Mega gravitational slides in Cerro Bola and Sierra de Maz Hills (Guandacol Formation), and their relationship with the Late Paleozoic Ice Age, La Rioja, Argentina

Authors

  • Victoria Valdez Buso Departamento de Geologia, Universidade do Vale do Rio Dos Sinos. Av Unisinos 950, Cristo Rei, São Leopoldo, Río Grande do Sul, Brasil.
  • Juan Pablo Milana CONICET y Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de San Juan. Argentina.
  • Benjamin Kneller Department of Geology and Petroleum Geology, University of Aberdeen. Meston Building, Aberdeen, Scotland.

Keywords:

mass transport deposits, gondwanic glaciation, Carboniferous, Sierras Pampeanas, Argentina.

Abstract

This paper reports and analyzes the presence of large, seismic-scale, mass transport deposits (MTDs) recorded within the Guandacol Formation. These major submarine landslides seem to be connected with the occurrence of glacial episodes. The Guandacol Formation is part of the Paganzo Basin fill of Norwest Argentina (Fig. 1), and it is well known for recording several glacial cycles of the Late Paleozoic Ice Age. In this contribution we report and describe three major glacial/deglacial cycles (Fig. 1b) of Mississippian/Pennsylvanian age (Valdez et al., 2013). Outcrops of Guandacol Formation in Cerro Bola and Sierra de Maz (Cerro Guandacol) areas preserve those glacial cycles and each consists in the succession from non-glacial deltaic deposits to proglacial and thick mass-transport deposits (resedimented diamictites), which are the aim of this study, and finally postglacial marine varied strata, including sandy turbidites, shales with and without dropstones and some deltaic deposits (Milana et al., 2010; Dykstra et al., 2011). This study focuses on Sierra de Maz and Cerro Bola localities because they show very well exposed seismic-scale MTDs that otherwise would be quite difficult to see (Fig. 2a, b). Thus, these outcrops give the opportunity to compare many characteristics that are usually seen in seismic records, directly on the ground. On this sense, this contribution is mainly oriented to describe the facial and geometrical interrelations between these large MTDs (as there are many minor MTDs) and not the detailed internal architecture or their comparison to specific seismic features. The occurrence of these large MTDs can be explained by the large amounts of sediment delivered to the basin triggered by glacial- deglacial episodes. Due to the scarcity of well-exposed mega-scale MTD successions, a detailed study is being carried out since a few years. The result of detailed mapping of this rough terrain allow an excellent correlation between single MTDs, for several kilometers from Guandacol to Bola Hill outcrops (Fig. 3), and also portraying how a single MTD changes laterally when passing from a basin-margin environment (Guandacol Hill) to a basin-center environment (Bola Hill). The local Guandacol Formation shows three large glacial cycles that are mainly represented by single large MTDs and/or MTD composite intervals. The oldest MTD1 crops out completely in the Guandacol Hill, but only the upper part is present at Bola Hill (Fig. 4). MTD1 particular diagenesis and broad folds caused some authors to separate it from the Guandacol Formation, but we did not find any significant unconformity other than the normal upper relief between it and the following inter-MTD deposits. MTD2 is the largest and occurs as basin widens and more accommodation space is available. Reaching up to 200 m thick, it crops out continuously for more than 10 km in Bola Hill and 4 km in Guandacol Hill (Figs. 5, 6). The MTD3 is more complex due to its encroaching with large syn-sedimentary faults that we interpret as a large-scale slide scar associated to the MTD3 interval (Figs. 9, 10). This potential slide scar is associated with other elements as incised valleys or rilling at the scar surface, which have been observed in subsurface examples. Therefore one of the largest example of MTD successions and probably the best exposed worldwide is documented for the first time as a large, seismic-scale slide-scar cropping out in association to an MTD interval, with all the suite of sedimentary and deformational elements that might be expected for this play. Due to the fact these features are rarely exposed altogether, we expect this outcrop could be a world-class example to observe features cropping out that otherwise could be only studied indirectly from deep-water seismic surveys. This succession also serves as an example of how some sedimentary features could be easily mistaken by tectonic features when the scale of the sedimentary processes involves the discrete movement of large volumes (several km3) of semiconsolidated sedimentary units, as in the case presented here.

References

Amos, A.J. y O. Lo?pez Gamundi?, 1981. Las diamictitas del Paleozoico superior en Argentina: su edad e interpretacio?n. VIII Congreso Geolo?gico Argentino Actas 3:41-58, San Luis.

