Geochemical features of limestones in Arroyo Verde Formation (Eocene) in Punta Colorada, Río Negro Province, Argentina. Palaeoenvironmental reconstruction
Keywords:
Geochemistry; Limestones; Palaeoenvironment reconstruction; Arroyo Verde Formation; Eocene; Río Negro; Argentina.Abstract
The fast growing cement industry has reactivated the exploration for calcareous materials in southern Argentina.A carbonatic deposit is found in Punta Colorada, located 36 km from the town of Sierra Grande, Río Negro Province. These rocks, deposited during a Late Cretaceous - Early Tertiary marine ingression, belong to Arroyo Verde Formation (Early Eocene).
These coastal deposits have been studied since 1927 by Wichmann, Arnolds (1952), de Alba (1964), Weber (1983) and Busteros et al. (1998). Rossi de García and Levy (1982) assigned these rocks to the Eocene; Spalletti et al. (1993) located them within the Roca Formation (Rocanense ingression) and Gelós et al. (1992) correlated these rocks with Arroyo Verde Formation (Malvicini and Llambías, 1974).
Arroqui Langer et al. (2006) from sedimentologic, geochemical and lithologic data in carbonatic rocks of the Precordillera Argentina established an exploration and exploitation pattern. Bonuccelli (2006) made a similar technical study in Punta Colorada, where 14,806,106 tn of measured reserves and 1,799,174 tn of indicated reserves were determined in a carbonate of less than 4% MgO grade.
The study area comprises 800 Ha divided in two zones separated by Arroyo Las Palmas gully and located at the north and at the south of a basement outcrop denominated Punta Colorada, in the Atlantic marine coast (Fig. 1). By means of 12 drills cores and 8 stratigraphic profiles, a thickness of 10 m was determined for the limestone. Major and minor chemical elements were determined by ICP-MA in 100 ml with two replicas in Alex Steward laboratories, Mendoza. The criterion of Tucker (1981) was used to classify the limestones by the dolomite percentage.
From stratigraphic profiles four levels composed of cross-bedded massive to granular fossiliferous limestones were determined. Microscopically they are composed of a fossiliferous limestone (bioclastic packstone) with bivalves, equinoderms, corals, foraminifera and algae, being algal buildups more abundant in level three. The clastic sand to silt fraction is mainly composed of quartz, feldspar and green clay concretions.
CaO and MgO contents and the relationships Mg/ Ca (Tables 1 and 2) in the stratigraphic profiles and drills cores show vertical variations with increasing MgO values toward the upper levels of the sequence. Based on the percentages of these oxides the rocks are classified as limestone, dolomitic limestone and calcitic dolomite. In drill cores Al, Fe, K, Mg, Mn, Na, P, S and Ti contents, indicate lateral and vertical variations that would be related to geomorphological and paleoenvironmental changes and to the basin evolution as well (Fig. 2, Tables 1-3).
It is concluded that the limestones are mainly composed of calcite with variable quantities of MgO. These rocks would have been formed in warm lagoons with high P content. At the same time shallower areas with intermittent influx of marine waters would have been developed in other sectors. The increase in the content of Na and K in these sectors would support the idea that these evaporitic deposits were temporarily isolated from the dominant marine environment. Al, Fe, Mn and Ti concentrations would be related to the presence of terrigenous material; however, the scarce contribution to the basin would indicate climatic conditions of aridity with low pluvial regimen. Crossbedding in level 2 is associated to marine currents.
The abundance of broken fossils would indicate a highly energy environment. On the tidal flat, the presence of rather thin bioturbation traces (Thalassinoides) would indicate conditions of instability during the development of this ichnofacies, as well as a rather moderate energy with low sedimentation rates.
At the final stage, shallow marine, coastal sedimentation prevail, marked by the abundance of entire shells, cross-bedding and an increment in the Fe and Mn concentration. At the same time in other sectors, the increase in the sulfur content as gypsum, would indicate a sustained SW-NE sea regression.
References
Arche, A. (Ed.)., 1989. Sedimentología. Vol. II. Consejo Superior de Investigaciones Científicas. Madrid. 526 pp.
Arnolds A. 1952. Aspectos generales de la geología y geomorfología del distrito Sierra Grande, territorio del Río Negro. Revista Asociación Geológica Argentina 7:131-142.
Arthur, M.A. y H.C. Jenkins, 1981. Phosphorites and palaeoceanography. Oceanology Acta. Proceedings, 26 th International Geological Congress, Paris: 83-96.
Arroqui Langer, A., O. Bordonaro y I. Chávez, 2006. Aplicación de un patrón de exploración y explotación en la minería de carbonatos en el ámbito de la Precordillera Argentina. Boletín Geológico y Minero, ISSN 0366-0176, 117, 4:649-653.
Bonuccelli, R., 2006. Depósito de Caliza de Punta Colorada (Río Negro, Argentina) Aspectos: geológicos, técnicos y económicos. Informe técnico Marifil S.A. 24 pp. (inédito).
Buatois, L., G. Mangano y F. Aceñolaza, 2002. Trazas fósiles. Señales de comportamiento en el Registro Estratigráfico. Museo Paleontológico Egidio Feruglio. Edición Especial MEF Nº 2:365 pp.
Busteros, A., R. Giacosa, H. Lema y M. Zubía, 1998. Hoja Geológica 4166-IV. Sierra Grande. Prov. de Río Negro. Boletín Nº 241. SEGEMAR.
Ciciarelli, M., 1989. Análisis estructural del sector oriental del macizo Nordpatagónico y su significado metalogénico. Tesis Doctoral. Universidad Nacional de La Plata, 179 pp. (inédito).
