Late Holocene record of the brine shrimp Artemia sp. fecal pellets and cysts in association with evaporitic minerals from Chasicó Lake (Buenos Aires Province, Argentina): implications as paleoenvironmental indicators

Authors

  • Adriana M. Blasi CCIC-División Mineralogía, Petrología y Sedimentología. Museo de La Plata, UNLP. Paseo del Bosque S/N, 1900 La Plata.
  • Aldo R. Prieto Instituto de Investigaciones Marinas y Costeras, CONICET-Universidad Nacional de Mar del Plata, Laboratorio de Paleoecología y Palinología, Funes 3250, 7600 Mar del Plata.
  • Horacio Frazer Instituto de Investigaciones Marinas y Costeras, CONICET-Universidad Nacional de Mar del Plata, Laboratorio de Paleoecología y Palinología, Funes 3250, 7600 Mar del Plata.

Keywords:

Cysts and fecal pellets, Artemia, evaporitic minerals, Argentina

Abstract

Fecal pellets and cysts of the brine shrimp Artemia (Crustacea, Branchiopoda, Anostraca) constitute an important component of the biogenic carbonate sedimentation in many saline and hypersaline lakes bodies. However, in Argentina there are not studies of its presence in the fossil record, being this paradoxical given the abundance of large and diverse endorheic salt basins existing in the country. In this study we present the morphological and petrographic characteristics of fecal pellets and cysts of Artemia sp. and its association with evaporitic minerals occurring in a sedimentary core covering the last ca.1300 years (1220 years cal. BP) from the Chasicó Lake (38 ° 37 ‘S; 63 ° 05’ W) (Fig. 1) discussing the potential of these indicators in paleoenvironmental studies. Taking into account the ecological requirements of this crustacean, the abundance of fecal pellets and cyst in the studied deposits is discussed in relation to the physical-chemical changes that occurred during that time.
The sedimentary section was carried out considering the changes of texture, structure and color of the layers to select 18 sampling intervals (Fig. 2). The qualitative determination of the total sample was performed by X-ray powder diffraction analysis. The fecal pellets are white to dry light gray and are presented in elongated cylindrical sections (Fig. 3), with one end straight and another in blunt point. They have a maximum average length of 680 µm (Fig. 4; Table 1) with a rounded net edge. They consist of a carbonaceous sludge, with a darker core of organic matter and clay, an edge with an outer shell of authigenic carbonate in very small crystals (Fig. 5). In the impregnated sections, light and dark sheets were differentiated. In light sheets, pellets with ovoidal and elongated shapes are concentrated. In contrast, in the dark layers, the pellets are presented in a smaller proportion and are distributed in a weave of gray fibers of organic matter that would correspond to a microbial mat. The cysts are reddish with an average size of 232.36 ± 8.7 µm (Table 1, Fig. 3) and are entire, broken (open) and invaginated.
A succession of siliciclastic mud (mostly formed by extrabasinal clastic components) and carbonaceous peloidal micritic-aragonitic mud with evaporites minerals (mostly intrabasinal chemical and biochemical components) was recognized. The sequence was divided into four units (Fig. 2): (1) Unit C: grayish green (5Y 3/1; 5 and 4/2, 5Y 5/4) laminated and disturbed micritic-aragonitic mud with halite and thenardite (76-143 cm); (2) Unit B: gray (10YR 6/1 and 10YR 4/2) disturbed massive micritic-aragonitic mud with thenardite (Na2SO4) (57-76 cm); (3) Unit A: gray (10YR 5/1) micritic-aragonitic laminates mud with halite and thenardite subordinate (20-57 cm); (4) Unit H: gray (10YR 5/1) siliciclastic and micritic massive mud with halite (0-20 cm) (Fig. 2). Artemia sp. fecal pellets and cysts were registered between ca. 730 AD and 1978 AD and are absent after ca. 1978 AD in the lacustrine deposits of Chasicó Lake.
