LITHOFACIAL DESCRIPTION AND GENETIC INTERPRETATION OF THE METASEDIMENTITES OF THE SAN LUIS FORMATION, SIERRA DE SAN LUIS, ARGENTINA
Lithofacial description and paleoenvironmental interpretation of the metasedimentary rocks of the San Luis formation (Cambrian), Sierra de San Luis, Argentina
Abstract
The San Luis range is part of the Eastern Sierras Pampeanas (Caminos, 1979). It comprises a crystalline basement originated in the Lower Paleozoic, largely during the development of the Famatinian magmatic arc (Sato et al., 2003; Morosini et al., 2017); whose closure by collision would have caused significant cortical thickening and tectonic shortening, through the development of ductile shear belts (Ortiz Suarez and Casquet, 2005; Morosini et al., 2020).
In the south-centre of the San Luis range outcrop two stongly folded thin belts of metasedimentary rocks of siliciclastic protolith that reached greenschits metamorphic facies, which has been named as San Luis Formation (Prozzi, 1990; Ortiz Suárez et al., 1992; Perón Orrillo, 2017) (Fig. 1). The aim of the present work is to provide a complete and updated genetic and evolutionary model of the sedimentary protolith of each belt of the San Luis Formation (FSL).
The FSLO has a maximum width of 10 km and 40 km length in NE-SW trending, from Estancia Pancanta to 10 km north of La Carolina (Ortiz Suárez et al., 1992; Perón Orrillo et al., 2017) (Fig. 1, 2a); while the FSLE has a maximum width of 5 km and 50 km length in NE-SW trending, from southeast of La Florida to La Totora, near the Las Chacras batholith (Ortiz Suárez et al., 1992; Perón Orrillo et al., 2017) (Fig. 1, 2b). Both of them have tectonic contacts with higher grade metamorphic complexes, through NNE-SSW ductile shear belts where some ordovician igneous bodies have been intruded (Perón Orrillo et al., 2017; Morosini et al., 2021). Their macrostructure comprises a tight folding of few kilometer wavelength, generating axial plane cleavage of NNE direction and subvertical dip (von Gosen y Prozzi, 1996; von Gosen, 1998). The protolith of the FSL is made up of mudstones, sandstones and conglomerates (Ortiz Suárez et al., 1992; Perón Orrillo et al., 2017). This assemblage reached the greenschist metamorphic facies with pressure-temperature conditions of 2.5 – 5.1 kbar and 316° – 416°C in the FSLO, and 3.3 – 4.7 kbar and 261° – 403°C in the FSLE (Prozzi, 1990; Verdecchia et al., 2019). According to the radiometric dating of detrital zircons, the FSLO provenance can be associated with the recycling of pre-Pampean sediments with maximum depositional ages of ~550 Ma and ~530 Ma (Perón Orrillo et al., 2019), while the FSLE provenance is distinctly Pampean with maximum depositional ages of ~515 Ma (Drobe et al., 2009, 2011; Perón Orrillo et al., 2019).
It was surveyed in field a total of 12,300 m in twelve stratigraphic sections for the FSLO and 8,200 m in ten stratigraphic sections for the FSLE. Facies analysis was applied on those metasediments and both paleoenvironmental and evolutionary models of the basin were proposed. In order to estimate the thickness and arrangement of the lithosomes in each column, a structural analysis was carried out to determine the style and degree of deformation of the strata. Ten lithofacies were recognized (Table 1, Fig. 3, 4, 5, 6). These were grouped into nine facies associations (Table 2, Fig. 7), which were interpreted according to the deep marine sedimentation models of Mutti (1992) and Mutti et al. (1994), as well as the glacimarine system model of Edwards (1986).
