Nourishment of beaches south of Mar del Plata (Argentina)

Authors

  • Marcia Mojica becaria doctoral
  • Salvador Lamarchina
  • Giorgio Anfuso
  • Federico Isla

Abstract

There are different forms of coastal erosion management: do nothing, accommodation (adaptation or relocation), and protection (soft and hard solutions; Williams et al., 2018).

On the coast of the province of Buenos Aires, Argentina, several of the above techniques have been used, i.e. armoring, moderation and restoration, especially in the city of Mar del Plata (General Pueyrredón country). The beaches in front of the central part of the city have a large number of breakwaters. Those structures, which were built without an adequate design, favored the migration of erosive processes downdrift, i.e. in the direction of the coastal sediment transport (south to north). Other protection works that were carried out are the beach nourishment projects that use sands extracted from different sources, both marine and continental. The most relevant work was carried out in 1998 with sand extracted from the sand shoal accumulated at the outlet of the port. The beaches located in the southern part of the city are almost natural and only in recent years a few protection structures, such as groins and rip-rap revetments of orthoquartzite rocks have been emplaced. Because of this, the southern area is preserving a high degree of landscape and sanitary quality for bathing purposes.

The study area is located at the southern end of the General Pueyrredón country, within a protected area named Reserva Turística y Forestal Paseo Costanero Sur, which has an extension of 27 km from the Punta Mogotes lighthouse to the Las Brusquitas creek (Fig. 1c). The area has a great variety of landforms: pocket beaches, dune fields, tall cliffs, at places covered with fossil dunes, and rock platforms. A feature of oceanographic interest is the existence of a littoral cell in the Ensenada de Mogotes (northernmost part of the study area).

These beaches are susceptible to storms, mainly approaching from the south, that causes coastline and cliff retreat, generating a risk for the neighborhoods and for the stability of the route 11 that runs on top of these cliffs. Likewise, this provincial route between the cities of Mar del Plata and Miramar, in the sector near the San Eduardo del Mar neighborhood, is affected by the migration of dunes under the action of winds blowing from WSW. It is often required the intervention of the municipality to rehabilitate the route. Such sands are usually not reintegrated to the coastal sediment budget, despite the fact that there have been carried out in recent years different studies recommend that for a sustainable management (Fig.1).

The objective of the present work was to analyze the possible use of the sands accumulated by the wind on the Provincial Route 11 in the vicinity of the San Eduardo del Mar neighborhood to carry out artificial nourishments at the beaches belonging to the Reserva Turística y Forestal Paseo Costanero Sur, i.e. Playa Serena, Luna Roja, Chapadmalal and San Eduardo del Mar beaches (Fig.1).

Beach nourishment is considered a soft protection solution consisting in the artificial fill of the beach using sand (“borrow sand”) from another site. The purpose is to increase the width of the backshore and thus to keep the toe of the cliffs away from the action of the waves. This method also provides recreational benefits by increasing the tourist capacity and, therefore, the associated economic value for local municipalities.

The methodology used for this work was divided into two parts: on the one hand, a survey of the beaches was carried out by means of topographic profiles with an analog theodolite during low tide conditions to determine the beach width and slope. At the same time, four sediment samples were obtained from a depth of one centimeter (respect to the surface of the beach), and then sieved in laboratory to determine the average grain size and statistical parameters (Folk and Ward, 1957) using the Gradistat software (Blott and Pye, 2001). On the other hand, the suitability of natural and borrow sediments was checked by applying the James diagram (1975). Using the statistical parameters, the Overfill factors (Ra) value, which indicate the suitability (and therefore the probable behavior) of the borrow material respect to the native material, were calculated; and the Renourishment factor (Rj), which indicates how often the replenishment of the borrow material would be required (U.S. ACE, 1984). For the eolian sands of the dune field, the grain size data were obtained from previous sampling (García González et al., 2021).

Table 1 summarizes the results of the beach profiles and grain-size parameters for each beach. In general, beach lengths range from 40 to 70 m, slopes from 3 % to 5 % and the grain sizes are quite varied, from fine sands to gravel sizes (2 phi to -2.5 phi).

Applying the James (1975) diagram, it was found that the best combination was the one corresponding to the replenishment of Playa Serena. In other words, only 1.02 m³ of borrow material (i.e. sand from the mobile dunes) is needed to replenish 1 m³ of native sand in that beach, and it had to be replenished 0.14 times more often respect to the present material. The rest of the beaches gave interesting results: for Chapadmalal and San Eduardo del Mar beaches the Ra ratios were also small (Ra: 1.05 and 1.02, respectively and Rj: 1.5), while Luna Roja had the highest values (Ra: 5.0 and Rj: 2; Table 3).