The sedimentary section (Fig. 2) showed a predominance of biochemical and chemical deposition and very little terrigenous material between ca. 730 AD and 1411 AD (units B and C), suggesting that the accumulation would have occurred far from the coastal margins and at depths equal to or greater than 3 m (Last, 1994). The increase of terrigenous material in some samples and the presence of lamination in unit A (subunit A1) (between ca. 1411 AD and 1978 AD) would also support that the deposition of this unit occurred in the central areas of the lake and would indicate the absence of both bottom currents (Eardley and Gvosdetsky, 1960) and seasonality in the deposition, with intervals with greater extra-basinal contribution. From ca. 1978 AD (unit H) there is an increase in the extra-basin contribution coinciding with the greater contributions from the Arroyo Chasicó water basin.
The differences in mineralogy of evaporitic species associated with the presence of fecal pellets and cysts of Artemia sp. in units A, B and C, and the absence of pellets and cysts in unit H allowed recognizing four different stages that suggest net changes in the chemical environment of the lake during the last 1300 years (Fig. 2). Between ca. 730 AD and 1233 AD (unit C) there was a greater proportion of fecal pellets and cysts associated with halite and thenardite, the later as a stable phase of the mirabilite. This mineralogical association would reflect periods with high salinities (extreme hypersaline environments) that allowed the formation of halite and intervals of lower salinity (hypersaline environments) with deposition of sodium sulfate. Between ca. 1233 AD and 1411 AD (unit B) the presence of free thenardite from other salts suggests the formation of mirabilite as primary sulfate, which occurred during cold periods and salinity below the saturation index of halite. Deposits with thenardite, as the only evaporitic mineral, suggest lower salinities than in unit C that would have occurred during or after its deposition, which prevented the precipitation of chlorides. Coincidentally, a lower representation of Artemia sp. cysts was observed. From ca. 1411 AD to 1978 AD (unit A) the sequence presents sectors with lamination and abundant of fecal pellets of Artemia sp. and very thin to thin stratification (subunit A1, Fig. 2). The presence of halite suggests a significant increase in salinity over the entire period that allowed the sulfate to be in solution, or that its deposition occurred only in the form of mirabilite in coastal areas by cooling during winters. Between ca. 1978 AD and 2010 AD (unit H) fecal pellets and cysts of Artemia sp. are absent and halite is the only evaporitic mineral. This apparent contradiction would be explained by the formation of interstitial brine and an intrasedimentary precipitation of chloride, under current salinity conditions and not the salinity that corresponds to the deposition of muds. The absence of Artemia sp. was related to a reduction in salinity and the entry of predators to the lake, such as the pejerrey (Odontesthes bonariensis) that created unfavorable conditions for the reproduction and proliferation of Artemia sp. The presence and/or absence of fecal pellets and cysts of Artemia sp. showed a positive correlation with the increase and/or decrease in salinity in the lake with respect to the estimated values from precipitated salts. Inferences for the 20th century are supported by the historical and instrumental data from the Chasicó Lake.
Taking into account that the cyst size is a biometric characteristic of the Artemia sp. species, this measure was used to assign the fossil cysts to A. persimilis, although specific determinations are necessary to ensure it. The presence of this native species before ca. 1978 AD and its subsequent absence suggests ecological reasons related to the effects of climate change that occurred since the end of 1970s and raises questions about the current biogeographic distribution of Artemia sp. in Argentina in relation to these changes.

References

Aliaga, V.S., F. Ferrelli, V.Y. Bohn y M.C. Piccolo, 2016. Utilización de imágenes satelitales para comprender la dinámica lagunar en la Región Pampeana. Revista de teledetección. Asociación Española de Teledetección 46: 133-146.

Amat, F., R. G. Cohen, F. Hontoria y J. C. Navarro, 2004. Further evidence and characterization of Artemia franciscana (Kellogg, 1906) populations in Argentina. Journal of Biogeography 31: 1735-1749.

Angelelli, V., J. Villa y J.M. Suriano, 1972. Área del polo de desarrollo de Bahía Blanca. Recursos minerales y rocas de aplicación. Anales LEMIT, Serie II (2): 48 pp.