The facies associations recognized are: AFI has decimetric thickness; it is formed by apparently tabular strata of massive mud-supported paraconglomerates succeeded by massive mudstones; deposited by cohesive debris flows (Fig. 7a,b,c). AFII is up to metric thickness; it is formed by paraconglomerates of sandy-muddy matrix and open fabric in strata with a net to slightly erosive base, succeeded by fine wackes and laminated mudstones; transported by non-cohesive hyperconcentrated flows and deposited by frictional freezing (Fig. 7d,e). AFIII is up to metric thickness; it is formed by paraconglomerates of sandy-muddy matrix and closed fabric, in strata with erosive base, succeeded by fine wackes and laminated mudstones; transported by non-cohesive hyperconcentrated flows and deposited by gradual segregation due to flow dilution (Fig. 7d,f). AFIV has decimetric thickness and it is formed by lenticular strata of sabulites with normal gradation to coarse wackes, followed by fine wackes (Fig. 7g,h,i); deposited by gravel to sandy turbiditic flows with decreasing density. AFV has decimetric thickness and it is made up of lenticular strata of coarse wackes succeeded by fine wackes and laminated mudstones (Fig. 7j,k); deposited by low-density, large-volume, sandy turbiditic flows. AFVI has decimetric thickness and it is formed by thin wackes in strata with a slightly erosive base succeded by laminated mudstones (Fig. 7l,m); deposited by low-density, large-volume, muddy to sandy turbiditic flows. AFVII has hectometric to kilometer thickness and consists only of laminated mudstones (Fig. 7n,o) deposited by decantation of large volumes of suspended mud from remobilization of the slope headwaters, overflowing of channeled flows, contourite currents or even associated to glacimarine system. AFVIII has centimeter thickness formed by alternating sheets of mudstones and carbonaceous mudstones (Fig. 7p,q) deposited by contourite currents or by fluid mudflows, which transported abundant organic matter from the shelf. AFIX is up to metric thickness, formed by the intercalation of tabular strata of laminated mudstones and laminated pebbly mudstones (Fig. 7r,s,t) which would have been deposited by continuous settling of suspended sediment in low-density plumes associated with events of rain-out of debris, from icebergs and seasonal sea-ice in the zone of maximum proglacial of a glacimarine system.
The minimum total sediment thickness of the FSLO has been estimated to be 1,700 m (Fig. 8). Its stratigraphic evolution can be divided into three major intervals: in the lower interval, sandy lobes (AFV – AFVI) associated with channel complexes (AFIV) were installed in an abyssal plain with at least 600 m thickness; in the middle interval a by-pass channel was incised and later filled by glacimarine deposits up to 300 m thick; and in the upper interval, sandy lobes (AFV – AFVI) associated with channel complexes (AFIV) were reinstated in an abyssal plain, with a minimum thickness of 700 m (Fig. 8c). This cyclo-stratigraphic arrangement allows inferring a pause in the normal sedimentation of the abyssal plain system, due to a glacial period, which has been assigned the rank of sequence boundary (Rivarola and Ortiz Suárez, 2008; Perón Orrillo and Rivarola, 2014; Perón Orrillo et al., 2017).
The minimum total sediment thickness of the FSLE has been estimated to be 3,100 m (Fig. 9). Its stratigraphic evolution can be divided into two major intervals: in the lower interval sandy lobes (AFV – AFVI) were installed on an abyssal plain with at least 800 m thickness; while during the upper interval it was developed acontinental slope system (AFVII – AFVIII) more than 1,500 m thick, which was periodically eroded and filled by slope channel complexes (AFI – AFII – AFIII – AFIV). This cyclo-stratigraphic arrangement would be consistent with the normal progradation of a slope over abyssal plain (Fig. 9c).