The results presented above allowed the following conclusions:

  1. Comparing sediment compositions in the Ensenada de Mogotes fine sand sizes prevail (Playa Serena 2.5 phi) while the grain sizes become coarser and with a smaller selection (San Eduardo del Mar 0.5 phi) outside of the Ensenada.
  2. According to the topographic profiles, the beaches farther away from the Ensenada present steeper slopes (i.e. 5 %, Luna Roja and San Eduardo del Mar) with biggest grain sizes. Chapadmalal beach is an exception because it is a bimodal beach related to a breakwater.
  3. The diagrams of James showed that the aeolian sands of the San Eduardo del Mar dunes can be used as borrow sediment to nourish the beaches within the protected area Reserva Turística y Forestal Paseo Costanero Sur.
  4. Results from the Ra and Rj diagrams allowed to state that borrow sand (obtained from mobile dunes) is especially to the Playa Serena sands (Ra 1.02 and Rj 0.14) and renourishments values are also suitable for the beaches of Chapadmalal and San Eduardo del Mar.
  5. Considering the distance between the borrow area (the mobile dunes) and the beaches, San Eduardo del Mar and Chapadmalal are the most adequate to avoid large transportation costs, because the first one is located very close to dune field and the second one is only 5.3 km away.

References

Bakker, M.A.J., Van Heteren, S., VonhoGen, L.M., Van Der Spek, A.J.F., and Van Der Valk, L. (2012). Recent coastal dune development: effects of sand nourishments. Journal of Coastal Research 28 (3), 587-601.

Barragán, J.M. (2014). Política, Gestión y Litoral. Madrid: Tébar Flores, S.L., 685 pp.

Bértola, G.R. (2001). 21 Years of Morphological Modifications in an Urbanized Beach (Playa Grande, Mar de Plata), Argentina. Thalassas 17 (2), 21-36.

Bértola, G.R. (2006). Morfodinámica de playas del sudeste de la provincia de Buenos Aires (1983 a 2004). Latin American Journal of Sedimentology and Basin Analysis 13 (1), 31-57. https://www.redalyc.org/articulo.oa?id=381740357002

Bértola, G.R., Del Río, J.L., y Farenga, M. (2016). Relleno de playa en Honu Beach (Mar del Plata, Argentina). Revista de Geología Aplicada a la Ingeniería y al Ambiente 37 (1), 11.

Blott, S.J., y Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth surface processes and Landforms 26 (11), 1237-1248.

Campbell, T.J., y Benedet, L. (2006). Beach Nourishment Magnitude sand Trends in the U.S.

Journal of Coastal Research, VIII International Coastal Symposium Actas SI39:57-64, Itajaí ISSN0749¬-0208.

Earlie, C., Masselink, G., y Russell, P. (2018). The role of beach morphology on coastal cliff erosion under extreme waves. Earth Surface Processes and Landform, 43:1213-1228.

Farenga, M.O., Adamini, R., e Isla, F.I. (1992). Recuperación de playas de intense extracción de arena: Ensenada de Mogotes, Mar del Plata, Argentina, 1987-1990. Thalassas, 9:41-47.

Finocchietti, M.C. (2014). Las variaciones del nivel del mar en la costa argentina. Amenazas naturales y vulnerabilidad socio-económica. [Tesis de grado no publicada]. Universidad Nacional de Mar del Plata. Facultad de Humanidades.

Folk, R.L., y Ward, W.C. (1957). Brazes River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27:3-26.

García González, P., Martínez, G.A., Alvarez, M.F., Del Río, J.L., y Taverna B.D. (2021). Evaluación de los procesos antrópicos y naturales que inducen la removilización de un campo de dunas sobre la ruta provincial 11, provincia de Buenos Aires, Argentina. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, 27:135-160. http://dx.doi.org/10.21138/GF.685

Gyssels, P., Ragessi, M., Rodríguez, A., Cardini, J., y Campos, M. (2013). Diseño de infraestructura para la protección de la erosión costera en el litoral argentino, caso Mar del Plata. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil 13 (6), 221-235.

Hamm, L., Capobianco, M., Dettec, H.H., Lechuga, A., Spanhoff, R., y Stive, M.J.F. (2002). A summary of Europe an experience with shore nourishment. Coastal Engineering, 47:237-264.

Hanson, H., Brampton, A., Capobianco, C., Dette, H.H., Hamm, L., Laustmp, C., Lechuga, A., y Spanhoff, R. (2002). Beach nourishment projects, practices, and objectives - A Europe an overview. Coastal Engineering, 47:81-111.