Asem, A., N. Rastegar-Pouyani y P. De Los Ríos-Escalante, 2010. The genus Artemia Leach, 1819 (Crustacea: Branchiopoda). I. True and false taxonomical descriptions. Latin American Journal of Aquatic Research 38 (3): 501-506.

Asem, A. y S. Sun, 2014. SEM Study of diversity in the cyst surface topography of nine parthenogenetic Artemia (Crustacea: Anostraca) populations from China. Microscopy Research and Technique 77: 1005-1014.

Berasain, G.E., D.C. Colautti, M. Remes Lenicov, F. Argemi, V.Y. Bohn y L.A. Miranda, 2014. Impact of water salinity on Odontesthes bonariensis (Actinopterygii, Atherinopsidae) fisheries in Chasicó Lake (Argentina). Hydrobiologia 752 (1): 167-174.

Biglia, H.O., F. Colombo, E. Piovano y F. Córdoba, 2013. Thenardita y mirabilita en precipitados químicos litorales de la Laguna Mar Chiquita, Córdoba (Argentina). En: A. Conte Grand, B. Castro de Machuca y E. Meissl (compiladoras). Avances en mineralogía, metalogenia y petrología: 15-18.

Cuña Rodríguez, C.C., E.L. Piovano, F. Gracía-Rodríguez y D. Ariztegui, 2018. Variabilidad hidroclimática en latitudes medias del sudeste de Sudamérica desde el Último Máximo Glaciar hasta el período cálido actual. 7º Congreso Argentino de Cuaternario y Geomorfológico, Actas: 84-85. Puerto Madryn.

Bonorino, A.G., 1991. Evaluación de la recarga de las aguas subterráneas en el área de la vertiente occidental de las Sierras Australes. Revista Asociación Geológica Argentina 46 (1-2): 93-102.

Burgos, J.J. y A.L. Vidal, 1951. Los climas de la República Argentina según la nueva clasificación de Thornwaite. Meteoros 1: 1-32.

Castro Mejía, J., T. Castro Barrera, J.L. Arredondo Figueroa, L.H. Hernández Hernández, G. Castro Mejía, R. De Lara Andrade y M. Dosta Monroy, 2009. La salinidad y su efecto en la reproducción del crustáceo Artemia sp. Contactos 73: 5-15.

Cohen, R.G., 1995. Crustacea Anostraca. En E.C. Lopretto y G. Tell (Eds.), Ecosistemas de aguas continentales. Metodologías de estudio, T II. Ediciones Sur, La Plata, República Argentina. 871-895 pp.

Cohen, R.G., 2012. Review of the biogeography of Artemia Leach, 1819 (Crustacea: Anostraca) in Argentina. International Journal of Artemia Biology 2(1): 9-23.

Cohen, R., F. Amat, F. Honoria y J.C. Navarro, 1999. Preliminary characterization of some Argentinean Artemia sp. populations from La Pampa and Buenos Aires provinces. International Journal of Salt Lake Research 8: 329-340.

Cordini, R., 1950. Contribución a los cuerpos salinos de Argentina: Colorada Grande, Choiqué, cuerpos salinos de la Fosa de Utracán - Acha, salitral y salina de Pocitos, Salinas Chicas y Chasicó. Dirección General de Industria Minera. Anales III, 321 pp.

Córdoba, F.E., L. Guerra, C. Cuña Rodríguez, F. Sylvestre y E.L. Piovano, 2014. Una visión paleolimnológica de la variabilidad hidroclimática reciente en el centro de Argentina: desde la Pequeña Edad de Hielo al siglo XXI. Latin American Journal of Sedimentology and Basin Analysis, 21 (2): 139-163.

Correa Sandoval, F. y L.F. Bückle Ramírez, 1993. Morfología y biometría de cinco poblaciones de Artemia franciscana (Anos­traca: Artemiidae). Revista Biología Tropical, 41: 103-110

Correa Viale, M.C., 1983. La cima del médano. Ediciones Centro Cultural Corregidor, Buenos Aires, 271 pp.