Andreis, R.R., L.A. Spalletti y M.M. Mazoni, 1975. Estudio geolo?gico del Subgrupo Sierra de Maz, provincial de La Rioja, Repu?blica Argentina. Revista de la Asociacio?n Geolo?gica Argentina 30:247-273.

Armitage, D.A., B.W. Romans, J.A. Covault y S.A. Graham, 2009. The influence of mass-transport-deposit surface topography on the evolution of turbidite architecture: The sierra contreras, Tres Pasos Formation (Cretaceous), Southern Chile. Journal of Sedimentary Research 79:287-301.

Astini, R.A., 1996. Las fases diastro?ficas del Paleozoico medio en la Precordillera del oeste argentino: evidencias estratigra?ficas. XIII Congreso Geolo?gico Argentino y III Congreso de Exploracio?n de Hidrocarburos Actas 5:509-526, Buenos Aires.

Astini, R.A., 2009. El marco tecto?nico de la glaciacio?n carboni?fera. XII Congreso Geolo?gico Chileno Actas S10-003:1-4, Santiago de Chile.

Aquino, C.D., U.F. Faccini y J.P. Milana, 2014. New glacial evidences at the Talacasto paleofjord (Paganzo basin, W-Argentina) and its implications for the paleogeography of the Gondwana margin. Journal of South American Earth Sciences 56:278-300.

Azcuy, C.L. y J.R. Morelli, 1970. Geologi?a de la Comarca Paganzo - Amana?. El Grupo Paganzo. Formaciones que lo componen y sus relaciones. Revista de la Asociacio?n Geolo?gica Argentina 25:405-429

Azcuy, C.L., R.R. Andreis, A. Cuerda, M.A. Hu?nicken, M.V. Pensa, D.A. Valencio y J.F. Vilas, 1987. Cuenca Paganzo. En S. Archangelsky (Ed.), El Sistema Carboni?fero en la Repu?blica Argentina. Academia Nacional de Ciencias, Co?rdoba:41-100.

Badalini, G., B. Kneller y C.D. Winker, 2000. Architecture and processes in the Late Pleistocene Brazos-Trinity turbidite system. Gulf of Mexico Continental slope. En P. Weimer, R.M. Slatt, J. Coleman, J., N.C. Rosen, H. Nelson, A.H. Bouma, M.J. Styzen y D.T. Lawrence (Eds.), Deep water reservoirs of the world. Gulf Coast Section, SEPM 20th Annual Research Conference:16-33. Houston.

Baldis, B.A., M.S. Beresi, O. Bordonaro y A. Vaca, 1982. Si?ntesis evolutiva de la Precordillera Argentina. 5o Congreso Latinoamericano de Geologi?a 4:399-445, Buenos Aires.

Baldis, B.A., O. Bordonaro, C. Armella, M. Beresi, N. Cabaleri, S. Peralta y H. Basti?as, 1989. La Cuenca Paleozoica inferior de la Precordillera Argentina. En G.A. Chebli y L.A. Spalleti (Eds.), Cuencas Sedimentarias Argentinas. Serie Correlacio?n Geolo?gica No 6:101-122.

Bercowski, F. y J.P. Milana, 1990. Sedimentacio?n glacimarina: nueva interpretacio?n para la Formacio?n Guandacol (Carboni?fero) en el perfil de Ri?o Francia, Precordillera central, San Juan. 3° Reunio?n Argentina de Sedimentologi?a Actas:37-42, San Juan.

Bodenbender, G., 1896. De?vono y Gondwana en la Repu?blica Argentina. Boleti?n Academia Nacional Ciencias de Co?rdoba 15:201-252.

Bodenbender, G., 1911. Constitucio?n geolo?gica de la parte meridional de La Rioja y regiones limi?trofes. Boleti?n Academia Nacional de Ciencias 19:1-220.

Bryn, P., A. Solheim, K. Berg, R. Lein, C.F. Forsberg, H. Haflidason, D. Ottesen y L. Rise, 2003. The Storegga Slide complex: repeated large scale sliding in response to climatic cyclicity. En J. Locat y J.Mienert (Eds.), Submarine Mass Movements and their Consequences. Kluwer Academic Publishers, The Netherlands:215-222.

