Grain Size Analysis and Clay Mineral Associations in Bottom Sediments From Paraná River Basin

Authors

  • Centro de Investigaciones Geológicas (CONICET - UNLP), Diagonal 113 275 (B1904DPK), La Plata, Argentina. Cátedra de Rocas Sedimentarias, Facultad de Ciencias Naturales y Museo, Calle 122 y 60 s/n (1900), La Plata, Argentina.
  • Instituto de Geomorfología y Suelos, Facultad de Ciencias Naturales y Museo, UNLP y CONICET.
  • Centro de Investigaciones Geológicas (CONICET - UNLP), Diagonal 113 275 (B1904DPK), La Plata, Argentina. Cátedra de Rocas Sedimentarias, Facultad de Ciencias Naturales y Museo, Calle 122 y 60 s/n (1900), La Plata, Argentina.
  • Instituto de Geomorfología y Suelos, Facultad de Ciencias Naturales y Museo, UNLP y CONICET.
  • Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, UNLP y CONICET.

Keywords:

Bottom sediments; Grain size; Clay minerals; Paraná River and tributaries.

Abstract

Three different clay mineral assemblages are detected in mud-sandy bottom sediments of the Paraná Basin of Argentina. A dominant Kaolinite association, with sources areas in the Upper Amazon, north-east of the study area and within the Brazilian Shield (also with subordinated crystalline Illite); an Illitic- Smectitic and Interlayer I/S association, from the Andean Cordillera and the Chaco Plains in the north-west and mainly represented by the Bermejo and Pilcomayo Rivers; a southern Illitic-Chlorite dominant, but with lower crystallinity index than in the northern area, whose source is in the Pampean Plains to the west of Argentina. Mixed layer clays (Illite/Smectite) were also detected in this southern sector. These clay mineral associations reflect not only the climate but the source rock composition in these three main geographical areas. The tributaries of the lower Paraná River Basin show a dominant Illitic-Smectitic clay mineral association that has been eroded and transported from the Pampean Plains. In this contribution, three main clay mineral associations (Illite-Chlorite, Smectite-I/S, and Kaolinite) in stream sediments of the Paraná River and tributaries within a wide area of Argentina are described and their provenance is interpreted on the basis of controlling factors, climate and provenance.

References

Allison, L., 1965. Organic carbon, In: C. Black (Ed.), Methods of soil analysis, part II, American Association of Agronomy, Wisconsin, 1367-1378.

Barnes, J.B. and J.D. Pelletier, 2006. Latitudinal variation of denudation in the evolution of the Bolivian Andes. American Journal of Science 306:1-31.

Bertolino, S.R., H.H. Murray and P.J.Depetris, 1991. Regular kaolinite/ smectite (R1) from the Bermejo River basin, Argentina. Clays and Clay Minerals 39:658-660.

Bertolino, S. R. and P. J. Depetris, 1992. Mineralogy of the clay-sized suspended load from headwater tributaries on the Paraná River: Bermejo, Pilcomayo, and Paraguay Rivers. In: E. T. Degens, S. Kempe, A. Lein and Y. Sorokin (Eds.). Interactions of biogeochemical cycles in aqueous ecosystems. Pt. 7. Mitteilungen des Geologish-Paläeontologischen Instituts der Universität Hamburg, SCOPE/UNEP Sonderband, 52:19-31.

Biscaye, P.E, 1965. Mineralogy and sedimentation of recent deepsea clay in the Atlantic Ocean and adjacent seas and oceans. Bulletin of the Geological Society of America 76:803-832.

Bonetto, A. and O. Orfeo, 1984. Caracteres sedimentológicos de la carga en suspensión del Río Paraná entre Corrientes y Esquina (República Argentina). Revista de la Asociación Argentina de Mineralogía, Petrología y Sedimentología 15:51-61.