Cuadrado, D.G. y A.M. Blasi, 2017. Reconocimiento de actividad microbiana en ambientes silicoclásticos actuales y en paleoambientes. estudio comparativo para el establecimiento de análogos. Latin American Journal of Sedimentology and Basin Analysis, 24 (2): 39-73.

Djamali, M., P. Ponel, T. Delille, A. Thiéry, A. Asem, V.A. Ponel, J. de Beaulieu, H. Lahijani, M. Shah-Hosseini, A. Amini y L. Stevens, 2010. A 200,000-year record of the brine shrimp Artemia sp. (Crustacea: Anostraca) remains in Lake Urmia, NW Iran. International Journal of Aquatic Science 1(1): 14-18.

Dupraz, C., R. Pamela Reid, O. Braissant, A. Decho, R. Norman y P. Visscher, 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96: 141-162.

Eardley, A.J., 1938. Sediments of Great Salt Lake. American Association Petroleum Geologists Bulletin 22: 1305-1411.

Eardley J. y V. Gvosdetsky, 1960. Analysis of Pleistocene core from Great Salt Lake, Utah. Geological Society of America Bulletin 71: 1323-1344.

Frazer, H., A.R. Prieto y J.C. Carbonella, 2020. Modern pollen source and spatial distribution from surface lake sediments in the southwestern Pampa grasslands, Argentina: implications to interpret Holocene pollen records. Review of Palaeobotany and Palynology 277, doi.org/10.1016/j.revpalbo.2020.104207

Gómez, S.E., R. C. Menni, J. Gonzalez Naya y L. Ramírez, 2007. The physical–chemical habitat of the Buenos Aires pejerrey, Odontesthes bonariensis (Teleostei, Atherinopsidae), with a proposal of a water quality index. Environmental Biological Fishing 78: 161-171.

Guerra, L., E. Piovano, F. Córdoba, F. Sylvestre y S. Damatto, 2015. Hydrological and environmental evolution of the shallow Lake Melincué, central Argentinean Pampas along the last millennium. Advances in Paleohydrology Research and Applications. Journal of Hydrology. DOI: 10.1016/j.jhydrol.2015.01.002.

Guerra, L., E.L. Piovano, F.E. Córdoba, K. Tachikawa, F. Rostek, M. Garcia, E. Bard y F. Sylvestre, 2017. Climate change evidences from the end of the Little Ice Age to the Current Warm Period registered by Melincue Lake (Northern Pampas,

Argentina). Quaternary International 438: 160-174.

Herrero, M.J., J.I. Escavy y B.C. Schreiber, 2015. Thenardite after mirabilite deposits as a cool climate indicator in the geological record: lower Miocene of central Spain. Climate of the Past 11: 1-13.

Kelts, K. y M. Shahrabi, 1986. Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran. Palaeogeography, Palaeoclimatology, Palaeoecology 54: 105-130.

Kenward, P.A., Goldstein, R.H., González, L.A. y J.A. Roberts, 2009. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: The role of methanogenic Archaea. Geobiology 7(5): 556-65.

Kopprio, G.A., R H. Freije, C.A. Strüssmann, G. Kattner, M.S. Hoffmeyer, C.A. Popovich y R. Lara, 2010. Vulnerability of pejerrey Odontesthes bonariensis populations to climate change in pampean lakes of Argentina. Journal of Fish Biology 77: 1856-1866.

Kopprio, G.A., R.J., Lara, A. Martínez, A. Fricke, M. Graeve y G. Kattner, 2015. Stable isotope and fatty acid markers in plankton assemblages of a saline lake: seasonal trends and future scenario. Journal of Plankton Research, 37: 584-595.

Last, W.M., 1990. Lacustrine dolomite—an overview of modern, Holocene and Pleistocene occurrences. Earth Science Reviews, 27: 221-263.

