Deciphering the origin of linear landforms using different sedimentological tools in the Fiambalá Valley (Catamarca)
Keywords:
linear morphologies, sandy gravel, desert pavement, intermountain valley, Apocango riverAbstract
The current study is centered on the morphological, textural, and compositional characterization of several linear landforms identified in the west and center of the Fiambalá Valley, in the western region of the Catamarca province (Argentina), along the terraces of the Apocango River. These landforms are slightly asymmetric to symmetric, with rounded crests, a few meters high (between 0.3 and 3.5 m) and several meters wide (from 8 to 14.5 m). They have straight to slightly sinuous ridges with NE-E to SW-W direction and are arranged as isolated bodies. The superficial cover has a bimodal frequency distribution with a primary mode in medium to coarse pebble (-4.5 to -3.5 ?) and a secondary mode in fine sand (2.5 ?). Gravel clasts are sub-rounded, with moderate sphericity, and predominantly compact-elongated shape. The analysis of high-resolution photographs of the superficial cover showed they present an open to moderate packing (44.49 - 58.60% of clasts). In a cross-sectional profile, it was observed that internally they consist of fine to medium sand (x: 2.66 - 1.31 ?). Gravel composition is made primarily by clasts of green sedimentary lithics (22.92 - 32.72%), followed by acidic volcanic lithics (15 - 21.49%), purple sedimentary lithics (13.72 - 17.04%), and basic (10.60 - 17.78%) and intermediate (9.74 - 12.93%) volcanic lithics, thus classified as lithic gravels. The sandy fraction is composed of lithics (35.71 - 47.51%), followed by quartz (23.59 - 37.92%), and feldspars (19.80 - 32.76%); consequently, classified as feldspathic litharenites. Regarding the lithic fragments, volcanic types predominate (27.41 - 37.70%), being those of acidic composition with felsitic and microgranular paste (20.06 - 31.15%) the most represented. The thicker superficial cover with open to moderate packing is interpreted as poorly evolved desert pavement. Deposit composition suggests that the main contribution of the gravelly and sandy material comes from the west (Sistema de Famatina), congruent with the source area of the Apocango alluvial system and the preferential directions of wind that transports material from the SW-WSW towards NNE-NE. The rounded crest, straight to slightly sinuous ridges, and their parallel orientation to the main drift potential direction (RDD) agree with the characteristics of moderately to highly deflated linear dunes. Regarding their origin, initially, the area was dominated by eolian sedimentation of linear dunes associated with the migration of wind ripples. In a second stage deflation prevailed, preserving only fine sediments in sheltered areas, probably related to the margins of small secondary channels or gullies. In this stage, active deflation altered the original linear dune morphology and gave rise to poorly evolved desert pavements. This process stabilized linear dunes, forming a protective layer and ensuring immobility.
References
Báez, W. A., Chiodi, A. L., Bustos, E., Arnosio, J. M., Viramonte, J. G., Giordano, G., and Alfaro Ortega, B. B. (2017). Mecanismos de emplazamiento y destrucción de los domos lávicos asociados a la caldera del Cerro Blanco, Puna Austral. Revista de la Asociación Geológica Argentina 74(2), 227– 238.
Bagnold, R. A. (1941). The physics of blown sand and desert dunes. Chapman and Hall.
Blair, T. C. and McPherson, J. G. (1999). Grain-size and textural classification of coarse sedimentary particles. Journal of Sedimentary Research, 69(1), 6–19. https://doi.org/10.2110/jsr.69.6
Bruniard, E. D. (1982). La diagonal árida argentina: un límite climático real. Revista Geográfica, 95, 5–20. https://www.jstor.org/stable/40992410
Bullard, J. E. (1997). A note on the use of the" Fryberger method" for evaluating potential sand transport by wind. Journal of Sedimentary Research, 67(3), 499–501. https://doi.org/10.1306/D42685A9-2B26-11D7-8648000102C1865D
Ciccioli, P. L., Ratto, N. R., Fernandez Molina, D. and Castañeda, M. E. (2021). Miradas interdisciplinarias sobre los procesos ambientales actuantes en la localidad arqueológica de Mishma (Bolsón de Fiambalá, departamento de Tinogasta, Catamarca). Relaciones, 46(2), 31–40.