Bryn, P., K.Berg, C.F. Forberg, A. Solheim y T.J. Kvalstad, 2005. Explaining the Storegga Slide. Marine and Petroleum Geology 22:11-19.

Ce?sari, S.N y P.R. Gutierrez, 2001. Palynostratigraphic study of the Upper Paleozoic central-western Argentinian sequences. Palynology 24:113-146.

Ce?sari, S.N. y C.O. Limarino, 2002. Palynology of glacial sediments from the Guandacol Formation (Middle Carboniferous) in the Cerro Bola area, Paganzo Basin, Argentina. Alcheringa 26:159- 176.

Ce?sari, S.N., C.O. Limarino y E.L. Gulbranson, 2011. An Upper Paleozoic biochronostratigraphic scheme for the western margin of Gondwana. Earth-Science Reviews 106:149-160.

Cuerda, A., 1965. Estratigrafi?a de los depo?sitos Neopaleozoicos de la Sierra de Maz, Provincia de La Rioja. Segundas Jornadas Geolo?gicas Argentinas Actas 3:79-84, Salta.

Dykstra M., K. Garyfalou, V. Kertznus, B. Kneller, J.P. Milana, M. Molinaro, M. Szuman y P. Thompson, 2011. Mass-transport deposits: Combining Outcrop studies and seismic forward modeling to understand lithofacies distributions, deformation and their seismic expression. En R.C. Shipp, P. Weimer y H. W. Posamentier (Eds.), Mass-transport Deposits in Deepwater Settings. SEPM, Special Publication 96:293-310.

Fairweather L., 2014. Mechanisms of supra-MTD topography formation and the interaction of turbidity currents with such deposits. Tesis doctoral, Universidad de Aberdeen, (ine?dito).

Ferna?ndez Seveso, F., M. Perez, I. Brisso?n y L. A?lvarez, 1993. Ana?lisis de cuenca: Te?cnicas aplicadas en la serie carbo?nica- pe?rmica del Paganzo. Boleti?n de Informaciones Petroleras 33:77-107.

Ferna?ndez Seveso, F. y A. Tankard, 1995. Tectonics and stratigraphy of the late Paleozoic Paganzo Basin of western Argentina and its regional implications. En A. Tankard, S. Suarez y H.J. Welsink (Eds.), Petroleum Basins of South America. American Association of Petroleum Geologists, Memoir 62:285-301.

Frakes, L.A. y C. Crowell, 1969. Late Paleozoic glaciation: I, South America. Geological Society of America Bulletin 80:1007-1042. Frengu?elli, J., 1944. Apuntes acerca del Paleozoico Superior del noroeste argentino. Revista Museo de la Plata Geologi?a II, 15:213- 65.

Gamberi, F., M. Rovere y M. Marani, 2011. Mass-transport complex evolution in a tectonically active margin (Gioia Basin, Southeastern Tyrrhenian Sea). Marine Geology 279: 98-110.

Gauer, P., T.J. Kvalstad, C.F. Forsberg, P. Bryn y K. Berg, 2005. The last phase of the Storegga Slide: simulation of retrogressive slide dynamics and comparison with slide-scar morphology. Marine and Petroleum Geology 22:171-178.

Gulbranson, E.L., I. Montan?ez, M.D. Schmitz, C.O Limarino, J.L. Isbell, S. Marenssi y J.L. Crowley, 2010. High-precision U-Pb calibration of Carboniferous glaciation and climate history, Paganzo Group, NW Argentina. Geological Society of America Bulletin 122:1480-1498.

Keidel, H., 1922. Sobre la distribucio?n de los depo?sitos glaciares del Pe?rmico conocidos en la Argentina y su significacio?n para la estratigrafi?a de la Serie Gondwana y la paleogeografi?a del hemisferio austral. Boleti?n de la Academia Nacional de Ciencias de Co?rdoba 25:75-98.

Keidel, H. y H.J. Harrington, 1938. On the discovery of Lower Carboniferous Tillites in the Precordillera of San Juan, Western Argentina. Geological Magazine 75:103-129.

Kneller, B., 1995. Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. En A.J. Hartley y D.J. Prosser (Eds.), Characterisation of Deep Marine Clastic Systems. Geological Society London, Special Publications 94:29-46.

Kneller, B.C. y W. McCaffrey, 1999. Depositional effects of flow non-uniformity and stratification within turbidity currents approaching a bounding slope: deflection, reflection, and facies variation. Journal of Sedimentary Research 69:980-991.