Last, W.M., 1994. Deep-water evaporite mineral formation in lakes of western Canada. En: R.W. Renault, Last W.M. (Eds.), Sedimentology and Geochemistry of Modern and Ancient saline lakes. Society for Sedimentary Geology, Tulsa, pp. 51-59.

Last, W. y L. Slesak, 1986. Paleohydrology, sedimentology, and geochemistry of two meromictic saline lakes in Southern Saskatchewan. Géographie physique et Quaternaire 401: 5-15.

Lenormand, T., O. Nougué, R. Jabbour-Zahab, F. Arnaud, L. Dezileau, L.M. Chevin y M. I. Sánchez, 2018. Resurrection ecology in Artemia. Evolutionary Applications 11 (1): 76-87.

Manaffar R., S. Zare, N. Agh, A. Siyabgodsi, S. Soltanian, F. Mees, P. Sorgeloos, P. Bossier y G. Van Stappen, 2011. Sediment cores from Lake Urmia (Iran) suggest the inhabitation by parthenogenetic Artemia around 5,000 years ago. Hydrobiologia 671(1):65-74

Martens, P., 1978. Faecal pellets. Fich. Ident. Zooplancton 162: 1-4.

Medina, G.R., J. Goenaga, F. Hontoria, G. Cohen y F. Amat, 2007. Effects of temperature and salinity on pre reproductive life span and reproductive traits of two species of Artemia (Branchiopoda, Anostraca) from Argentina: Artemia franciscana and A. persimilis. Hydrobiologia 579:41-53.

Piovano, E., D. Ariztegui, F. Córdoba, M. Cioccale y F. Sylvestre, 2009. Hydrological variability in South America below the Tropic of Capricorn (Pampas and eastern Patagonia, Argentina) during the last 13.0 ka. En F. Vimeux, F. Sylvestre y M. Khodri (Eds.). Past climate variability from the Last Glacial Maximum to the Holocene in South America and Surrounding regions: From the Last Glacial Maximum to the Holocene. Springer- Developments in Paleoenvironmental Research Series: 323-351.

Portaluppi, L., 2015. Artemia salina. Una empresa pendiente en Argentina, 201 pp. Copyright 2016. www.criarpeces.com.ar.

Qiu, X, Y. Yao, H. Wang, A. Shen y Zhang, J., 2019. Halophilic archaea mediate the formation of proto-dolomite in solutions with various sulfate concentrations and salinities. Frontiers in Microbiology, 10 (480): 1-10.

Regnet, J.B., P. Robion, C. David, J. Fortin, B. Brigaud y B. Yven, 2015. Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology. Journal of Geophysical Research: Solid Earth, 120: 790-811.

Royan, J., 2015. Production and preservation of Artemia sp. En: P. Santhanam, A.R. Thirunavukkarasu y P. Perumal (eds). Chapter 3 Advances in Marine and Brackish water Aquaculture: 25-32.

Ruiz, O., 2008. Caracterización de diversas poblaciones de Artemia desde el punto de vista de su composición en ácidos grasos y de sus patrones moleculares. Universitat de Valencia Servei de Publicacions, 232 pp.

Ruiz, O., G.R. Medina, R.G. Cohen, F. Amat y J.C. Navarro, 2007. Diversity of the fatty acid composition of Artemia sp. cysts from Argentinean populations. Marine Ecology Progress Series 335: 155-165.

Ruiz, O., F. Amat, C. Saavedra, A. Papeschi, R.G. Cohen, A.D. Baxevanis, I. Kappas, T.J. Abatzopoulos y J.C. Navarro, 2008. Genetic characterization of Argentinean Artemia species with different fatty acid profiles. Hydrobiologia 610 (1): 223-234.

Sánchez-Román, M., C. Vasconcellos, R. Warthmann, M. Rivadeneyra y J. McKenzie, 2009. Microbial dolomite precipitation under aerobic conditions: Results from Brejo do Espinho Lagoon (Brazil) and culture experiments. International Association of Sedimentology, 41: 167-178.

