E., E. Schwarz, A.N. Sial y L.A. Spalletti, 2012. Palaeo-proxies recording primary signature of C-O isotope data from the Valanginian Mulichinco Formation, Neuquen Basin, Argentina: First results. 8º Simposio Sudamericano de Geología Isotópica, Medellín, Colombia, CD Actas.
Gómez-Peral, L.E., Arrouy, M.J., Poiré, D.G. y C.E. Cavarozzi, 2019. Redox-sensitive trace element distribution in the Loma Negra Formation in Argentina: The record of an Ediacaran oxygenation event. Precambrian Research https://doi. org/10.1016/j.precamres.2019.105384
Grandjean, P., H. Cappetta y F. Albarède, 1988. The Ree and ?Nd of 40–70 Ma old fish debris from the west-African platform. Geophysical Research Letters 15(4):389-392.
Groeber, P., 1946. Observaciones Geológicas a lo largo del meridiano 70°. Asociación Geológica Argentina, Reimpresiones 1:1-174.
Hatcher, J.B., 1897. On the geology of Southern Patagonia. American Journal of Science 4(23):327-354.
Hernández-Ocaña, M.I., S.A. Quiroz-Barroso y F. Sour-Tovar, 2015. Tafonomía y paleoecología de las ostras de la Formación San Juan Raya, Aptiense del sureste de Puebla, Mexico. Boletín Geológico y Minero 126(1):37-62.
Hilting, A.K., L.R. Kump y T.J. Bralower, 2008. Variations in the oceanic vertical carbon isotope radient and their implications for the Paleocene–Eocene biological pump. Paleoceanography and Paleoclimatology doi:10.1029/2007PA001458
Howell, J.A., E. Schwarz, L.A. Spalletti y G.D. Veiga, 2005. The Neuquén Basin: an overview. En G.D. Veiga, L.A. Spalletti, J.A. Howell y E. Schwarz, (Eds.), The Neuquén Basin, Argentina: a Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society, London, Special Publication 252:1-14.
Jarvis, I., 1980. Palaeobiology of Upper Cretaceous belemnites from the phosphatic chalk of the Anglo–Paris Basin. Palaeontology 23(4):889-914.
Johannesson, K.H., K. Telfeyan, D.A. Chevis, B.E Rosenheim y M.I. Leybourne, 2014. Rare earth elements in stromatolites—1. Evidence that modern terrestrial stromatolites fractionate rare earth elements during incorporation from ambient waters. Evolution of Archean Crust and Early Life. Springer, Netherlands, 85-411.
Kemp, R.A. y C.N. Trueman, 2003. Rare earth elements in Solnhofen biogenic apatite: geochemicalclues to the palaeoenvironment. Sedimentary Geology 155(1):109-127.
Kietzmann, D.A., R.M. Palma y G.S. Bressan, 2008. Facies y microfacies de la rampa Tithoniana- Berriasiana de la Cuenca Neuquina (Formación Vaca Muerta) en la sección del Arroyo Loncoche - Malargüe, Provincia de Mendoza. Revista de la Asociación Geológica Argentina 63:696-713.
Kietzmann, D.A. y R.M. Palma, 2009. Tafofacies y biofacies de Formación Vaca Muerta en el sector surmendocino de la Cuenca Neuquina: implicancias paleoecológicas, sedimentológicas y estratigráficas. Ameghiniana 46:321-343.
Kietzmann, D.A., R.M. Palma, A.C. Riccardi, J. Martín-Chivelet y J. López-Gómez, 2014. Sedimentology and sequence stratigraphy of a Tithonian – Valanginian carbonate ramp (Vaca Muerta Formation): A misunderstood exceptional source rock in the Southern Mendoza area of the Neuquén. Sedimentary Geology 302: 64-86.
Kietzmann, D.A., R.M. Palma, M. Paula y I. Llanos, 2015. Cyclostratigraphy of an orbitally-driven Tithonian– Valanginian carbonate ramp succession, Southern Mendoza, Argentina: Implications for the Jurassic–Cretaceous boundary in the Neuquén Basin. Sedimentary Geology 315:29-46.
Korte, C., S.P. Hesselbo, H.C. Jenkyns, R.E.M. Rickaby, y C. Spötl, 2009. Palaeoenvironmental significance of carbon and oxygen isotope stratigraphy of marine Triassic-Jurassic boundary sections in SW Britain. Journal of the Geological Society 166:431-445.