Kneller, B.C y C.M. Buckee, 2000. The structure and fluid mechanics of turbidity currents; a review of recent studies and their geological implications. Sedimentology 47:62-94.

Kneller, B.C., D.A. Edwards, W.D. McCaffrey y R.M. Moore, 1991. Oblique reflection on turbidity currents. Geology 19:250-252. Limarino, C.O y S.N. Ce?sari, 1984. Primer registro paleofloristico de La Formacio?n La Colina (Paleozoico Superior) Cuenca de Paganzo, Repu?blica Argentina. Boletim Instituto Geocie?ncias, Universidade de Sa?o Paulo 15:32-37.

Limarino, C.O. y P.R. Gutie?rrez, 1990. Diamictites in the Agua Colorada Formation. New evidence of Carboniferous glaciations in South America. Journal of South American Earth Sciences 3:9-20.

Limarino, C.O., S.N. Ce?sari, L.I .Net, S.A. Marenssi, P.R. Gutie?rrez y A. Tripaldi, 2002. The Upper Carboniferous postglacial transgression in the Paganzo and Ri?o Blanco Basins (northwestern Argentina): facies and stratigraphic significance. Journal of South American Earth Sciences 15:445-460.

Limarino, C., A. Tripaldi, S.A. Marenssi y L. Fauque?, 2006. Tectonic, sea-level, and climatic controls on late Paleozoic sedimentation in the western basins of Argentina. Journal of South American Earth Sciences 33:205-226.

Limarino, C.O., S.N. Ce?sari, L.A. Spalletti, A.C. Taboada, J.L. Isbell, S. Geuna y E.L. Gulbranson, 2013. A paleoclimatic review of Southern South America during the late Paleozoic: A record from icehouse to extreme greenhouse conditions. Gondwana Research 25:1396-1421.

Lo?pez-Gamundi?, O., 1997. Glacial-postglacial transition in the Late Paleozoic basins of southern South America. En I.P. Martini (ed.), Late Glacial and Postglacial Environmental Changes- Quaternary, Carboniferous- Permian, and Proterozoic. Oxford University Press, New York:147-168.

Lo?pez Gamundi?, O. y M. Marti?nez, 2000. Evidence of glacial abrasion in the Calingasta-Uspallata and western Paganzo basins, mid- Carboniferous of western Argentina. Palaeogeo- graphy, Palaeoclimatology and Palaeoecology 159:145-165.

Lucente, C.C. y G.A. Pini, 2003. Anatomy and emplacement mechanism of a large submarine slide within a Miocene foredeep in the Northern Apennines, Italy: a field perspective. American Journal of Science 303:565-602.

Lucente, C.C. y G.A. Pini, 2008. Basin-wide mass-wasting com- plexes as markers of the Oligo–Miocene foredeep-accretionary wedge evolution in the Northern Apennines, Italy. Basin Research 20:49-71.

Marenssi, S.A., A. Tripaldi, A.T. Caselli y C.O. Limarino, 2002. Hallazgo de tillitas sobre el flanco occidental del anticlinal de Agua Hedionda (Provincia de San Juan): evidencias de avances y retrocesos del hielo durante la glaciacio?n gondwa?nica en la Cuenca Paganzo. Revista de la Asociacio?n Geolo?gica Argentina 57:349-352.

Marenssi, S.A., A. Tripaldi, C.O. Limarino y A.T. Caselli, 2005. Facies and architecture of a Carboniferous grounding-line system from the Guandacol Formation, Paganzo Basin, northwestern Argentina. Gondwana Research 8:187-202.

Marti?n-Merino, G., L.P. Ferna?ndez, J.R. Colmenero, J.R. Bahamonde, 2014. Mass- transport deposits in a Variscan wedge-top foreland basin (Pisuerga area, Cantabrian Zone, NW Spain). Marine Geology 356:71-87.

Meckel, L.D., 2011. Reservoir characteristics and classification of sand-prone submarine mass transport deposits. En C. Shipp, P. Weimer y H. Posamentier (Eds.), Mass-Transport Deposits. SEPM, Special Publication 96:423-452.

Milana, J.P. y F. Bercowski, 1993. Late Paleozoic glaciation in Paganzo Basin, western Argentina: sedimentological evidence. Compte Rendus XII Congres International Stratigraphie et Geologie du Carbonifere et Permien 1:325-335.