Bonetto, C., N. Gabellone and D. Poire, 1994. Phosphorous fractionation of suspended matter from the Paraná and Bermejo Rivers. Verhandlungen der Internationale Vereinigung für Limnologie 25:1878-1881.

Brindley, G.W. and G. Brown, 1980. Crystal structures of clay minerals and their X-ray identification. Mineralogical Society of London, London, 495 pp.

Camilión, C., M. Manassero, M. Hurtado and A. Ronco, 2003. Copper, Lead and Zinc distribution in soils and sediments of the South- Western coast of the Rio de la Plata estuary, Argentina. Journal of Soils and Sediments 3:213-220.

Carver, R., 1971. Procedures in Sedimentary Petrology. John Wiley, New York, 653 pp.

Damiani, D., G. Giorgetti and I. Memmi Turbanti, 2006. Clay mineral fluctuations and surface textural analysis of quartz grains in Pliocene-Quaternary marine sediments from Wilkes Land continental rise (East-Antarctica): Paleoenvironmental significance. Marine Geology 226:281-295.

Day, P., 1965. Particle fractionation and particle-size analysis, In: C.A. Black (Ed), Methods of soil analysis, part I, American Society of Agronomy, Wisconsin, 545-566.

Depetris P. and J. Griffin, 1968. Suspended load in the Río de la Plata drainage basin. Sedimentology 11:53-60.

Dingle, R.V. and M. Lavelle, 2000. Antarctic Peninsula Late Cretaceous -Early Cenozoic Paleoenvironments and Gondwana Paleogeographies. Journal of African Earth Sciences 31:91-105.

Ehrmann, W.U., M. Melles, G. Khun and H. Grobe, 1992. Significance of clay minerals assemblages in the Antarctic Ocean. Marine Geology 107:249-273.

Ferrel, R., G. Hart, S. Swamy and B. Murthy, 1998. X-Ray mineralogical discrimination of depositional environments of the Krishna Delta, Peninsular India. Journal of Sedimentary Research 68:148- 154.

Folk, R.L. and W.C. Ward, 1957. Brazos River Bar. A study in the significance of grain size parameters. Journal of Sedimentary Petrology 27:3-26.

Gaillardet, J., B. Dupré and C.J. Allègre, 1999. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer?. Geochimica et Cosmochimica Acta 63:4037-4051.

Griffin J.J., H. Winsdom and E.D. Goldberg, 1968. The distribution of clay minerals in the world ocean. Deep-Sea Research 15:433- 460.

Horowitz, A., 1985. A primer on trace metal-sediment chemistry. U.S. Geological Survey Water Supply, Paper 2227, 67 pp.

Irion, G. and V. Zollmer, 1999. Clay mineral associations in fine-grained surface sediments of the North Sea. Journal of Sea Research 41:119-128.

Iriondo, M., 1988. A comparison between the Amazon and the Paraná River systems. In: E. Degens, S. Kempe, S. Naidu (Eds.), Transport of carbon and minerals in major Wold Rivers, lakes and Estuaries. Pt. 5. Mitteilungen des Geologish-Paläeontologischen Instituts der Universität Hamburg, SCOPE/UNEP, Sonderband 66:77-92.

Iriondo, M., 1997. Models of deposition of Loess and Loessoids in the Upper Quaternary of South America. Journal of South American Earth Sciences 10:71-79.

Iriondo, M., 2004. The Littoral complex of the Paraná mouth. Quaternary International 114:143-154.

Jeong, G.Y. and H.I. Yoon, 2001. The origin of clay minerals in soils of king George Island, South Shetland Islands, West Antarctica, and its implication for the clay-mineral compositions of marine sediments. Journal of Sedimentary Research 71:833-842.

Johnsson M. and R. Reynolds,1986. Clay mineralogy of shale-limestone Rhythmites in the Scaglia Rossa (Turonian-Eocene) Italian Apennines. Journal of Sedimentary Petrology 56:501-504.