The radiometric dating of the detrital zircons (Perón Orrillo et al., 2019) shows clear differences in the source area for each belt, since the FSLO inputs come mainly from the reworking of pre-Pampean sediments at an early stage of the Pampean orogen; while the FSLE inputs come mainly from the reworking of the Pampean orogen in its late stages, with an abundance of sediments supplied by the orogenic roots. They also differ in their maximum age of sedimentation, which is ~550 Ma in the lower interval of the FSLO, ~530 Ma in the upper interval of the FSLO and ~515 Ma in the FSLE. The ~20 Ma difference between both intervals of the FSLO, before and after the glacimarine metaconglomerates, reinforces the hypothesis that the latter represent a higher-rank depositional sequence boundary. Therefore the FSLO would have been deposited sometime between the Lower and Middle Cambrian (Terreneuvian - Epoch 2), during advanced stages of the Pampean orogeny; while the FSLE would have been deposited sometime between the late stages of the Pampean and early stages of the Famatinian orogeny, before the latter could become a source area; which would correspond to the middle to late Cambrian (Miaolinginian to Furongian). According to the regional geotectonic context for that period it can be stated that the tectonic environment of deposition was a marine foreland basin, west of the Pampean orogen.
Keywords: Deep-Marine system, Glaciomarine system, Famatinian orogeny, Pampean orogeny, Cambrian
References
Adams, C.J., Miller, H., Toselli, A.J., y Griffin, W.L. (2008). The Puncoviscana Formation of northwest Argentina: U-Pb geochronology of detrital zircons and Rb-Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting. Neues Jahrbuch für Geologie und Paläontologie 247(3): 341–352.
Artoni, A., Di Biase D., Mutti E. y Tinterri, R. (2000). Control of thrust propagation on turbidite sedimentation. EAGE Conference on Geology and Petroleum Geology of the Mediterranean and Circum-Mediterranean Basins: Extended Abstracts Book, C21.
Baldo, E.G., Rapela, C.W., Pankhurst, R.J., Galindo, C., Casquet, C., Verdecchia, S.O., y Murra, J.A. (2014). Geocronología de las Sierras de Córdoba: revisión y comentarios. En: Relatorio del XIX Congreso Geológico Argentino: 845–868. Córdoba.
Baudin, F., Martinez, P., Dennielou, B., Charlier, K., Marsset, T., Droz, L., y Rabouille, C. (2017). Organic carbon accumulation in modern sediments of the Angola basin influenced by the Congo deep sea fan. Deep Sea Research Part II: Topical Studies in Oceanography, 142: 64-74. doi.org/10.1016/j.dsr2.2017.01.009
Bennett, M.R., y Glasser, N. F. (2009). Glacial geology: ice sheets and landforms, 2nd. John Wiley & Sons, Reino Unido, 364 pp.
Bennett M.R., Doyle, P., y Mather, A.E. (1996). Dropstones: their origin and significance. Palaeogeography, Palaeoclimatology, Palaeoecology 121: 331-339.
Borda, S.E. (1989). Geología y petrografía de la zona de Cerros Largos, provincia de San Luis. Tesis de Licenciatura, Universidad Nacional de San Luis, 94 pp. (inédito).
Bouma, A.H. (1962). Sedimentology of Some Flysch Deposits: a Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.
Brodtkorb, M., Pezzutti, N., Poma S., y Fernández, R. (2009). Geoquímica y petrología de las metavolcanitas cámbricas de la Sierra de San Luis. Revista de la Asociación Geológica Argentina 65:429-445.
Caby R., y Fabre, J. (1981). Late Proterozoic to Early Palaeozoic Diamictites/Tillites and Associated Glaciogenic Sediments in the Serie Pourpree of Western Hoggar, Algeria. En: Hambrey, M.J., y Harland, W.B. (Eds.) Earth’s Pre-Pleistocene Glacial Record, Cambridge University Press, 140–145.
Casquet, C., Baldo, E., Galindo, C., Pankhurst, R.J., Rapela, C.W., y Fanning, M.C. (2014). Las vulcanitas de la Formación San Luis (Sierra de San Luis, Argentina): Nueva edad (SHRIMP) y geoquímica isotópica (Sr - Nd). XVIII Congreso Geológico Argentino Actas: 345, Córdoba.
Castro Dorado, A. (1989). Petrografía básica: Texturas, clasificación y nomenclatura de rocas. Paraninfo. 139 pp.
