Paleoenvironmental evolution of the Río Mayer Formation, Lower Cretaceous, Austral Basin, Santa Cruz Province, Argentina.

Authors

  • Sebastián Richiano Cátedras de Sedimentología y Rocas sedimentarias, Universidad Nacional de La Plata. Calle 60 y 122 s/n, La Plata, Argentina. Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-CONICET. Calle 1 Nº 644, La Plata, Argentina.
  • Augusto N. Varela Cátedras de Sedimentología y Rocas sedimentarias, Universidad Nacional de La Plata. Calle 60 y 122 s/n, La Plata, Argentina. Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-CONICET. Calle 1 Nº 644, La Plata, Argentina.
  • Daniel G. Poiré Cátedras de Sedimentología y Rocas sedimentarias, Universidad Nacional de La Plata. Calle 60 y 122 s/n, La Plata, Argentina. Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-CONICET. Calle 1 Nº 644, La Plata, Argentina.

Keywords:

Black Shales, Facies Analysis, Outer Shelf, Trace Fossils, Patagonia.

Abstract

The marine deposits of the Río Mayer Formation are part of the initial filling of the Austral Basin, which is developed in the southernmost part of South America, including the south of Chile and Argentina (southwestern Patagonia, Santa Cruz and Tierra del Fuego Provinces, Figs. 1, 2). The study area is located between the San Martín and Argentino lakes in the Santa Cruz Province (Fig. 3). The Río Mayer Formation (Fig. 2) was studied in three main localities, where detailed sedimentary logging was undertaken (Figs. 4, 5), taking into account the lithology, the primary sedimentary structures, the palaeontological content, rock bodies geometry, their orientation and the hierarchy as well as the contacts with underlying and overlying units. Eighteen sedimentary facies were defined (Figs. 6, 7; Table 1), which were grouped into three facies association representing different sedimentary palaeoenvironments, like marine outer platform (AF 1), marine outer platform influenced by a deltaic system (AF 2) and prodelta (AF 3) (Fig. 8, Tables 1, 2). The facies of the outer platform palaeoenvironment corresponds to the rocks traditionally assigned to the Río Mayer Formation, according to the available bibliography, and deposited by hemipelagic and authigenic processes interrupted by episodic sedimentation. The deposits of the outer platform influenced by a deltaic system palaeoenvironment are similar to the above mentioned but presents continental fossils that indicate a deltaic source. Finally, AF 3 of a prodelta palaeoenvironment is dominated by sandy/heterolithics levels associated with turbidity currents and hyperpycnal flows originated in a delta front. The best and most complete exposures of the unit were observed in the Río Guanaco locality, where palaeoenvironmentalinterpretationswereperformed, allowing the division of the 350 m-thick unit in three sections (Fig. 9). The lower section is composed mainly by black shales with both tabular and concretional marls levels (AF 1). Trace fossils are not recorded in this section, but ammonites, belemnites and bivalves are frequent. It has been interpreted as accumulated in a distal platform, under anoxic conditions. The middle section is characterized by bioturbated black marls and shales, with well- preserved Zoophycos ichnofacies (Richiano et al., in press), occurring in a distal platform depositional environment. Body fossils are frequent, especially belemnites. The upper section is composed of massive black mudstones with intercalations of very fine- to fine-grained sandstones and less frequent conglomerates. In this section both debris flows and distal low-density turbidity current deposits were identified. Zoophycos ichnofacies and Ophiomorpha rudis ichnosubfacies were recognized in association with molds of petrified wood containing Teredolites isp. (Richiano et al., in press). The presence of turbulent currents and large trace fossils suggest a more oxygenated conditions. At Lago San Martín and Estancia La Vega localities the most significant characteristic is the presence of prodeltaic deposits in the transition between Río Mayer Formation and Piedra Clavada formations (Fig. 9). To sum up, after the Upper Jurassic rifting stage of the Austral Basin, the Springhill Formation represents the initial infill of the extensional structures. After that, during the Berriasian (Fig. 10a), the levels of the lower section of the Río Mayer Formation started to accumulate in the Río Guanaco area. During the Valanginian (Fig. 10b), an acceleration in the transgression generated the accumulation of the Springhill Formation in the Lago San Martín area while in the Río Guanaco region the middle section of the Río Mayer Formation developed. Between the Hauterivian and the Barremian all the study area was under distal platform conditions (Fig. 10c). A major change in the sedimentary systems of the Austral Basin during the Lower Cretaceous is the development of the deltaic Piedra Clavada Formation (Fig. 10d). This event generated two different palaeoenvironments in the Río Mayer Formation. Prodeltaic deposits are present to the north, while sediments of distal platform conditions with highly frequent sandy levels prevail southwards. Finally a new transgression indicates the beginning of the Cerro Toro and Mata Amarilla formations in the middle Albian- lower Cenomanian (Fig. 10e).