Cox, E. P. (1927). A method of assigning numerical and percentage values to the degree of roundness of sand grains. Journal of Paleontology, 1(3), 179–183. https://www.jstor.org/stable/1298056
Cooke, R. U. and Warren, A. (1973). Geomorphology in deserts. Berkeley, University of California Press.
Cooke, R., Warren, A. and Goudie, A. (1993). Desert Geomorphology. CRC Press.
De Silva, S. L., Spagnuolo, M. G., Bridges, N. T. and Zimbelman, J. R. (2013). Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars. Geological Society of America Bulletin 125(11-12), 1912–1929. https://doi.org/10.1130/B30916.1
Deri, M. N. (2016). Sedimentología del campo de dunas de Medanitos, Bolsón de Fiambalá, Provincia de Catamarca [Tesis de grado inédita]. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos aires.
Deri, M. N. and Ciccioli, P. L. (2017). Distintos tipos de óndulas eólicas del Campo de Dunas de Medanitos, Bolsón de Fiambalá, Provincia de Catamarca [Resumen]. XX Congreso Geológico Argentino, San Miguel de Tucumán, Argentina.
Deri, M. N. and Ciccioli, P. L. (2018). Sedimentología del campo de dunas intermontano de Medanitos, Bolsón de Fiambalá, Catamarca. Revista de la Asociación Geológica Argentina 75(3), 325–345.
Deri, M., Ciccioli, P., Amidon, W. and Marenssi, S. (2019). Estratigrafía y edad máxima de depositación de la Formación Tambería en el Bolsón de Fiambalá, Catamarca. 5° Simposio del Mioceno-Pleistoceno del Centro y Norte de Argentina, San Salvador de Jujuy, Argentina.
Dixon, J. C. (2009). Aridic soils, patterned ground, and desert pavements. In A. J. Parsons and A. D. Abrahams (Eds.), Geomorphology of desert environments. https://doi.org/10.1007/978-1-4020-5719-9_5
Fernandez Molina, D. (2020). Sedimentología del Zanjón de Apocango, Bolsón de Fiambalá, Catamarca [Tesis de grado inédita]. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
Folk, R. L. (1954). The distinction between grain size and mineral composition in sedimentary-rock nomenclature. The Journal of Geology, 62(4), 344–359. https://doi.org/10.1086/626171
Folk, R. L. and Ward W. C. (1957). Brazos River bar: a study in the significance of grainsize parameters. Journal of Sedimentary Petrology, 27(1), 3–26.
Folk, R. L. Andrews, P. B. and Lewis, D. W. (1970). Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of geology and geophysics, 13(4), 937–968. https://doi.org/10.1080/00288306.1970.10418211
Fryberger, S. G. (1979). Dune forms and wind regime. In E. D. McKee, (Ed.), A Study of Global Sand Seas (Vol. 1052, pp. 137–169). U.S. Geological Survey (USGS), Professional Paper.
Fryberger, S. G., Hesp, P. and Hastings, K. (1992). Aeolian granule ripple deposits, Namibia. Sedimentology, 39(2), 319–331. https://doi.org/10.1111/j.1365-3091.1992.tb01041.x
Garleff, K., Stingl, H. and Veit, H. (1994). New dates on the Late Quaternary history of landscape and climate in the Bolsón of Fiambalá, NW Argentina (Province Catamarca). Zentralblatt für Geologie und Paläontologie. Teil 1, Allgemeine, angewandte, regionale und historische Geologie, (1/2), 333–341. https://fis.uni-bamberg.de/handle/uniba/29856
Garreaud, R. D., Vuille, M., Compagnucci, R. and Marengo, J. (2009). Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281(3 – 4), 180–195. https://doi.org/10.1016/j.palaeo.2007.10.032
Goudie, A. S. (2013). Arid and semi-arid geomorphology. Cambridge university press.