Isla, F.I. (2003). Disponibilidad de arena para el refulado de las playas de Miramar y Chapadmalal, Argentina. Revista de la Asociación Geológica Argentina 58 (3), 311-320.

Isla, F.I. (2006). Erosión y Defensas Costeras. En Isla, F.I. y Lasta, C.A. (Eds.), Manual de manejo costero para la Provincia de Buenos Aires. Universidad Nacional de Mar del Plata 1:125-148.

Isla, F.I. (2010). Natural and artificial reefs at Mar del Plata, Argentina. Journal of Integrated Coastal Zone Management 10 (1), 81-93.

Isla, F.I. (2014). Variaciones espaciales y temporales de la deriva litoral, SE de la Provincia de Buenos Aires, Argentina. Revista Geológica del Sur 5 (8), 24-41.

Isla, F.I., y Schnack, E.J. (1986). Repoblamiento artificial de playas. Sus posibilidades de aplicación en la costa mar platense, provincia de Buenos Aires. IX Congreso Geológico Argentino Actas VI:202-217, S.C. de Bariloche.

Isla, F.I., y Bértola, G.R. (2005). Litoral bonaerense. En de Barrio, R., Etcheverry, R.O., Caballé, M.F. y Llambías, E. (Eds.), Geología y recursos minerales de la Provincia de Buenos Aires, Relatorio XVI Congreso Geológico Argentino:265-276.

Isla, F.I., y Cortizo, L.C. (2013). Sediment input from fluvial sources and cliff erosion to the continental shelf of Argentina. Journal of Integrated Coastal Zone Management 14 (4), 541-552. http:// www.aprh.pt/rgci/pdf/rgci-436_Isla. DOI:10.5894/rgci436

Isla, F.I., Ferrero, L., Fasano, J.L., Espinosa, M.A., y Schnack, E.J. (1986). Late Quaternary marine-estuarine sequences of the southeastern coast of the Buenos Aires province, Argentina. Quater. S. America and Antarctic Pen, 4:137-157.

Isla, F.I., Witkin, G., Bértola, G.R., y Farenga, M.O. (1994). Variaciones morfológicas decenales (1983-1993) de las playas de Mar del Plata. Revista de la Asociación Geológica Argentina 49 (3-4), 55-70.

Isla, F.I., Bértola, G., Farenga, M.O., y Cortizo, L.C. (2001). Variaciones Antropogénicas de las Playas del Sudeste de Buenos Aires, Argentina. Pesquisas em geociências 28 (1), 27-35.

Isla, F.I., Cortizo, L.C., Merlotto, A., Bertola, G., Pontrelli Albisetti, M., y Finocchietti, C. (2018). Erosion in Buenos Aires province: Coastal-management policy revisited. Ocean and Coastal Management, 156:107-116.

James, W.R. (1975). Manual on artificial beach nourishment. Research Codes and Specifications. Delft Hydraulics Laboratory (1987). Rijkwaterstaate Delft Hydraulics Laboratory. Centre for Civil Engineering, 130-195 pp.

Juárez, V., Cortizo, L.C., e Isla, F.I. (2001). Evolución urbana del sector costero sur de Gral. Pueyrredón. Revista Geográfica, 129:143-156.

Komar, P.D., y Allan, J.C. (2010). “Design with Nature” strategies for shore protection-The construction of a cobble berm and artificial dune in an Oregon State Park. En Shipman, H., Dethier, M.N., Gelfenbaum, G., Fresh, K.L., and Dinicola, R.S. (Eds.), Puget Sound Shoreline sand the Impacts of Armoring-Proceedings of a State of the Science Workshop. U.S. Geological Survey Scientific Investigations Report 5254:117-126.

Lamarchina, S., Maenza, R.A., e Isla, F.I. (2021). Mixed sand and gravel beaches of Buenos Aires, Argentina: Morphodynamics and stability. Journal of Coastal Conservation, 25:41. https://doi.org/10.1007/s11852-021-00830-7.

Lanfredi, N.W., Pousa, J.L., Mazio, C.A., y Dragani, W.C. (1992). Wave-power potential along the coast of the province of Buenos Aires, Argentina. Energy 17 (11), 997-1006.

Leonard, L.A., Dixon, K.L., y Pilkey, O.H. (1990). A comparison of beach replenishment on the

U.S. Atlantic, Pacific and Gulf coasts. Special issue, 6:127-14.

Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., y Aarninkhof, S. (2018). The State of the World’s Beaches. Scientific Reports, 8:6641. doi:10.1038/s41598-018-24630-6

Marcomini, S.C., y López, R.A. (1999). Recarga artificial de las playas. Revista Gerencia Ambiental 6 (56), 408-414.