Chumakov, N.M. (2009). Neoproterozoic glacial events in Eurasia. En: C. Gaucher, A.N. Sial, G.P. Halverson, y H.E. Frimmel (Eds.) Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology, 16, Elsevier, the Netherlands, 389–403.
Chumakov. N.M. (2011). Late Proterozoic African Glacial Era. Stratigraphy and Geological Correlation, 19/1. Pleiades Publishing, 1–20.
Collo, G., y Astini, R.A. (2008). The Achavil Formation: A new low-grade metamorphic unit in the Upper Cambrian evolution of Famatina. Revista de la Asociación Geológica Argentina 63(3): 344-362.
Collo, G., Astini, R., Cawood, P.A., Buchan, C., y Pimentel, M. (2009). U–Pb detrital zircon ages and Sm–Nd isotopic features in low-grade metasedimentary rocks of the Famatina belt: implications for late Neoproterozoic–early Palaeozoic evolution of the proto-Andean margin of Gondwana. Journal of the Geological Society of London 166: 303–319.
Crowell, J. (1957). Origin of pebbly mudstones. Geological Society of America Bulletin 68: 993- 010.
Deynoux, M., Affaton, P., Trompette, R., y Villeneuve, M., (2006). Pan–African tectonic evolution and glacial events registered in Neoproterozoic to Cambrian cratonic and foreland basins of West Africa, Journal of African Earth Science 46: 397–426.
De Celles, P.G., y Giles, K.A. (1996). Foreland basin systems. Basin Research 8: 105–124.
Drobe, M., López de Luchi, M., Steenken, A., Frei, R., Naumann, R., Siegesmund S., y Wemmer, K. (2009). Provenance of the late Proterozoic to early Cambrian metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental, Argentina. Journal of South American Earth Sciences 28:239–262.
Drobe, M., López de Luchi, M., Steenken, A., Wemmer, K., Naumann, R., Frei, R., y Siegesmund, S. (2011). Geodynamic evolution of the Eastern Sierras Pampeanas (Central Argentina) based on geochemical, Sm–Nd, Pb–Pb and SHRIMP data. International Journal of Earth Science (Geol Rundsch) 100:631–657.
Edwards, M. (1986). Glacial Environments. En: H.G. Reading (Ed.), Sedimentary Enviroments and Facies, 2nd. Blackwell Science, Oxford:445-470.
Enríquez, E. (2013.) Geología y Estructura del Basamento en la zona de Ea. Pancanta, San Luis. Tesis de Licenciatura, Universidad Nacional de San Luis. 109 pp. (inédito).
Fuentes, M.G. (2011). Análisis sedimentológico y estratigráfico de las metasedimentitas de la Formación San Luis (Proterozoico Tardío – Paleozoico Temprano) de la zona central de la faja occidental de la sierra de San Luis, Argentina. Tesis de Licenciatura, Universidad Nacional de San Luis, 77 pp. (inédito).
Gaucher, C. y Poiré, D.G., (2009). Palaeoclimatic events. Neoproterozoic-Cambrian evolution of the Rio de la Plata Palaeocontinent. En: C. Gaucher, A.N. Sial, G.P. Halverson, y H.E. Frimmel (Eds.) Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a focus on
southwestern Gondwana. Developments in Precambrian Geology, 16, Elsevier, the Netherlands, 123–130.
Germs, G.J.B., y Gaucher, C. (2012) Nature and extent of a late Ediacaran (ca. 547 Ma) glacigenic erosion surface in southern Africa. South African Journal of Geology, 115: 91-102.
Hack, M., Brodtkorb, M.K. de, Höll R., y Brodtkorb, A. (1991). Geología y consideraciones genéticas de los yacimientos scheelíticos entre el dique la Florida y Pampa del Tamboreo, provincia de San Luis. En M. K. de Brodtkorb (Ed.) Geología de yacimientos de wolframio de las provincias de San Luis y Córdoba, Argentina. Instituto de Recursos Minerales, Universidad Nacional de la Plata, 1: 113-152.