Gough, T., Hugenholtz, C. and Barchyn, T. (2020). Eolian megaripple stripes. Geology, 48(11), 1067–1071. https://doi.org/10.1130/G47460.1
Greeley, R. and Iversen, J. D. (1985). Wind as a geological process: on Earth, Mars, Venus and Titan. Cambridge University Press.
Grove, A. T. (1977). The geography of semi-arid lands. Philosophical Transactions of the Royal Society of London, 278 (962), 457–475. https://doi.org/10.1098/rstb.1977.0055
Havholm, K. G. and Kocurek, G. (1988). A preliminary study of the dynamics of a modern draa, Algodones, southeastern California, USA. Sedimentology, 35(4), 649–669. https://doi.org/10.1111/j.1365-3091.1988.tb01242.x
Hugenholtz, C. H. and Barchyn, T. E. (2017). A terrestrial analog for transverse aeolian ridges (TARs): Environment, morphometry, and recent dynamics. Icarus, 289, 239–253. https://doi.org/10.1016/j.icarus.2016.08.010
Hunter, R. E. (1977). Basic types of stratification in small eolian dunes. Sedimentology, 24(3), 361–387. https://doi.org/10.1111/j.1365-3091.1977.tb00128.x
Isla, F. and Espinosa, M. (2017). Upper quaternary evolution of the dune field of the Bolsón de Fiambalá, Catamarca: Sand dispersal at the Andes piedmonts. Quaternary International, 442, 59–66. https://doi.org/10.1016/j.quaint.2016.07.037
Isla, F. I., Isla, M. F., Bértola, G. R., Bedmar, J. M., Cortizo, L. C. and Maenza, R. A. (2021). Taton dune field: wind selection across the Southamerican arid diagonal, Puna Argentina. Quaternary and Environmental Geosciences, 12(2), 19–29. http://dx.doi.org/10.5380/abequa.v12i2.65221
Lämmel, M., Meiwald, A., Yizhaq, H., Tsoar, H., Katra, I. and Kroy, K. (2018). Aeolian sand sorting and megaripple formation. Nature Physics, 14(7), 759–765. https://doi.org/10.1038/s41567-018-0106-z
Lancaster, N. (1995). Geomorphology of Desert Dunes. Routledge.
Mabbutt, J. A. (1965). Stone distribution in a stony tableland soil. Australian Journal of Soil Research 3, 131–142. https://doi.org/10.1071/SR9650131
Mabbutt, J. A. (1977). Desert landforms. Australian National University Press.
McKee, E. D. (1979). A study of global sand seas (Vol. 1052). U.S. Geological Survey (USGS), Professional Paper.
Medina, C. (2015). Petrophysical Study of Reservoir Rocks: Use of Image Analysis Software (IAS) and Mercury Injection Capillary Pressure (MICP) Data. https://www.slideshare.net/CristianMedina14/petrophysical-study-of-reservoir-rocks-use-of-image-analysis-software-ias-and-mercury-injection-capillary-pressure-micp-data
Meigs, P. (1953). World distribution of arid and semi-arid homoclimates, in Review of research on Arid Zone Hydrology. Arid zone program, 1, 203–209.
Milana, J. P. (2009). Largest wind ripples on Earth?. Geology, 37(4), 343–346. https://doi.org/10.1130/G25382A.1
Montero López, M. C., Hongn, F., Affonso Brod, J., Seggiaro, R., Marrett, R. and Sudo, M. (2010). Magmatismo ácido del mioceno superior-cuaternario en el área de Cerro Blanco-La Hoyada, Puna Austral. Revista de la Asociación Geológica Argentina, 67(3), 329–348.
Montero López, M. C., Guzman, S. R. and Hongn, F. D. (2011). Ignimbritas de la quebrada del río Las Papas (Cordillera de San Buenaventura, Catamarca): una primera aproximación petrológica y geoquímica. Acta geológica, 23(1–2),78–93. http://www.lillo.org.ar/publicaciones/acta-geologica-lilloana/v23n1_2/a05
Munsell Color Firm (2009). Munsell Soil Color Charts: with genuine Munsell color chips. Grand Rapids, MI: Munsell Color.
