Palaeoenvironments of the middle course of the Luján river (Buenos Aires, Argentina) during the last glacial period (OIS 4-2)
Keywords:
Last glacial period; Paleoenvironment; Paleoclimate; Luján river; Argentina.Abstract
The sedimentary sequences exposed in cutbanks of the middle course of the Luján river preserve important paleoenvironmental information on the late Quaternary climatic evolution of the north-eastern Pampean region. The objective of this paper is to define depositional units and infer the paleoenvironmental conditions from the analysis of the sedimentary facies and the paleobiological content (mollusks, phytoliths and diatoms) of the sequences dated between ca. 70,000 and 11,000 yr BP, Oxygen Isotopic States (OIS) 4 to 2, of the middle region of the Luján river basin. This paper follows on from previous studies about the reconstructions of the paleoenvironmental and climatic changes in the northern region of the Buenos Aires Province presented by Dangavs and Blasi (1995), Prieto et al. (2004) Fucks et al. (2005), Fucks and Deschamps (2008) and Blasi et al. (2008, 2009a, b).
A late Pleistocene-Holocene cutbank (PT-H) is preserved along the banks of the Luján river where three sections were analyzed (Table 1). The lower exposures, found from the present river level to halfway up the bank show late Pleistocene materials, while the upper portion shows Holocene fluvio-lacustrine and aeolian deposits. The Holocene deposits overlie paraconformably and start with a high organic matter concentration level which was deposited ca. 11,000 14C yr BP in a lentic environment of meso-eutrophical characteristic (Prieto et al., 2004). Between the Jáuregui and Manzanares cities the PT-H cut bank is not continuous but alternates with deposits from a previous sedimentary cycle that we informally named "Pampeano" (Ameghino, 1884; Dangavs and Blasi, 1995). This last unit constitutes the present fluvial channel floor and interfluvial deposits of this region.
The development of the cutbanks studied here is likely to be related to a late Holocene fluvial incision of the late Pleistocene-Holocene sediments and aeolian, fluvial and lacustrine deposits that infill blowout depressions (Ameghino, 1880-1881, 1884; Frenguelli, 1925; Dangavs and Blasi, 1995).
Three sections along the middle course of the Luján river were selected for the production of seven detailed stratigraphic profiles (Table 1), for collecting samples for sedimentological and paleobiological analyses (Table 2), and for radiocarbon and IRSL dating (Table 3). The late Pleistocene sedimentary record (ca. <70,000 - <11,000 14C yr BP) between the localities of Jáuregui and Manzanares allowed recognition of five facies: F1, F2, F3, F4 and F5 (Table 2), which are either totally or partially present in the studied sequences. The facies were correlated to the units described by other authors (Table 4).
The studied sequence starts with silty gravel and gravelly silt of lacustrine and fluvial nature (facies F1), that grade upward or laterally to sandy silt to silty sand of facies F2 that represent dunes of pellets (Figs. 4 and 5). Facies F2 presents an irregular based and low angle cross-bedding, and is composed of fine sedimentary lithoclasts, quartz and feldspar grains. The biological indicators are represented almost exclusively by phytoliths. This facies would have been produced because of seasonal wind storms that deflated sediments of the marginal platform of the lentic bodies that had been exposed by the retraction of the water body during temperate sub-humid dry to seasonal conditions. Facies F1 and F2 are unconformably covered by sandy gravel, gravelly sand and sand within a sandy silt matrix, included in the facies F3. It forms a massive lenticular stratum with commonly carbonatic clasts ("tosca"), reworked fragments of bones, siliciclastic grains and fine sedimentary intraclasts (Figs. 4-6). Remains of ostracods, diatoms, extinct mollusks and phytoliths are also abundant in facies F3 (Table 5). These deposits were accumulated after successive ephemeral fluvial episodes, because of heavy and concentrated rains of different frequency and caudal from channeled flow in gullies. During each fluvial event, temporary lentic water bodies would have originated because of either damming or overflow, thus producing the accumulation of fine material