References

Aguirre Urreta, M.B., 1987. La icnofacies Teredolites en el Cretácico de la Cuenca Austral Argentina. 10° Congreso Geológico Argentino, San Miguel de Tucumán, actas.

Aguirre Urreta, M.B., 2002. Invertebrados del cretácico inferior. En

M.J. Haller (Ed.), Geología y Recursos Naturales de Santa Cruz. Relatorio del XV Congreso Geológico Argentino, 925 pp.

Amorosi, A., 1995. Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences. Journal of Sedimentary Research 65:419-425.

Amorosi, A., 1997. Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research. Sedimentary Geology 109:135-153.

Arbe, H.A., 1986. El Cretácico de la Cuenca Austral: sus ciclos de Sedimentación. Tesis doctoral inédita. Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales, Buenos Aires.

Arbe, H.A., 2002. Análisis estratigráfico del Cretácico de la Cuenca Austral. En M.J. Haller (Ed.), Geología y Recursos Naturales de Santa Cruz. Relatorio del XV Congreso Geológico Argentino:103-128.

Arbe, H.A. y J. Hechem, 1984. Estratigrafía y facies de depósitos continentales, litorales y marinos del Cretácico superior, lago Argentino. IX Congreso Geológico Argentino Actas 7:124-158.

Archangelsky, S., 2009. Biogeographic implications of Albian Mohria-like spores (Family Anemiaceae) in SW Gondwana (Patagonia). Review of Palaeobotany and Palynology 157:301- 308.

Bagnold, R., 1956. The flow of cohessionless grains in fluids. Philosophical Transactions of the Royal Society of London Serie A 225:49-63.

Bhattacharya, J.P., 2006. Deltas. En H.W. Posamentier y R.G. Walker (Eds.), Facies Models Revisited. SEPM Special Publication 84:237-292.

Biddle, K., M. Uliana, R. Mitchum Jr., M. Fitzgerald y R. Wright, 1986. The stratigraphic and structural evolution of central and eastern Magallanes Basin, Southern America. En P. Allen y P. Homewood (Eds.), Foreland basins. International Association of Sedimentology Special Publication 8:41-61.

Bouma, A.H., 1962. Sedimentology of some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.

Caminos, R., 1980. Cordillera Fueguina. Simposio de Geología Regional Argentina, No. 2:1463-1501. Córdoba.

Canessa, N.D., D.G. Poiré y P. Doyle, 2005. Estratigrafía de las unidades cretácicas de la margen norte del Lago Viedma, entre el Cerro Pirámides y la Estancia Santa Margarita, Provincia de Santa Cruz, República Argentina. Actas del XVI Congreso Geológico Argentino. La Plata.

Canessa, N.D., J.R. Franzese, D.G. Poiré y P. Doyle, 2006. Control tectónico en la sedimentación cretácica de la Cuenca Austral, margen noroeste del Lago Viedma, Provincia de Santa Cruz, República Argentina. Actas del IV Congreso Latinoamericano de Sedimentología ¬ XI Reunión Argentina de Sedimentología, Bariloche, Argentina.

Collinson, J.D. y D.B. Thompson, 1989. Sedimentary structures. Segunda edición. Unwin Hyman LTD, London, UK, 207 pp.

Collinson, J.D., N. Mountney y D.B. Thompson, 2006. Sedimentary structures. Tercera edición. Terra Publishing. Harpenden, England, 292 pp.

Dalziel, I.W.D., M.J. de Wit y K.F. Palmer, 1974. Fossil marginal basin in the southern Andes. Nature 250:291-294.

Duke, W.L., R.W.C. Arnott y R.J. Cheel, 1991. Shelf sandstones and hummocky cross-stratification: New insights on a stormy debate. Geology 19:625-628.

Dumas, S., R.W.C. Arnott y J.B. Southard, 2005. Experiments on oscillatory-flow and combined-flow bed forms: implications for interpreting parts of the shallow-marine sedimentary record. Journal of Sedimentary Research 75:501-513.

Dumas, S. y R.W.C. Arnott, 2006.Origin of hummocky and swaley cross-stratification - The controlling influence of unidirectional current strength and aggradation rate. Geology 34:1073-1076.

Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. American Association of Petroleum Geologists, Memoir 1:108-121.

Einsele, G., 1991. Submarine mass flow deposits and turbidites. En G.Einsele, W. Ricken y A. Seilacher (Eds.), Cycles and events in stratigraphy. Springer-Verlag, Berlin:79-93.

Embry, A.F. y J.E. Klovan, 1972. Absolute water depth limits of late Devonian paleoecological zones. Geologishe Rundshau 61:672-686.

Féraud, G., V. Alric, M. Fornari, H. Bertrand y M. Haller, 1999. 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break- up and subduction. Earth and Planetary Science Letters 172:83-98.