Hladil, J. (1991). The Upper Ordovician dropstones of Central Bohemia and their paleogravity significance. Véstník Úst?edního Ústavu Geologického 66:65–74.
Kawai, T., Windley, B. F., Terabayashi, M., Yamamoto, H., Isozaki, Y., y Maruyama, S. (2008). Neoproterozoic glaciation in the mid-oceanic realm: An example from hemi-pelagic mudstones on Llanddwyn Island, Anglesey, UK. Gondwana Research 14:105–114.
Kane I.A., Kneller B.C., Dykstra, M., Kassem, A., y McCaffrey, W.D. (2007). Anatomy of a submarine channel–levee: An example from Upper Cretaceous slope sediments, Rosario Formation, Baja California, Mexico. Marine and Petroleum Geology 24: 540–563.
Kneller, B. (2003). The influence of flow parameters on turbidite slope channel architecture. Marine and Petroleum Geology 20: 901–910.
López de Luchi, M.G., Cerredo, M.E., Siegesmund, S., Steenken A., y Wemmer, K. (2003). Provenance and tectonic setting of the protoliths of the metamorphic complexes of Sierra de San Luis. Revista de la Asociación Geológica Argentina 58: 525–540.
López de Luchi, M.G., Martínez Dopico, C.I., Wemmer, K., y Siegesmund, S. (2018). Untangling the Neoproterozoic-early Paleozoic tectonic evolution of the Eastern sierras Pampeanas hidden in the isotopical record. En: S. Siegesmund, M. Basei, P Oyhantçabal, y S. Oriolo (Eds.) Geology of Southwest Gondwana. Regional Geology Reviews. Springer, 433–466.
Lowe, D.R. (1982). Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology 52: 279-297.
Mignard, S., Mulder, T., Martinez, P., Charlier, K., Rossignol, L., y Garlan, T. (2017). Deepsea terrigenous organic carbon transfer and accumulation: Impact of sea-level variations and sedimentation processes off the Ogooue River (Gabon). Marine and Petroleum Geology, 85: 35–53.
Morosini, A. (2011). El Granito La Escalerilla, Provincia de San Luis. Tesis Doctoral, Universidad Nacional de San Luis, 434 pp. (inédito).
Morosini, A., Ortiz Suárez, A., Otamendi, J., Pagano, D., y Ramos, G. (2017). La Escalerilla pluton, San Luis Argentina: the orogenic and post-orogenic magmatic evolution of the famatinian cycle at Sierras de San Luis. Journal of South American Earth Science 73: 100–118.
Morosini, A.., Christiansen, R., Enriquez, E., Pagano, D.S., Perón Orrillo, J.M., Ortiz Suárez, A., Martínez, M.P., Muñoz, B.L., y Ramos, G. (2020). Architecture and kinematics of the Famatinian deformation in the Sierra Grande de San Luis: record of a collisional history at 33° latitude south. Journal of South American Earth Sciences 105, doi.org/10.1016/j.jsames.2020.102986
Mulder, T., y Alexander, J. (2001). The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48: 269-299.
Mutti, E. (1992). Turbidite sandstones. AGIP - Istituto di Geologia, Università di Parma, San Donato Milanese, 275 pp.
Mutti, E., Davoli, G., Mora S., y Papani, L. (1994). Internal stacking patterns of ancient turbidite systems from collisional basins. En: P. Weimer, A.H. Bouma y B. Perkins (Eds.), Submarine Fans and Turbidite Systems. GCS SEPM 15th Annual Research Conference, 257-268.
Mutti, E., Tinterri, R., Benevelli, G., di Biase, D., y Cavanna, G., (2003). Deltaic, mixed and turbidite sedimentation of ancient foreland basins, Marine and Petroleum Geology 20: 733-755, doi.org/10.1016/j.marpetgeo.2003.09.001.