which, in part, was infiltrated as the matrix of the coarse deposits. The paleobiological records, frequently monospecific, suggest conditions of environmental stress due to abrupt salinity changes, caudal and temperature. These environments were very changeable because of water overflow produced during storms, and with low water levels after high evaporation periods. During facies F3 deposition, distal and local aeolian inputs would have continuously taken place with low sedimentation rates and without aeolian landforms; instead the aeolian materials would have been amalgamated to the alluvial ones. Sedimentation under temperate to cold conditions with alternant sub-humid/humid facies and dry or highly seasonal facies is interpreted here. Subsequently, the sediments included in facies F4 are vitroclastic sandy silt and silt (Figs. 4-6) with higher abundance and diversity of diatoms and phytoliths of Poaceae, Cyperaceae and woody dicots. This facies would correspond to loess deposits that accumulated in flooded lowlands, lentic shallow water bodies, and under temperate to cold and sub-humid to highly seasonal conditions. The succession ends with sandy silt of the facies F5 (Fig. 6), with very scarce biological content. These deposits represent the degradation of the lentic water bodies due to clastic infilling under temperate sub-humid/dry conditions that formed alkaline swamps.
The depositional paleoenvironments for the lapse ca. <70,000 - <11,000 14C yr BP were interpreted as ephemeral lake-fluvial and aeolian settings in dry-subhumid and semiarid basins. Three major erosion discontinuities were recognized (Fig. 8). The first discontinuity would have occurred during late Pleistocene times, the second one corresponds to the late Pleistocene-Holocene transition and the third discontinuity would have taken place during historical times. Two other discontinuities were observed and are marked by indicators of stability like the presence of a duricrust on the top of the facies F3 and a paleosoil on the top of the late Holocene lake-fluvial deposits (Prieto et al., 2004). These discontinuities allowed recognition of five depositional units (DU) or aggradation events in the middle basin of the Luján river within the late Pleistocene-Holocene sub-cycle (Zárate, 2005).
The DU 1 consists of facies F1 and F2, with ephemeral lacustrine-fluvial and aeolian deposits, respectively. It represents sedimentation in lowlands interconnected by ephemeral streams, which were active during instantaneous current episodes, derived from storms, with the generation of ephemeral lakes and formation of aeolian lunettes towards the end of the flooding cycle. The minimal depositational age of DU 1 was inferred as being ca. 60,000 yr BP.
The DU 2 includes the facies F3 of ephemeral fluvial to ephemeral lacustrine deposits (the later of eutrophic to distrophic characteristics). This sedimentation took place in lowlands interconnected by ephemeral streams during instantaneous current episodes derived from storms and the formation of temporary lakes. Different from the previous DU 1, this multiepisodic accumulation was produced under cold, dry conditions. The inferred depositional lapse was estimated to be between ca. 50,000 yr BP and 32,500 yr BP.
The DU 3 is formed by facies F4 and F5. Its accumulation started with settling in permanent lakes or ponds with variable inputs of aeolian sand and dust, due to wind storms, under temperate and sub-humid climatic conditions (facies F4). Subsequently, these lentic water bodies were degraded by dystrophy (facies F5). The temporal interval of DU 3 accumulation was dated between 37,700 yr BP and 11,000 yr BP.
The DU 4 includes lake-fluvial to marsh deposits of eutrophic to distrophic characteristics, analyzed by Prieto et al. (2004). According to these authors this deposition took place in lowlands interconnected by permanent streams, under humid to sub-humid/dry conditions after 7,000 yr BP. The deposition lapse was dated between ca. 11,000 and 3000 yr BP.
The DU 5 consists of sandy-silty facies corresponding to reworked aeolian deposits that buried a paleosoil of ca. 3,000 yr BP (Prieto et al., 2004). They interpreted this unit as deposited under climatic conditions similar to the present ones since 3000 yr BP and until the incision of the present channel in historical times.