Korte, C. y S.P. Hesselbo, 2011. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic. Paleoceanography and Paleoclimatology 26:1-18.
Kraemer, P.E. y A.C. Riccardi, 1997. Estratigrafía de la región comprendida entre los lagos Argentino y Viedma (49°40’ – 50°10’ LS), Provincia de Santa Cruz. Revista de la Asociación Geológica Argentina 52(3):333-360.
Larriestra, C. y R. Merino, 2014. High Resolution Non-Destructive Chemostratigraphy of Vaca Muerta Fm: New Evidences of Black Shale Sedimentology Features. American Association of Petroleum Geologists, Annual Convention and Exhibition, Houston, Article 1840115.
Lazo, D.G., M.B. Aguirre-Urreta, G.D. Price, P.F. Rawson, A.H. Ruffell y N. Ogle, 2008. Palaeosalinity variations in the Early Cretaceous of the Neuquén Basin, Argentina: Evidence from oxygen isotopes and palaeoecological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 260:477- 493.
Leanza, H.A., H. Marchese y J. Riggi, 1977. Estratigrafía del Grupo Mendoza con especial referencia a la Formación Vaca Muerta entre los paralelos 35º y 40º L.S., Cuenca Neuquina- Mendocina. Revista de la Asociación Geológica Argentina 32(3):190-208.
Leanza, H.A., 1981. Faunas de ammonites del Jurásico Superior y Cretácico Inferior de América del Sur, con especial consideración de la Argentina. En W. Volkheimer, E. Musacchio, (Eds.), Cuencas sedimentarias del Jurásico y Cretácico de América del Sur 2,559-597.
Lécuyer, C., P. Grandjean, J.A. Barrat, J. Nolvak, C. Emig, F. Paris y M. Robardet, 1998. ?18O and REE contents of phosphatic brachiopods: a comparison between modern and lower Paleozoic populations. Geochimica et Cosmochimica 62(14):2429-2436.
Lécuyer, C., B. Reynard y P. Grandjean, 2004. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites. Chemical Geology 204(1):63-102.
Legarreta, L. y M.A Uliana, 1991. Jurassic- Cretaceous marine oscillations and geometry of back-arc basin fill, central Argentine Andes. Internacional Association of Sedimentology, Special Publication 12:429-450.
Li, Q., J.M. McArthur, P. Doyle, N. Janssen, M.J. Leng, W. Müller y S. Reboulet, 2013. Evaluating Mg/Ca in belemnite calcite as a palaeo-proxy. Palaeogeography, Palaeoclimatology, Palaeoecology, 388:98-108.
Mc Arthur, J.M., J. Mutterlose, G.D. Price, P.F. Rawson, A.H. Ruffell y M.F. Thirlwall, 2004. Belemnites of Valanginian, Hauterivian and Barremian age: Sr-isotope stratigraphy, composition (87Sr/86Sr, ?13C, ?18O, Na, Sr, Mg), and palaeo-oceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 202(3-4):253-272.
Mitchum, R.M. y M.A. Uliana, 1986. Seismic Stratigraphy of Carbonate Depositional Sequences, Upper Jurassic - Lower Cretaceous, Neuquén Basin, Argentina. En B.R. Bero y D.G. Woolverton (Eds.), Seismic stratigraphy: an integrated approach to hydrocarbon exploration. American Association of Petroleum Geologists, Memoir 39:255-274.
Mombrú, C.A., F. Bettini y J. Vazquez, 1976. Significado estratigráfico y sedimentología de las acumulaciones biocarbonáticas del Cretácico inferior surmendocino. Actas del VI Congreso Geológico Argentino, Bahía Blanca 1:685-700.
Mombrú, C.A., M.A. Uliana y F. Bercowski, 1978. Estratigrafía y sedimentología de las acumulaciones biocarbonáticas del Cretácico inferior Surmendocino. VII Congreso Geológico Argentino, Neuquén 1:685-700.
Nawratil, A., H. Gómez y C. Larriestra, 2012. Key tools for black shales evaluation: geostatistics and inorganic geochemistry applied to Vaca Muerta Formation, Neuquén Basin, Argentina. American Association of Petroleum Geologists, International Conference & Exhibition, Singapur, Article 41028.
Nothdurft, L.D., G.E. Webb y B.S. Kamber, 2004. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta, 68:263-283.