Feruglio, E., 1950. Descripción Geológica de la Patagonia. Y.P.F. Buenos Aires, Tomos I, II, III.

Fildani, A. y A. Hessler, 2005. Stratigraphic record across a retroarc basin inversion: Rocas Verdes–Magalanes Basin, Patagonian Andes, Chile. Geological Society of America Bulletin 117:1596- 1614.

Fosdick, J.C., B.W., Romans, A., Fildani, A., Bernhardt, M. Calderón y S.A. Graham, 2011. Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51º30’S. Geological Society of America Bulletin 123:679-1698.

Gabaldon, V., 1991. Plataformas siliciclásticas externas: Facies y su distribución areal. (Plataformas dominadas por tormentas). Publicación Especial del Boletín Geológico y Minero, Instituto Tecnológico GeoMinero de España, 93 pp.

Hatcher, J.B., 1897. On the geology of Southern Patagonia. American Journal of Science 4:327-354.

Katz, H.R., 1963. Revision of Cretaceous stratigraphy in Patagonian Cordillera of Ultima Esperanza, Magallanes Province, Chile. American Association of Petroleum Geology Bulletin 47:506- 524.

Kietzmann, D.A. y R.M. Palma, 2011. Las tempestitas peloidales de la Formación Vaca Muerta (Tithoniano-Valanginiano) en el

sector surmendocino de la Cuenca Neuquina. Latin American Journal of Sedimentology and Basin Analysis 18:121-149.

Kneller, B.C. y M.J. Branney, 1995. Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology 42:607-616.

Kraemer, P.E. y A.C. Riccardi, 1997. Estratigrafía de la región comprendida entre los lagos Argentino y Viedma (49° 40’–50° 10’ LS), Provincia de Santa Cruz. Revista de la Asociación Argentina de Geología 52:333-360.

Kraemer, P.E., J.V. Ploszkiewicz y V.A. Ramos, 2002. Estructura de la cordillera patagónica austral entre los 46º y 52º S. En M.J. Haller (Ed.), Geología y Recursos Naturales de Santa Cruz. Relatorio del XV Congreso Geológico Argentino:353-364.

Leanza, A.F., 1970. Amonites nuevos o poco conocidos del Aptiano, Albiano y Cenomaniano de los Andes Australes con notas acerca de su posición estratigráfica. Revista de la Asociación Geológica Argentina 25:197-261.

Li, M.Z. y C.L. Amos, 1999. Sheet flow and large wave ripples under combined waves and currents: field observations, model predictions and effects on boundary layer dynamics. Continental Shelf Research 19:637-663.

Lowe, D.R., 1982. Sediment gravity flows II: depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology 52:279-297.

Marinelli, R.V., 1998. Reservorios deltáicos de la Formación Piedra Clavada. Boletín de Informaciones Petroleras XV (54): 28-37.

Miall, A.D., 1996. The Geology of Fluvial Deposit: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag. Berlin, 582 pp.

Mulder T. y J.P.M. Syvitski, 1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. Journal of Geology 103:285-299.

Mutterlose, J., S. Pauly y T. Steuber, 2009. Temperature controlled deposition of early Cretaceous (Barremian–early Aptian) black shales in an epicontinental sea. Palaeogeography, Palaeoclimatology, Palaeoecology 273:330-345.

Mutti, E., D. Bernoulli, F. RicciLucchi y R. Tinterri, 2009. Turbidites and turbidity currents from Alpine ‘flysch’ to the exploration of continental margin. Sedimentology 56:267-318.

Negri, A., A. Ferretti, T. Wagner y P.A. Meyers, 2009. Phanerozoic organic-carbon- rich marine sediments: Overview and future research challenges. Palaeogeography, Palaeoclimatology, Palaeoecology 273:218-227.

Odin, G.S. y M. Lamboy, 1988. Glaucony from the margin off northwestern Spain. En G.S. Odin (Ed.), Green Marine Clays. Developments in Sedimentology 45:249-276.

Pankhurst, R.J., T.R. Riley, C.M. Fanning y S.P. Kelley, 2000. Episodic silicic volcanism in Patagonia and Antarctic Peninsula.: Chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology 41:605-625.

Poiré, D.G. y J.R. Franzese, 2008.Trazas fósiles de ambientes litorales marino-parálicos de la Formación Springhill (Cretácico Inferior), Andes Patagónicos Australes, provincia de Santa Cruz, Argentina. XII Reunión Argentina de Sedimentología, Buenos Aires, Actas:143.

Potter, P.E., J.B. Maynard y P.J. Depetris, 2005. Mud and Mudstones. Springer, New York, 297 pp.

Riccardi, A.C., 1968. Estratigrafía de la región oriental de la Bahía de la Lancha, Lago San Martín, Santa Cruz. Museo de la Plata, Tesis Doctoral nº 274, 347 pp.