Two aeolian episodes of large magnitude were recognized, presented in the facies F2 (?56,400 ± 6,500 yr BP) and facies F4-F5 (?32,500 ± 4,700 to ?11,000 yr BP). The deposition of distal or local aeolian material could have been continuous, but, during some stages of lower deposition rate, aeolian deposits might have been integrated in the alluvial deposits. During the late Pleistocene, the seasonal regime of these environments would have influenced the aeolian and ephemeral-fluvial deposition processes, with differing degrees of participation in the sedimentation. The present day middle reaches of Luján river may have constituted, at that time, the head of the basin with low order ephemeral or temporary streams, so the influence eustacy is considered negligible (Blasi et al., 2009a). The succession studied here shows that the environmental variability during the OIS 4 to 2 in the northern Buenos Aires province would have been higher than previously interpreted. Episodic alluvial events probably took place under sub-humid climatic conditions during the OIS3, as shown by the paleobiologic records, and aeolian deposition was predominant during most of the OSI2 and, at least, part of the OIS4, evidencing sub-humid/dry climatic conditions. Sedimentological and paleobiological records of the middle course of Luján river allowed the inference that climate was the main driving force for sedimentation.
References
Aceñolaza, F.G. y R.N., Alonso, 2000. La formación Puncoviscana s.l. a partir de nuevos elementos icnológicos en la provincia de Salta. Revista de la Asociación Paleontológica Argentina. Ameghiniana 37(4) Suplemento: 4R.
Aitken, M.J., 1976. Thermoluminescent age evaluation and assessment of error limits: revised system. Archaeometry 18:233-238.
Aitken, M.J., 1985. Thermoluminescence Dating. Academic Press, London, 159 pp.
Aitken, M.J. y J.C. Alldred. 1972. The assessment of error limits in thermoluminescent dating. Archaeometry 14:257-267.
Ameghino, F., 1880-1881. La Antigüedad del Hombre en el Plata. En Obras Completas Vol. III. Cap. XX a XXIV (Ed. 1905). Oficina de Gobierno Provincia de Buenos Aires, 868 pp. La Plata.
Ameghino, F., 1884. Excursiones geológicas y paleontológicas en la provincia de Buenos Aires. Boletín Academia Nacional de Ciencias de Córdoba, VI:161-257.
Ameghino, F., 1889. Contribución al conocimiento de los mamíferos fósiles de la República Argentina. Academia Nacional de Ciencias, VI:1-102. Buenos Aires.
Ameghino, F., 1908. Las formaciones sedimentarias de la región litoral de Mar del Plata y Chapalmalal. Anales Museo Nacional de Buenos Aires, Serie 3a X:343-428.
Antón, D., 1975. Evolución geomorfológica del Norte de Uruguay. Dirección de Suelos y Fertilizantes, Ministerio de Agricultura y Pesca, 22 pp. Montevideo.
Arche, A. y F. Vilas, 2001. Sedimentos eólicos de grano fino en la Bahía de San Sebastián, Tierra del Fuego, Argentina. Journal of Iberian Geology 27:159-173.
Blasi, A. y N. Dangavs, 1992. Sedimentos actuales de la Laguna de Lobos, Bs. As., Argentina. Cuarta Reunión Argentina de Sedimentología, Actas II:167-174, La Plata.
Blasi, A., A.R. Prieto, C. Castiñeira, E. Fucks, L. del Puerto, C. de Francesco, A. Figini, J. Carbonari, R. Huarte y P. Hanson, 2008. Variaciones ambientales y climáticas durante el Pleistoceno tardío en la cuenca media del río Luján, Argentina. Reunión Argentina de Sedimentología, Actas XII: 1- 43, Buenos Aires.
Blasi, A., A.R. Prieto, E. Fucks y A. Figini, 2009a. Análisis de las nomenclaturas y de los esquemas estratigráficos del Pleistoceno tardío-Holoceno en la cuenca del río Luján, Buenos Aires, Argentina. Ameghiniana 46(2):373-390.