Ortiz Suárez, A. (1999). Geología y petrología del área de San Francisco del Monte de Oro. San Luis. Tesis Doctoral, Universidad Nacional de San Luis, 259 pp. (inédito).
Ortiz Suárez, A., Prozzi, C., y Llambías, E. (1992). Geología de la parte sur de la sierra de San Luis y granitoides asociados, Argentina. Estudios Geológicos 48: 209-381.
Perón Orrillo, J.M. (2017). Análisis Sedimentológico y Estratigráfico de las metasedimentitas de bajo grado de la Formación San Luis (Proterozoico tardío – Paleozoico temprano). Provincia de San Luis, Argentina. Tesis Doctoral, Universidad Nacional de San Luis. 107 pp. (inédito)
Perón Orrillo, J.M., Rivarola, D., Ortiz Suárez, A., Olsen, D., Fuentes, G., Grasso, C., Icazatti, M., y Perocco, P. (2012). Análisis paleoambiental y evolutivo de la Formación San Luis (Proterozoico Superior – Paleozoico Inferior), San Luis. XIII Reunión Argentina de Sedimentología, Resúmenes: 167-168, Salta.
Perón Orrillo, J.M., y Rivarola, D. (2014). Descripción litofacial e interpretación genética de los metaconglomerados de la Formación San Luis (Proterozoico Superior – Cámbrico), Sierra de San Luis, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 21(1): 25-48.
Perón Orrillo, J.M., Rivarola D., y Ortiz Suárez, A. (2017). Litofacies, sistemas depositacionales y evolución de la Formación San Luis (Neoproterozoico - Cámbrico), Provincia de San Luis, Argentina. XX Congreso Geológico Argentino, ST1: 108-114. San Miguel de Tucumán.
Perón Orrillo, J.M., Ortiz Suárez, A., Rivarola, D., Otamendi, J., Morosini A., y Barra, F. (2019). Detrital zircon ages from the San Luis Formation, Sierra de San Luis, Argentina. Journal of South American Earth Sciences, 94. doi.org/10.1016/j.jsames.2019.102228
Prozzi, C. (1990). Consideraciones acerca del Basamento de San Luis. XI Congreso Geológico Argentino Actas I: 452-455, San Juan.
Prozzi, C., y Ortiz Suárez, A. (1994). Rocas metamórficas de bajo grado en las Sierras Pampeanas (Argentina). 7º Congreso Geológico Chileno Actas II: 1167-1171, Concepción.
Prozzi, C., y Ramos, G. (1988). La Formación San Luis. Primeras Jornadas de Trabajo de Sierras Pampeanas, Resúmenes, 1 pp., San Luis.
Prozzi, C., y Rosso, M.C. (1990). Pizarras carbonosas en el basamento de San Luis, Argentina. XI Congreso Geológico Argentino, Actas I: 202–205, San Juan.
Prozzi, C., y Zimmermann, U. (2005). Provenance of Metasedimentary Successions of the Sierra de San Luis: First Results. XVI Congreso Geológico Argentino Actas en CD, La Plata.
Ramos, G., Prozzi C., y Ortiz Suárez, A. (1996). Conglomerados del basamento de Sierras Pampeanas. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos Actas I: 607-617. Buenos Aires.
Reading, H.G. (1996). Sedimentary Environments: Processes, Facies and Stratigraphy, 3ra ed. Blackwell Science, Reino Unido, 704 pp.
Rivarola, D., y Ortiz Suárez, A. (2008). Los metaconglomerados de la Formación San Luis. Origen glacimarino? XII Reunión Argentina de Sedimentología Acta: 152, Buenos Aires.
Rossi, J.N., Durand, F.R., Toselli, A.J. y Sardi, F.G. (1997). Aspectos estratigráficos y geoquímicos comparativos de basamento metamórfico de bajo grado del Sistema del Famatina, Argentina. Revista de la Asociación Geológica Argentina 52(4): 469-480.