Riccardi, A.C., 1971. Estratigrafía en el oriente de la Bahía de la Lancha, Lago San Martín, Santa Cruz, Argentina. Extracto de la Revista del Museo de la Plata, Sección Geológica, Tomo VII:245-318.

Riccardi, A.C. y E.O. Rolleri, 1980. Cordillera Patagónica Austral. En J.C.M. Turner (Ed.), Segundo Simposio de Geología Regional Argentina. Academia Nacional de Ciencias de Córdoba II:1173-1304.

Richiano, S., 2012. Sedimentología e icnología de la Formación Río Mayer, Cuenca Austral, Provincia de Santa Cruz, Argentina. Tesis doctoral. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata.

Richiano, S. y D.G. Poiré, 2010. Ichnology from the Río Mayer Formation, Austral Basin, Patagonia Argentina. XVIII International Sedimentological Congress, Mendoza, Argentina. Abstracts:750.

Richiano S., D.G., Poiré y A.N. Varela, 2012. Icnología de las formaciones Springhill y Río Mayer durante el Valanginiano de la Cuenca Austral. XIII Reunión Argentina de Sedimentología, Salta, Actas:187-188.

Richiano S., D.G., Poiré y A.N. Varela, en prensa. Icnología de la Formación Río Mayer, Cretácico Inferior, So Gondwana, Patagonia, Argentina. Ameghiniana.

Rodríguez, J. y M. Miller, 2005. Cuenca Austral. En Frontera Exploratoria de la Argentina. VI Congreso de Exploración y Desarrollo de Hidrocarburos:307-324.

Rodríguez, J.F. y M.J. Cagnolatti, 2008. Source Rocks and Paleogeography, Austral Basin, Argentina. AAPG Convention, San Antonio, EEUU.

Russo, A. y M.A. Flores, 1972. Patagonia Austral Extraandina. En A.F. Leanza (Ed.), Geología Regional Argentina. Academia Nacional de Ciencias de Córdoba:707-725.

Russo, A., M.A. Flores y H. Di Benedetto, 1980. Patagonia Austral Extraandina. En J.C.M. Turner (Ed.), Segundo Simposio de Geología Regional Argentina. Academia Nacional de Ciencias de Córdoba II:1431-1462.

Scasso, R.A. y C.O. Limarino, 1997. Petrología y Diagénesis de Rocas Clásticas. Asociación Argentina de Sedimentología, Buenos Aires, 259 pp.

Seilacher, A. 1964. Sedimentological classification and nomenclature of trace fossils. Sedimentology 3:256-263.

Seilacher, A. 1967. Bathymetry of trace fossils. Marine Geology 5:413-428.

Spalletti, L.A., D.G. Poiré, E. Schwarz y G.D. Veiga, 2001a. Sedimentologic and sequence stratigraphic model of a Neocomian marine carbonate–siliciclastic ramp: Neuquén Basin, Argentina. Journal of South American Earth Sciences 14:609-624.

Spalletti, L.A., D.G. Poiré, D. Pirrie, S. Matheos y P. Doyle, 2001b. Respuesta sedimentológica a cambios en el nivel de base en una secuencia mixta clástica-carbonática del Cretácico de la Cuenca Neuquina, Argentina. Revista de la Sociedad Geológica de España 14:57-74.

Stein, R. 2007. Upper Cretaceous/lower Tertiary black shales near the North Pole: Organic-carbon origin and source-rock potential. Marine and Petroleum Geology 24:67-73.

Stow, D.A.V., H.G. Reading y J.D. Collison, 1996. Deep seas. En H.J. Reading (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy. Tercera edición: 395-453.

Stow, D.A. V., A.Y. Huc y P. Bertrand, 2001. Depositional process of black shales in deep water. Marine and Petroleum Geology 18:491-498.

Varela, A.N., S. Richiano y D.G. Poiré, 2011. Tsunami vs storm origin for Shell bed deposits in a lagoon environment: an example from the Upper Cretaceous of southern Patagonia, Argentina. Latin American Journal of Sedimentology and Basin Analysis 18:87-88.

Varela, A.N., D.G., Poiré, T., Martin, A., Gerdes, F.J., Goin, J.N. Gelfo y S. Hoffmann, 2012. U-Pb zircon constraints on the age of the Cretaceous Mata Amarilla Formation, Southern Patagonia, Argentina: its relationship with the evolution of the Austral Basin. Andean Geology 39:359-379.

Published

2021-03-31

How to Cite

Richiano, S. ., Varela, A. N. ., & Poiré, D. G. . (2021). Paleoenvironmental evolution of the Río Mayer Formation, Lower Cretaceous, Austral Basin, Santa Cruz Province, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 19(1), 3-26. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/180

Issue

Section

Research Papers