Blasi, A., P. Hanson, E. Fucks, A.R. Prieto y A. Young, 2009b. Infrared stimulated luminescence (IRSL) dating of late Pleistocene deposits from the middle course of the Lujan river. Argentina. IV Congreso Argentino de Cuaternario y Geomorfología, XII Congresso da Associação Brasileira de Estudos do Quaternário y II Reunión sobre el Cuaternario de América del Sur, Actas I:228, La Plata.
Bombín, M., 1976. Modelo paleoecológico evolutivo para o neoquaternárioda região da Campanha-Oeste do Rio Grande do Sul (Brasil): a Formação Touro Passo, seu conteúdo fossilífero e a gênese pós-deposicional. Comunicaçoes do Museu de Ciências da PUCRGS, 15:1-90.
Bossi, G., 1998. Una alternativa en aloestratigrafía. Revista de la Asociación Argentina de Sedimentología 5(2):71-9.
Bourke, M., 2002. Suspended sediment concentrations and the geomorphic effect of sub-bankfull flow in a central Australian stream. International Symposium: The Structure, Function and Management Implications of Fluvial Sedimentary Systems. 276:315-324, Alice Springs, Australia.
Bowler, J. M., 1973. Clay dunes: their occurrence, formation and environmental significance. Earth-Science Review 9:315-338.
Bowler, J. M., 1986. Spatial variability and hydrologic evolution of Australian lake basins: analogue for Pleistocene hydrologic change and evaporite formation: Paleogeography, Paleoclimatology, Paleoecology 54:21-41.
Bozarth, S. R., 1992. Classification of opal phytoliths formed in selected dicotyledons native to the Great Plains. En Rapp Jr., G. y S.C. Mulholland (Eds.), Phytolith Systematic Advances in Archaeology and Museum Science 1:193-214. Nueva York.
Bull, W., 1979. Threshold of critical power in streams. Geological Society of America Bulletin 90(5):453-464.
Carver, R.E., 1971. Procedures in Sedimentary Petrology. Wiley-Interscience, New York, 645 pp.
Cione, A.L. y E.P. Tonni, 1999. Biostratigraphy and chronological scale of upper-most Cenozoic in the Pampean area, Argentina. En: Tonni, E.P. y A.L. Cione (Eds.), Quaternary Vertebrate Palaeontology in South America. Quaternary of South America and Antarctic Peninsula 12:23-51.
Comité Argentino de Estratigrafía (CAE), 1992. Código Argentino de Estratigrafía. Asociación Geológica Argentina Serie B Nº 20:1-64, Buenos Aires.
Dangavs, N. y A. Blasi, 1994. Quaternary Evolution of a Pampean "Laguna" (part I): Sedimentology and Biological Characteristics of Lobos Lake Infilling Sediments, Argentina. Journal of Paleolimnology 10(1):59-66.
Dangavs, N. y A. Blasi, 1995a. El Lujanense y Platense (sensu Ameghino) en el Río Luján, Luján, Provincia de Buenos Aires. IV Jornadas Geológicas y Geofísicas Bonaerenses, Actas I: 109-117, Junín.
Dangavs, N. y A. Blasi, 1995b. El Pampeano rojo (Ameghino, 1884) del Paso de la Virgen, río Luján, Provincia de Buenos Aires. IV Jornadas Geológicas y Geofísicas Bonaerenses, Actas I: 127-134, Junín.
Dangavs, N. y A. Blasi, 1997. Geolimnología de la laguna de Chascomús. Revista Museo de La Plata, Sección Geología 12:167-195.
Dangavs, N. y A. Blasi, 2002. Los depósitos de yeso intrasedimentario del arroyo El Siasgo, partidos de Monte y General Paz, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 57(3):315-327.