Sato, A.M., González, P.D., y Llambías, E. (2003). Evolución del Orógeno Famatiniano en la Sierra de San Luis: magmatismo de arco, deformación y metamorfismo de bajo a alto grado. Revista de la Asociación Geológica Argentina 58: 487-504.
Schwartz, J.J., Gromet, L.P., y Miró, R. (2008). Timing and duration of the calc-alkaline arc of the Pampean orogeny: implications for the late neoproterozoic to cambrian evolution of western Gondwana. Journal of Geology 116: 39–61.
Shanmugam, G. (2016) Submarine fans: A critical retrospective (1950 – 2015). Journal of Palaeogeography 5(2): 110-184.
Siegesmund, S., Steenken, A., Martino, R.D., Wemmer, K., López de Luchi, M.G., Frei, R. Presnyakov, S., y Guereschi, A. (2010). Time constraints on the tectonic evolution of the Eastern Sierras Pampeanas (Central Argentina). International Journal of Earth Science 99: 1199-1226.
Sims, J., Ireland, T., Camacho, A., Lyons, P., Pieters, P., Skirrow, R., Stuart Smith, P., y Miró, R. (1998). U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin. En: R. Pankhurst y C. W. Rapela (Eds.), The proto-Andean Margin of Gondwana. Geological Society of London, Special Publication 142: 259-281, London.
Söllner, F., Brodtkorb, M.K. de, Miller, H., Pezzutti, N., y Fernández, R. (2000). U-Pb zircon ages of metavolcanics rocks from the Sierra de San Luis, Argentina. Revista de la Asociación Geológica Argentina 55: 15-22.
Steenken, A., Siegesmund, S., López de Luchi, M.G., Frei, R., y Wemmer, K. (2006). Neoproterozoic to early Palaeozoic events in the sierra de San Luis: implications for the famatinian geodynamics in the eastern sierras Pampeanas (Argentina). Journal of the Geological Society 163: 965–982.
Stow, D.A.V., Huc, A.-Y., y Bertrand, P. (2001). Depositional processes of black shales in deep water, Marine and Petroleum Geology 18(4): 491-498, doi.org/10.1016/S0264-8172(01)00012-5.
Teruggi, M. (1982). Diccionario Sedimentológico Volumen 1: Rocas Clásticas y Piroclásticas. Ediciones Científicas Argentinas Librart. Argentina. 104 pp.
Verdecchia, S.O., Collo, G., Zandomeni, P.S., Wunderlin, C., y Ferhmann, M. (2019). Crystallochemical indexes and geothermobarometric calculations as a multiproxy approach to PT condition of the low-grade metamorphism: the case of the San Luis Formation, Eastern Sierras Pampeanas of Argentina. Lithos 324–325: 385–401.
von Gosen, W. (1998). The Phyllite and Micaschist Group with associated intrusions in the Sierra de San Luis (Sierras Pampeanas/Argentina) - structural and metamorphic relations. Journal of South American Earth Sciences 11: 79-109.
von Gosen, W., y Prozzi, C. (1996). Geology, structure and metamorphism in the area south of La Carolina (Sierra de San Luis, Argentina). XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos Actas 2:301–314, Buenos Aires.
Zavala, C., Prozzi, C., y Freije, H. (2000). Hallazgo de facies contorníticas en el Proterozoico tardío-Paleozoico temprano de las Sierras Pampeanas, Argentina. II Congreso Latinoamericano de Sedimentología y VIII Reunión Argentina de Sedimentología, Resúmenes: 187-188, Mar del Plata.
Zimmermann, U. (2005), Provenance studies of very low- to low-grade metasedimentary rocks of the Puncoviscana complex, northwest Argentina. En: A.P.M. Vaughan, P.T. Leat, y R.J. Pankhurst (Eds.): Terrane processes at the margins of Gondwana. Geological Society of London, Special Publication, 246: 81-416.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Juan Matías Perón Orrillo, David Rivarola, Ariel Ortiz Suárez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.