Schnurrenberger, D., J. Russell y K. Kelts, 2013. Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology 29: 141–154.

Siniscalchi, A.G., G. Kopprio, L.A. Raniolo, E.A. Gómez, M.S. Diaza y R.J. Lara, 2018. Mathematical modelling for ecohydrological management of an endangered endorheic salt lake in the semiarid Pampean region, Argentina. Journal of Hydrology 563: 778-789.

Sivagnanam, S., V. Krishnakumar y N. Munuswamy, 2013. Morphology and ultrastructure of cysts in different species of the brine shrimp, Artemia from Southern India. International Journal of Aquatic Biology 1: 266-272.

Torres, N., 2009. Evaluación de la calidad del agua de los recursos hídricos superficiales de la cuenca del arroyo Chasicó; Sudoeste bonaerense Seminario de Procesos Fundamentales Físico-Químicos y Microbiológicos. Especialización y Maestría en Medio Ambiente Laboratorio de Química F.R. – U.T.N. Editorial de la Universidad Tecnológica Nacional, Bahía Blanca, 18 pp.

Tsuzuki, M.Y., H. Aikawa, C.A. Strussmann y F. Takashima, 2000. Comparative survival and growth of embryos, larvae, and juveniles of pejerrey Odontesthes bonariensis and O. hatcheri at different salinities. Journal of Applied Ichthyology 16: 126-130.

Van Stappen, G., 2011. Sediment cores from Lake Urmia (Iran) suggest the inhabitation by parthenogenetic Artemia sp. around 5,000 years ago. Hydrobiología: 671: 65-74.

Van Stappen, G., 1996. Manual on the production and use of live food for aquaculture, FAO fish. Tech. Pap., vol. 361, Food and Agriculture Organization of the United Nations, Rome, pp. 107-136.

Vanhaecke, P., W Tackaert y P. Sorgeloos, 1987. The biogeography of Artemia: an updated review. En: P.Sorgeloos, D.A. Bengtson, W. Decleir y E. Jaspers (Eds.). Artemia research and its applications, Universa Press, Wetteren, Bélgica, 1: 129-155.

Vich, H., M. Antelo y R. Hurtado, 2010. Clasificación climática de Thornwaite para la región oriental de la República Argentina. XIII Reunión Argentina y VI Latinoamericana de Agrometeorología Actas: 563 pp., Bahía Blanca.

Vasconcelos, J.A., C. McKenzie, S. Bernasconi, D. Grujic y A.J. Tien, 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377: 220-222.

Volpedo, A. y A. Fernández Cirelli, 2013. El Lago Chasicó: similitudes y diferencias con las lagunas pampásicas. Aguas AUGMDOMUS, Número especial 5(1): 1-18.

Warren, J.K., 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews 98: 217-268.

Zinger, S., 2000. Relación Sociedad-naturaleza en ecosistemas de clima templado semiárido. Caso: Laguna Chasicó. Provincia de Buenos Aires. Tesis de Magíster en Gestión Ambiental del Desarrollo Urbano, Facultad de Arquitectura, Urbanismo y Diseño, Universidad Nacional de Mar del Plata, 171 pp. (inédito).

Zinger, A.S., O.M. Del Pozo y M.M. Campos, 1998. Reactivación de ecosistemas lagunares alterados a través de la actividad turística. El caso de la laguna Chasicó. Provincia de Buenos Aires. Argentina. En: F. Torrego Serrano (Ed.), Ponencias presentadas al Simposio G8 Las actividades turísticas y el espacio geográfico: 99-112.

Published

2020-11-06

How to Cite

Blasi, A. M., Prieto, A. R., & Frazer, H. (2020). Late Holocene record of the brine shrimp Artemia sp. fecal pellets and cysts in association with evaporitic minerals from Chasicó Lake (Buenos Aires Province, Argentina): implications as paleoenvironmental indicators. Latin American Journal of Sedimentology and Basin Analysis, 27(2), 107-124. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/41

Issue

Section

Research Papers