Dangavs N. y J. Reynaldi, 2008. Paleolimnología de la Laguna Cerrillo del Medio, Monte, provincia de Buenos Aires. Revista Asociación Geológica Argentina 63(1):20-42.
Dangavs, N., A. Blasi, L., Mormeneo, M., Gaillard y R. Burakosky, 1991. Estudio geológico de la Laguna de Lobos. Partido de Lobos, provincia de Buenos Aires. Centro de Investigaciones de Suelos y Aguas de Uso Agropecuario. Ministerio de Asuntos Agrarios, 87 pp. La Plata.
De Francesco, C. y A. Blasi, en prensa. Redescripción y significado paleoambiental de Heleobia ameghini (Doering, 1882) (Gastropoda: Rissooidea) en el Pleistoceno tardío de la provincia de Buenos Aires, Argentina. Ameghiniana.
del Puerto, L., 2009. Silicofitolitos como Indicadores Paleoambientales: Bases comparativas y reconstrucción paleoclimática desde el Pleistoceno tardío en el SE del Uruguay. Tesis de Maestría en Ciencias Biológicas, Área Ecología. PEDECIBA, Facultad de Ciencias, Montevideo, 207 pp. (inédito).
del Puerto, L., F. García-Rodríguez, H. Inda, R. Bracco, R., C. Castiñeira y J.B. Adams, 2006. Paleolimnological evidence of Holocene paleoclimatic changes in Lake Blanca, southern Uruguay. Journal of Paleolimnology 36:151-163.
Denys, L., 1992. A check-list of the diatoms in the Holocene deposits of the Western Belgian coastal plain with the survey of their apparent ecological requirements: I. Introduction: Ecological code and complete list. Service Géologique de Belgique, Professional Paper 246: 41 pp.
De Wolf, H., 1982. Method of coding of ecological data from diatomsfor computer utilization. Mededelingen Rijks Geologische Dienst 36(2):95-110.
Dillon, A.Q. y J. Rabassa, 1985. Miembro La Chumbiada, Formación Luján. I Jornadas Geológicas Bonaerenses, Resúmenes: 27, Tandil.
Doering, A., 1882. Informe oficial de la Comisión Científica agregada al Estado Mayor General de la Expedición al Río Negro (Patagonia). Geología 3:300-530, Buenos Aires.
Fernández, M.F., A. Zucol y M. Osterrieth, 2006. Phytolith Assemblages and Systematic Associations in Grassland Species of the South-Eastern Pampean Plains, Argentina. Annals of Botany 98:1155-1165.
Fidalgo, F., F. De Francesco y U. Colado, 1973. Geología superficial en las hojas Castelli, J. M. Cobo y Monasterio (Pcia. de Bs. As.). V Congreso Geológico Argentino, Actas IV:27-39, Carlos Paz.
Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. Journal of Geology 62(4):344-359.
Fredlund, G.G. y L.T. Tieszen, 1994. Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography 21:312-335.
Fredlund, G.G. y L.L. Tieszen, 1997. Phytolith and Carbon Isotope Evidence for Late Quaternary Vegetation and Climate Change in the Southern Black Hills, South Dakota. Quaternary Research 47:206-217.
Frenguelli, J., 1921. Los Terrenos de la Costa Atlántica en los alrededores de Miramar (Prov. de Buenos Aires) y sus correlaciones. Boletín de la Academia Nacional de Ciencias de Córdoba XXIV: 325-485.
Frenguelli, J., 1925. Loess y Limos Pampeanos. Anales Sociedad Argentina de Estudios Geográficos Gaea 1:1-88.
Frenguelli, J., 1928. Observaciones geológicas en la región costera sur de la Provincia de Buenos Aires. Anales de la Facultad de Ciencias de la Educación, II:1-145.
Frenguelli, J., 1945a. Las diatomeas del Platense. Revista del Museo de La Plata, Sección Paleontología 3:77-221.
Frenguelli, J., 1945b. El Piso Platense. Revista del Museo de La Plata, Sección Geología 2:287-311.