Nullo, F.E., C.A Proserpio y G. Blasco de Nullo, 1981. El Cretácico de la Cuenca Austral entre el Lago San Martín y Río Turbio. En W. Volkheimer y E.A. Mussachio (Eds.), Cuencas Sedimentarías del Jurásico y Cretácico de América del Sur, 181-220.
Nunn, E.V. y G.D. Price, 2010. Late Jurassic (Kimmeridgian– Tithonian) stable isotopes (?18O, ?13C) and Mg/Ca ratios: new palaeoclimate data from Helmsdale, northeast Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology 292:325- 335.
Olivier, N. y M. Boyet, 2006. Rare earth and trace elements of microbialites in upper Jurassic coral- and sponge-microbialite reefs. Chemical Geology, 230(1):105-123.
Palma, R.M., S. Lanés, P. Miretzky y A.M. Fazio, 1999. Evidencias geoquímicas y neomorfismo en rocas de la Formación Chachao (Valanginiano)-anticlinal Malargüe, Mendoza. Revista de la Asociación Geológica Argentina 54:248-256.
Palma, R.M. y S. Lanés, 2001. Shell bed stacking patterns in the Chachao Formation (Early Valanginian) in Malargüe area, Mendoza province, Neuquén Basin-Argentina. Carbonates and Evaporites 16:168-180.
Palmer, M.R., 1985. Rare earth elements in foraminifera tests. Earth and Planetary Science Letters 73(2):285-298.
Pankhurst, R.J., T.R. Riley, C.M. Fanning y S.P. Kelley, 2000. Episodic silicic volcanism in Patagonia and Antarctic Peninsula: Chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology 41:605-625.
Peroni, G., M. Cagnolatti y M. Pedrazzini, 2002. Cuenca Austral: marco geológico y reseña histórica de la actividad petrolera. En M. Schiuma, G. Hinterwimmer, G. Vergani (Eds.), Rocas Reservorio de las Cuencas Productivas Argentinas. V Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata, 11-19.
Picard, S., C. Lécuyer, J.A. Barrat, J.P. Garcia, G. Dromart y S.M. Sheppard, 2002. Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo-Paris Basin, France and England). Chemical Geology 186(1):1-16.
Pirrie, D., J.D. Marshall, P. Doyle y A.C. Riccardi, 2004. Cool early Albian climates; new data from Argentina. Cretaceous Research 25:27-33.
Price, G.D. y J. Mutterlose, 2004. Isotopic signals from late Jurassic -early Cretaceous (Volgian – Valanginian) sub-Arctic belemnites, Yatria River, Western Siberia. Journal of the Geological Society 161:959-968.
Price, G.D. y E.V. Nunn, 2010. Valanginian isotope variation in glendonites and belemnites from Arctic Svalbard: Transient glacial temperatures during the Cretaceous greenhouse. Geology 38(3):251-254.
Riccardi, A.C., S.E. Damborenea, M.O. Manceñido y H.A. Leanza, 2011. Megainvertebrados jurásicos y su importancia geobiológica. En: Leanza, H.A., C. Arregui, O. Carbone, J.C. Daniela y J.M. Vallés, (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén, 441-464.
Riccardi, A.C., 2015. Remarks on the Tithonian–Berriasian ammonite biostratigraphy of west central Argentina. Volumina Jurassica 13:23-52.
Richiano, S., 2012. Sedimentología e Icnología de la Formación Río Mayer, Provincia de Santa Cruz Argentina. Tesis doctoral, Universidad Nacional de La Plata, 278 pp.
Richiano S., A.N. Varela, A. Cereceda y D.G. Poire, 2012. Evolución paleoambiental de la Formación Río Mayer, Cretácico Inferior, Cuenca Austral, Provincia de Santa Cruz, Argentina. Latin American Journal of Sedimentology and Basin Analysis 19:3-26.
Richiano, S., A.N. Varela, L.E. Gómez Peral, A. Cereceda y D.G. Poiré, 2015. Composition of the Lower Cretaceous source rock from the Austral Basin (Río Mayer Formation, Patagonia, Argentina): Regional implication for unconventional reservoirs in the Southern Andes. Marine and Petroleum Geology 66:764-790.