Konta, J., 1985. Crystalline materials and chemical maturity of suspended solids of some major world rivers. Mineralogical and Petrographical Acta 29:121-133.

Latrubesse E.M. and C.G. Ramonell, 1994. A Climatic Model for Southwestern Amazonia in last Glacial Times. Quaternary International 21:163-169.

Manassero, M, C. Camilión and A. Ronco, 2004. Análisis textural de sedimentos fluviales distales de arroyo de la pampa ondulada, Provincia de Buenos Aires, Argentina. Revista Asociación Argentina Sedimentología 11:57-68.

Marengo, H.G., M. Coppolecchia, V. Bauman, P. Tchilinguirian and M. Tolocziky, 2005. Geología del Centro de la Provincia de Santa Fe, Hojas Geológicas 3160 I y III (San Justo y Santa Fe). XVI Congreso Geológico Argentino. La Plata, 4:125-132.

Millot, G., 1970. Geology of Clays. Springer Verlag, Berlin, 499 pp.

Moore, D.M. and R.C. Reynolds, 1989. X Ray diffraction and the identification analysis of clay minerals. Oxford University Press, New York, 332 pp.

Orfeo, O., 1999. Sedimentological characteristics of small rivers with loessic headwaters in the Chaco, South America. Quaternary International 62:69-74.

Orfeo, O. and J. Stevaux, 2002. Hydraulic and morphological characteristics of middle and upper reaches of the Paraná River (Argentina and Brazil). Geomorphology 44:309-332.

Passeggi, E., 1996. Variaciones mineralógicas de los sedimentos de lecho en cauces secundarios de la llanura aluvial del Río Paraná. Revista de la Asociación Geológica Argentina 51:156-164.

Potter, P., J. Maynard and P.J. Depetris, 2005. Mud & mudstones. Springer, Berlin, 297 pp.

Robert, C., and J. Kennett, 1994. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: clay-mineral evidence. Geology 22:211-214.

Ronco, A, C. Camilión and M. Manassero, 2001. Geochemistry of Heavy Metals in bottom sediments of streams from the Río de la Plata Estuary, Argentina. Journal of Environmental Geochemistry and Health 23:89-103.

SADS, OPS, PNA, UNLP, 2005. Caracterización sanitaria y ambiental de las aguas en tramos específicos de los Ríos Paraná y Paraguay y sus afluentes. Primera Campaña año 2004. Informe técnico. Secretaría de Ambiente y Desarrollo Sustentable, Organización Panamericana de la Salud, Prefectura Naval Argentina, Universidad Nacional de La Plata, 90 pp.

Suresh, N., K. Sumit, S. Ghosh, K. Rohtash and S.J. Sangode, 2004. Clay-mineral distribution patterns in late Neogene fluvial sediments of the Subathu sub-basin, central sector of Himalayan foreland basin: implications for provenance and climate. Sedimentary Geology 163:265-278.

Stevaux J.C., 1994. The Upper Paraná River (Brazil): Geomorphology, Sedimentology and Paleoclimatology. Quaternary International 21:143-161.

Weaver, C.E., 1989. Clays, muds and shales. Developments in Sedimentology, 44. Elsevier, Amsterdan, 819 pp.

Yuretich, R., M. Melles, B. Sarata and H. Grobe, 1999. Clay minerals in the sediments of lake Baikal, a useful climate proxy. Journal of Sedimentary Research 69:588-596.

Zuther, M., O. Brockamp and N. Clauer, 2000. Composition and origin of clay minerals in Holocene sediments from the South- Eastern North Sea. Sedimentology 47:119-134.

Downloads

Published

2021-03-31

How to Cite

Manassero, M. ., Camilión, C. ., Poiré, D. ., Da Silva, M. ., & Ronco, A. . (2021). Grain Size Analysis and Clay Mineral Associations in Bottom Sediments From Paraná River Basin. Latin American Journal of Sedimentology and Basin Analysis, 15(2), 125-137. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/162

Issue

Section

Research Papers