Fucks, E., M. Aguirre y C. Deschamps, 2005. Late Quaternary continental and marine sediments of northeastern Buenos Aires province (Argentina): Fossil content and paleoenvironmental interpretation. Journal of South American Earth Sciences 20:45-56.
Fucks, E. y C. Deschamps, 2008. Depósitos continentales cuaternarios en el noroeste de la provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 63(3):326-343.
Gallego, L. y R. Distel, 2004. Phytolith Assemblages in Grasses Native to Central Argentina. Annals of Botany 94:865-874.
González Bonorino, G., 1993. Comentario Bibliográfico: Código Argentino de Estratigrafía, Comité Argentino de Estratigrafía, Asociación Geológica Argentina, Serie didáctica y Complementaria 20. Revista Asociación Argentina de Geología 48(1):94.
Hartley, W. 1973. Studies on the origin, evolution, and distribution of the Gramineae. V. The subfamily Festucoideae, Australian Journal of Botany 21 (1973), pp. 201-234.
Hills, E.S., 1940. The lunette; a new landform of aeolian origin. The Australian Geographer 3:15-21.
Hooke, J.M. y J.M. Mant, 2002. Morpho-dynamics of ephemeral streams. En: L.J. Bull y M.J. Kirkby (Eds.), Dryland Rivers: Processes and Management in Mediterranean Climates. Chichester, John Wiley and Sons, 173-204.
Huarte, R. y A. Figini, 1988. La Plata Radiocarbon Laboratory Liquid Scintillation Counting and Interlaboratory Check Samples. Radiocarbon 30(3):347-350.
Huffman, G. y W.A. Price, 1949. Clay Dune Formation near Corpus Christi Texas. Journal of Sedimentary Petrolology 19(3):118-127.
Metzeltin D. y F. García-Rodríguez, 2003. Las Diatomeas Uruguayas., DIRAC, Montevideo, 208 pp.
Metzeltin, D., H. Langebertalot y F. García-Rodríguez, 2005. Diatoms of Uruguay: taxonomy, biogeography, diversity. En: Lange-Bertalot, H. (Ed), Iconographia Diatomologica 15. A.R.G. Gantner Verlag, Koenigstein, 737 pp. Alemania.
Mulholland, S. y G. Rapp Jr., 1992. A morphological classification of grass silica-bodies. En G. Rapp Jr. y S. Mulholland (Eds.), Phytolith Systematics. Emerging Issues. Advances in Archaeological and Museum Science 1:65-89.
Orgeira, M., J. Walther, A.M. Tófalo, R. Vásquez, C.A. Berquó, C. F. Dobois y H. Bhonel, 2003. Environmental magnetism in fluvial and loessic Holocene sediments and paleosols from the Chacopampean plain (Argentina). Journal of South American Earth Sciences 16:259-274.
Pearsall, D., 2007. Phytoliths in the flora of Ecuador. The University of Missouri Online Phytolith Database. [http://www.missouri.edu/~phyto/]. With contributions by A. Biddle.
Piperno, D., 1988. Phytoliths Analysis: an arqueological and geological perspective. Academic Press, New York, 280 pp.
Pettijohn, F. J., P.E. Potter y R. Siever, 1973. Sand and sandstone. Springer-Verlag, New York, 618 pp.
Prescott, J.R. y J.T. Hutton, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23:497-500.
Price, W.A, 1963. Physicochemical and environmental factors in clay dune genesis. Journal of Sedimentary Petrology 33:766-778.
Price, W.A. y L.S. Kornicker, 1961. Marine and lagoonal deposits in clay dunes, Gulf Coast, Texas. Journal of Sedimentary Petrology 31:245-255.
Prieto, A.R., A. Blasi, C. De Francesco y C. Fernández, 2004. Environmental history since 11,000 14C yr B.P. of the northeastern pampas, Argentina, from alluvial sequences of the Luján river. Quaternary Research 62(2):146-161.