Richiano, S., L.E. Gómez-Peral, A.N. Varela, A.R. Gómez Dacal, C.E. Cavarozzi y D.G. Poiré, 2019. Geochemical characterization of black shales from the Río Mayer Formation (Early Cretaceous), Austral-Magallanes Basin, Argentina: Provenance response during Gondwana break-up. Journal of South American Earth Sciences 93:67-83.
Roberts, N.L., A.M. Piotrowski, H. Elderfield, T.I. Eglinton y M.W. Lomas, 2012. Rare earth element association with foraminifera. Geochimical et Cosmochimica Acta, 94:57-71.
Russo, A. y M.A. Flores, 1972. Patagonia Austral Extraandina. En A.F. Leanza (Ed.), Geología Regional Argentina. Academia Nacional de Ciencias, 707-725.
Sholkovitz, E. y G.T. Shen, 1995. The incorporation of rare earth elements in modern coral. Geochimimical et Cosmochimica Acta, 59(13):2749-2756.
Spalletti, L.A., J.R. Franzese, S.D. Matheos y E. Schwarz, 2000. Sequence stratigraphy in tidally-dominated carbonate-siliciclastic ramp, the Tithonian of the Southern Neuquén Basin, Argentine. Journal of the Geological Society, 157:433- 446.
Spalletti, L.A., E. Schwarz y G.D. Veiga, 2014. Geoquímica inorgánica como indicador de procedencia y ambiente sedimentario en sucesiones de lutitas negras: los depósitos transgresivos titonianos (Formación Vaca Muerta) de la Cuenca Neuquina, Argentina. Andean Geology, 41:401-435.
Spalletti, L.A., D. Pirrie, G.D Veiga, E. Schwarz, G. Rollinson, R. Shai, D. Haberlah y A. Butcher, 2015. Análisis mineralógico integrado (QEMSCAN y DRX) de lutitas negras: los depósitos tithonianos basales de la Formación Vaca Muerta (Cuenca Neuquina, Argentina). Latin American Journal of Sedimentology and Basin Analysis 22(1):13-28.
Steuber, T., M. Rauch, J.P. Masse, J. Graaf y M. Malkoc, 2005. Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes. Nature 437(7063):1341-1344.
Thomas, C.R., 1949. Geology and petroleum exploration in Magallanes Province, Chile. American Association of Petroleum Geologists Bulletin 33:1553-1578.
Tostevin R., G.A. Shields, G.M. Tarbuck, T. He, M.O. Clarkson, y R.A. Wood, 2016. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology 438:146-162.
Ullmann, C.V. y C. Korte, 2015. Diagenetic alteration in low-Mg calcite from macrofossils: a review. Geological Quarterly 59:3- 20.
Ullmann, C.V., R. Frei, C. Korte y S.P. Hesselbo, 2015. Chemical and isotopic architecture of the belemnite rostrum. Geochimica et Cosmochimica Acta, 159:231-243.
Vergani, G.D., A.J. Tankard, H.J. Belotti y H.J. Welsink, 1995. Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. En: Tankard, A.J., R. Suárez Soruco, H.J. Welsink (Eds.), Petroleum Basins of South America. American Association of Petroleum Geologists, Memoir 62, 383-402.
Weaver, C.E., 1931. Paleontology of the Jurassic and Cretaceous of West Central Argentina. University of Washington, Memoir 1, 1-469.
Webb, G.E. y B.S. Kamber, 2000. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochimica et Cosmochimica. Acta 64(9):1557-1565.
Wierzbowski, H. y M.M. Joachimski, 2007. Reconstruction of late Bajocian-Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (central Poland). Palaeogeography, Palaeoclimatology, Palaeoecology 254:523-540.
Wright, J., R.S. Seymour y H.F. Shaw, 1984. REE and Nd isotopes in conodont apatite: variations with geological age and depositional environment. Geological Society of America Special Papers 196:325-340.
Wright, J., H. Schrader y W.T. Holser, 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta 51(3):631-644.
Zakharov, Y.D., Y. Shigeta, R. Nagendra, P.P. Safronov, O.P. Smyshlyaeva, A.M. Popov, T.A. Velivetskaya y T.B. Afanasyeva, 2011. Cretaceous climate oscillations in the southern palaeolatitudes: New stable isotope evidence from India and Madagascar. Cretaceous Research 32:623-645.
Zaky A.H., K. Azmy, U. Brand y J. Svavarsson, 2016. Rare earth elements in deep-water articulated brachiopods: An evaluation of seawater mass. Chemical Geology 435:22-34.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.