Marcomini, S.C., y López, R.A. (2005). Morfodinámica costera entre Punta Florida y Costa Bonita, Provincia de Buenos Aires. XVI Congreso Geológico Argentino Actas III:553-558, La Plata.

Marcomini, S.C., y López, R.A. (2006). Evolution of a beach nourishment project at Mar del

Plata, Buenos Aires, Argentina. Journal of Coastal Research, VIII International Coastal Symposium Actas SI39:834-837, Itajaí ISSN0749-0208.

Merlotto, A., Bértola, G.R., e Isla, F.I. (2017). Riesgo de erosión costera de la provincia de Buenos Aires, Argentina. Revista Universitaria de Geografía 26 (2), 37-72.

Mojica, M. (2021). Estudios previos a la regeneración de playa: Aplicación a las playas en bolsillo en Mar del Plata (Argentina). [Tesis de Maestría no publicada]. Facultad de Ciencias del Mar y Ambientales. Universidad de Cádiz.

Peterson, C.H., y Bishop, M.J. (2005). Assessing the environmental impacts of beach nourishment. BioScience 55 (10), 887-896.

Pontrelli Albisetti, M., Lazarow, N., García, M., Isla, F.I., y Piccolo, M. (2014). Análisis comparativo entre el Puerto de Mar del Plata, Argentina y el Río Tweed, Australia. Técnicas de bypass como estrategia para superar la obstrucción de la deriva litoral. Revista Geológica del Sur 5 (8), 42-58.

Pranzini, E., Simonetti, D., y Vitale, G. (2010). Sand colour rating and chromatic compatibility of borrow sediments. Journal of Coastal Research 26 (5), 798-808.

Pranzini, E., Anfuso, G., Botero, C-M., Cabrera, A., Campos, Y.A., Martinez, G.C., y Williams, A.T. (2016). Sand colour at Cuba and its influence on beach nourishment and management. Ocean & Coastal Management, 126:51-60. http://dx.doi.org/10.1016/j.ocecoaman.2016.03.013

Pranzini, E., Cinelli, I., Cipriani, L.E., y Anfuso, G. (2020). Na Integrated Coastal Sediment Management Plan: The Example of the Tuscany Region (Italy). Journal of Marine Science and Engineering, 8:33. doi:10.3390/jmse8010033

Pulido Arenas, D.F. (2016). Dinámica sedimentaria episódica y mineralogía en el tómbolo de Punta Mogotes, Mar del Plata, Argentina. [Tesis de grado no publicada]. Universidad EAFIT, Medellín.

Resolución nº2623/09: Municipalidad del Partido de General Pueyrredón. Departamento Deliberativo. Fecha de sanción: 13 de noviembre de 2008 Número de registro: R-2623 Expediente H.C.D.: 2113 Letra U Año 2008.

Rodríguez Paneque, R.A., y Córdova García, E.A. (2005). Efectividad de los trabajos de alimentación artificial con arenas ejecutado en playa estero ciego, entre 1997 y 1998. Ciencias Holguín 11 (3), 1-14. https://www.redalyc.org/articulo.oa?id=181517982003.

Servicio de hidrografía Naval http://www.hidro.gov.ar/oceanografia/tmareas/RE_Mareas.asp. Fecha de ingreso a la página: 13/2/2022.

Stronkhorst, J., Huismana, B., Giardino, A., Santinellia, G., y Santos, F.D. (2017). Sand nourishment strategies to mitigate coastal erosion and sea level rise at the coasts of Holland (The Netherlands) and Aveiro (Portugal) in the 21st century. Ocean and Coastal Management, 156:266-276. https://doi.org/10.1016/j.ocecoaman.2017.11.017.

U.S. ACE (ARMY CORPS OF ENGINEERS). (1984). Chapter 5. Planning Analysis. III Protective Beaches. En U.S. Army CERC (Eds.), Shore Protection Manual. 1:6-24.

Williams, A.T., Rangel-Buitrago, N., Pranzini, E., y Anfuso, G. (2018). The management of coastal erosion. Ocean and Coastal Management, 156:4-20. ISSN0964-5691. https://doi.org/10.1016/j.ocecoaman.2017.03.022.

Published

2022-05-27 — Updated on 2022-07-05

How to Cite

Mojica, M., Lamarchina, S., Anfuso, G., & Isla, F. (2022). Nourishment of beaches south of Mar del Plata (Argentina). Latin American Journal of Sedimentology and Basin Analysis, 29(1), 23-41. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/210

Issue

Section

Research Papers