Rabassa, J., A. Coronato y M. Salemme, 2005. Chronology of the Late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). Journal of South American Earth Sciences 20:81-103.
Rovereto, G., 1914. Studi di Geomorfologia Argentina. IV. La Pampa. Bolletino della Societá Geologica Italiana XXXIII:75-129.
Rhodes, D.D., J.R. Arrowsmith, J.P. Kilpatrick y J. Eigenbrode, 1998. Clay dunes at Soda Lake, Carrizo Plain, California. Geological Society of America, Abstracts 30(7):140 pp.
Stuiver, M. y H. Polach, 1977. Discussion. Reporting of 14 C data. Radiocarbon 19(3):355-363.
Stoermer, E. F., R.G. Kreis y N.A. Andersen, 1999. Checklist of Diatoms from the Laurentian Great Lakes: II. Journal of Great Lakes Research 25:545-566.
Teruggi, M. E., 1957. The nature and origin of Argentine loess. Journal of Sedimentary Petrology 27(3):322-332.
Toledo, M. J., 2005. Secuencias pleistocenas "lujanenses" en su sección tipo: Primeras dataciones 14C e implicancias estratigráficas, arqueológicas e históricas, Luján - Jáuregui, provincia de Buenos Aires. Revista Asociación Geológica Argentina60:417-424.
Toledo, M.J., 2008. La crisis climáticas de 13.000 AP: "mantos negros", extinciones de megafaunas y cambios poblacionales. XVII Congreso Geológico Argentino, Actas 4:735-736, Jujuy.
Twiss, P.C., 1992. Predicted world distribution of C3 and C4 grass phytoliths. En G. Rapp Jr. y S. C. Mulholland (Eds.), Phytolith Systematics. Emerging Issues, Advances in Archaeology and Museum Science 1:113-128.
United Nations Environment Programme (UNEP), 1997. World Atlas of Desertification. Second Edition. N. Middleton y Thomas D. (Eds.), 182 pp., Nairobi.
Vos, P. y H. de Wolf, 1993. Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrobiologia 269/270:285-296.
Williams, G. P., 1975. Bankfull discharge of rivers. Water Resources Research 14(6):1141-1154.
Wilson, R.C.L., Drury, S.A. y J.L. Chapman, 2000. The great ice age. 267 pp. Routledge.
Wolman, M.G., 1955. The natural channel of Brandywine Creek, Pennsylvania, U.S. Geological Survey Professional Paper 271 pp. Boston.
Wolman, M.G. y L.B. Leopold, 1957. River flood plains: Some observations on their formation. En: U.S. Government Printing Office (Eds.), Geological Survey Professional Paper 282:87-109. Washington.
Zárate, M., 2005. El Cenozoico Tardío continental de la provincia de Buenos Aires. En: de Barrio, R.E., R.O. Etcheverry, M.F. Caballé y E. Llambías (Eds.), Geología y Recursos Minerales de la provincia de Buenos Aires, Relatorio del XVI Congreso Geológico Argentino:139-158, La Plata.
Zhao, Z. y D. Pearsall, 1998. Experiments for improving phytolith extraction from soils. Journal of Archaeological Science25:587-598.
Zucol, A.F., 1998. Microfitolitos de las Poaceae Argentinas: II. Microfitolitos foliares de algunas especies del género Panicum (Poaceae, Paniceae), en la provincia de Entre Ríos. Darwiniana 36:29-50.
Zucol, A.F., 2000. Fitolitos de poaceae de argentinas: III. Fitolitos foliares de especies del género Paspalum (Paniceae), en la Provincia de Entre Ríos. Darwiniana 38:11-32.
Zucol, A.F., 2001. Fitolitos III. Una nueva metodología descriptiva. Asociaciones fotolíticas de Piptochaetium montevidense (Stipeae, Poaceae). Boletín de la Sociedad Argentina de Botánica 36:69-85.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.