Milana, J.P., B. Kneller y M. Dykstra, 2010. Mass-transport deposits and gravity flows, syn- to post-glacial Carboniferous basins of western Argentina. 18th International Sedimentological Congress field guide. International Association of Sedimentologists.

Nardin, T.R., F.J Hein, D.S. Gorsline y B.D. Edwards, 1979. A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems. En L.J. Doyle y O.H. Pilkey (Eds.), Geology of Continental Slopes. SEPM, Special Publications 27:61-73.

Pazos, P., 1993. Estratigrafi?a de la secuencia sedimentaria basal aflorante en el cerro Guandacol: su implicancia tento?nica y paleoambiental, Sierra de Maz, Prov. de La Rioja, Argentina. XII Congreso Geolo?gico Argentino y 2° Congreso de Exploracio?n de Hidrocarburos Actas l:148-156, Mendoza.

Pazos, P., 2002. The Late Carboniferous glacial to postglacial transition: facies and sequence stratigraphy, western Paganzo Basin, Argentina. Gondwana Research 5:467-487.

Piper, D.J.W., C. Pirmez, P.L. Manley, D. Long, R.D. Flood, W.R. Normak y W. Showers, 1997. Mass transport deposits of the Amazon Fan. En R.D. Flood, D.J.W. Piper, A. Klaus, L.C. Peterson (Eds.), Proceeding ODP, Science Results 155. College Station (Ocean Drilling Program):109-146.

Prather, B.E., 2000. Calibration and visualization of depositional process models for above-grade slopes: a case study from the Gulf of Mexico. Marine and Petroleum Geology 17:619-639.

Puigdomenech, C.G., 2014. The relationship between deltaic and turbidite succession at Cerro Bola (LR –Argentina) and Vidal Ramos (SC - Brazil). Tesis de Maestri?a, Programa po?s- graduac?a?o em Geologia, Universidade do Vale do Rio Do Sinos, 105 pp. (ine?dito).

Ramos, V.A., 1988. Tectonics of the Late Proterozoic - Earl y Paleozoic: a collisional history of Southern South America. Episodes 11:168-174.

Richardson, S.E.J., R.J. Davis, M.B. Allen y S.F. Grant, 2011. Structure and evolution of mass transport deposits in the South Caspian Basin, Azerbaijan. Basin Research 23:702–719.

Salfity, J. y S.A Gorustovich, 1983. Paleogeografi?a de la cuenca del Grupo Paganzo, Paleozoico superior. Revista Asociacio?n Geolo?gica Argentina 38:437-453.

Sawyer, D.E., P.B. Flemings, B. Dugan y J.T. Germaine, 2009. Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico. Journal of Geophysics Research 114: B10102, doi: 10.1029/2008JB006159.

Talling, P., R. Wynn, D. Masson, M. Frenz, B. Cronin, R. Schiebel, A. Akhmetzhanov, S. Dallmeier-Tiessen, S. Benetti, y P. Weaver, 2007. Onset of submarine debris flow deposition far from original giant landslide. Nature 450:541-544.

Teruggi, M., R. Andreis, M. In?iguez, J. Abait, M. Mazzoni y L. Spalleti, 1969. Sedimentology of the Paganzo Beds at the Cerro Guandacol, Province of La Rioja. I Simposio Internacional de Estratigrafi?a y Paleontologi?a del Gondwana Actas 2:857-880, Mar del Plata.

Valdez, V., J.P. Millana, B. Kneller y L. Fairweather, 2012. Protolito y morfologi?a de un depo?sito de transporte en masa, Sierra de Maz, La Rioja, Argentina. XIII Reunio?n Argentina de Sedimentologi?a Actas:219-220, Salta.

Valdez, V., P.S.G. Paim, P. de Souza y M. di Pasquo, 2013. Carboniferous deglacial record in Parana? Basin (Brazil) and its analog in Paganzo Basin (Argentina): a comparison between Pennsylvanian and Permian sections. 6th Latin American Congress of Sedimentology Actas en CD, Sa?o Paulo.

Published

2021-03-31

How to Cite

Valdez Buso, V., Milana, J. P. ., & Kneller , B. . (2021). Mega gravitational slides in Cerro Bola and Sierra de Maz Hills (Guandacol Formation), and their relationship with the Late Paleozoic Ice Age, La Rioja, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 22(2), 109-133. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/195

Issue

Section

Research Papers