Nielson, J. and Kocurek, G. (1986). Climbíng zibars of the Algodones. Sedimentary Geology, 48(1–2), 1–15. https://doi.org/10.1016/0037-0738(86)90078-3
Pettijohn, F. J., Potter, P. E. and Siever, R. (1987). Sand and sandstone. Springer-Verlag, New York.
Powers, M. C. (1953) A new roundness scale for sedimentary particles. Journal of Sedimentary Research, 23(2), 117–119. https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D
Pye, K. and Tsoar, H. (2009). Aeolian sand and sand dunes. Springer-Verlag, Berlin Heidelberg.
Quiroga, R., Peña, M., Poblete, F., Giambiagi, L., Mescua, J., Gómez, I., Echaurren, A., Perroud, S., Suriano, J., Martínez F. and Espinoza, D. (2021). Spatio-temporal variation of the strain field in the southern Central Andes broken-foreland (27° 30? S) during the Late Cenozoic. Journal of South American Earth Sciences, 106, 102981. https://doi.org/10.1016/j.jsames.2020.102981
Ramos, V. A. (1999). Las provincias geológicas del territorio argentino. Geología Argentina, Instituto de Geología y Recursos Minerales Anales 29(3), 41–96.
Ramos, V. A., Cristallini, E. O. and Pérez, D. J. (2002). The Pampean Flat-Slab of the Central Andes. Journal of South American Earth Sciences, 15(1), 59–78. https://doi.org/10.1016/S0895-9811(02)00006-8
Ratto, N., Montero, C. and Hongn, F. (2013). Environmental instability in western Tinogasta (Catamarca) during the Mid-Holocene and its relation to the regional cultural development. Quaternary International, 307, 58–65. https://doi.org/10.1016/j.quaint.2012.09.014
Retallack, G. J. (2001). Soils of the Past (2nd ed.). Blackwell Science Ltd.
Rubiolo, R., Martinez, L. and Pereyra, F. (2003). Hoja Geológica 2769-IV Fiambalá, Provincias de Catamarca y Jujuy, escala 1:250.000 (Boletin 421). Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino (SEGEMAR).
Scasso, R. A. and Limarino, C. O. (1997). Petrología y diagénesis de rocas clásticas. Asociación Argentina de Sedimentología.
Sharp, R. P. (1963). Wind ripples. The Journal of Geology, 71(5), 617–636. https://doi.org/10.1086/626936
Sneed, E. D. and Folk, R. L. (1958). Pebbles in the lower Colorado River, Texas a study in particle morphogenesis. Journal of Geology, 66(2), 114–150. https://doi.org/10.1086/626490
Taira, A. and Scholle, P. A. (1979). Discrimination of depositional environment using settling tube data. Journal of Sedimentary Petrology 49(3), 787–800. https://doi.org/10.2110/jsr.49.787
Viera, V. (1982). Geomorfología (control de médanos). Área: Fiambalá (provincia de Catamarca) [Informe inédito]. Proyecto NOA hídrico segunda Fase. Consejo Federal de Inversiones.
Wilson, I. G. (1972). Aeolian bedforms -their development and origins. Sedimentology, 19(3–4), 173–210. https://doi.org/10.1111/j.1365-3091.1972.tb00020.x
Yizhaq, H., Isenberg, O., Wenkart, R., Tsoar, H. and Karnieli, A. (2009). Morphology and dynamics of aeolian mega-ripples in Nahal Kasuy, southern Israel. Israel Journal of Earth Sciences, 57, 149–165. doi: 10.1560/IJES.57.3–4.149
Yizhaq, H. and Katra, I. (2015). Longevity of aeolian megaripples. Earth and Planetary Science Letters, 422, 28–32. https://doi.org/10.1016/j.epsl.2015.04.004
Zimbelman, J. R., Williams, S. H. and Johnston, A. K. (2012). Cross?sectional profiles of sand ripples, megaripples, and dunes: a method for discriminating between formational mechanisms. Earth Surface Processes and Landforms, 37(10), 1120–1125. https://doi.org/10.1002/esp.3243
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Delfina Fernandez Molina, Patricia L. Ciccioli, Leopoldo D. Serpa, Paloma Amado Silvero
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.