Cortés J.M., 1981. El sustrato Precretácico del extremo nordeste de la Prov. Del Chubut. Revista de la Asociación Geológica Argentina 36:217-235.
De Alba, E., 1964. Descripción geológica de la Hoja 41j, Sierra Grande, Prov. de Río Negro. Dirección Nacional de Geología y Minería Boletín 97.
Folk, R., 1974. The natural history of crystalline calcium carbonate: Effects of magnesium content and salinity. Journal of Sedimentary Petrology 44:40-53.
Gardner, L.R., 1980. Mobilization of Al and Ti during weathering isovolumetric geochemical evidence. Chemical Geology 30:151-165.
Gelós E, J. Spagnuolo y R. Schillizzi, 1992. Las unidades morfológicas de la costa Oeste del Golfo San Matías y su evolución. Revista de la Asociación Geológica 47:365-371.
Kaasschieter, J.P., 1965. Geología de la cuenca del Colorado. 2º Jornadas Geológicas Argentinas 3:251-269.
Malumián, R., 1999. La sedimentación y el volcanismo terciarios en la Patagonia Extraandina. Geología Argentina. Anales 29:557-612. SEGEMAR.
Malvicini, L y E. Llambías, 1974. Geología y génesis del depósito de manganeso Arroyo Verde, Prov de Chubut. República Argentina. V Congreso Geológico Argentino. Tomo II:184-202.
Marquillas, R., I. Sabino, A. Nobrega Sial, C. del Papa, V. Ferreira y S. Matheos, 2007. Carbon and oxygen isotopes of Maastrichtian-Danian shallow marine carbonates: Yacoraite Formation, northwestern Argentina. Journal of South American Sciences 23:304-320.
Mas, J.R. y Alonso, A., 1989. Sedimentación marina, carbonatada y evaporítica. En: Archer, A. (Ed.) Sedimentología pp. 1-86.
Meyer, W.J., F.H. Lu y J.K. Zachariah, 1997. Dolomitization by mixed evaporative brines and freshwater, Upper Miocene carbonates, Nijar, Spain. Journal of Sedimentary Research 67:898-912.
Moore, C.H., 2001. Carbonate Reservoirs: Porosity Evolution and Diagénesis in a Sequence Stratigraphic Framework. Developments in Sedimentology, 55. Elsevier, Amsterdam.
Nader, F., M. Abdel-Fattah y T. Ali, 2006. Petrographic and chemical traits of Cenomanian platform carbonates (central Lebanon): implications for depositional environments. Cretaceous Research 27:689-706.
Naipauer, M., C. Cingolani, S. Valencio, F. Chemale y G. Vujovich, 2005. Estudios isotópicos en carbonatos marinos del terreno Precordillera-Cuyania: ¿Plataforma común en el Neoproterozoico- Paleozoico inferior? Latin American Journal of Sedimentology and Basin Analysis. 12:89-108.
Niebuhr, B., 2005. Geochemistry and time-series analysis of orbitally forced Upper Cretaceous marl-limestone rhythmites (Lehrte West Syncline, northern Germany). Geological Magazine 142:31-55.
Pettijohn, F. J., 1976. Rocas Sedimentarias. Eudeba. (Eds) Buenos Aires. 731 pp.
Rachold, V. y H-J. Brumsack, 2001. Inorganic geochemistry of Albian sediments from the Lower Saxony Basin NW Germany: palaeoenvironmental constraints and orbital cycles. Palaeogeography, Palaeoclimatology, Palaeoecology 174:121-143.
Ramos, V., 1975. Geología del sector oriental del Macizo Nordpatagónico entre Aguada Cecilio y la Mina Gonzalito. Prov. de Río Negro. Revista de la Asociación Geológica 30:274-285.
Rodríguez, M.F., 1990. Superficies de omisión en el Paleoceno de Sierra Grande, Prov. de Río Negro, República Argentina. V Congreso Argentino de Paleontología y Bioestratigrafía. Actas II. Serie de Correlación Geológica 7:143-147. Tucumán.
Rossi de García E. y R. Levy, 1982. Eoceno de la Prov. de Río Negro. Argentina. Ameghiniana 14:45-52.
Santana-Casiano, J.M., M. González-Dávila, L.M. Laglera, J. Pérez- Pena, L. Brandy y L. Sillero, 1997. The influence of zinc, aluminum, and cadmium on the uptake kinetics of iron by algae. Marine Chemistry 59:95-11.
Schillizzi R, J. Spagnuolo, E. Gelós y S. Aliotta, 2005. Presencia y evolución de grandes bloques en la costa de Pta Colorada, Golfo San Matías. Argentina. GEOACTA 30:39-45.
Spagnuolo J., R. Schillizzi y E. Gelós, 2000. Paleoceno en la costa occidental del Golfo San Matías. Profil. Institut fur Geologie und Palaontologie. Universitat Stuttgart. CD ROM (77): 4 pp.
Spalletti L., S. Matheos y J. Merodio, 1993. Sedimentitas carbonáticas Cretácico-Terciarias de la Plataforma Norpatagónica. XII Congreso Geológico Argentino y II de Exploración de Hidrocarburos. Actas I: 249-245.
Steinmann, G., 1929. Geologie von Peru, Karl Wurter, (Ed). Heidelberg.
Tucker, M. E., 1981. Sedimentary Petrology. An Introduction. Blackwell Sci. Publ. 252 pp.
Turgeon, S. y H-J. Brumsack, 2006. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of central Italy. Chemical Geology 234:321-339.
Weaver, CH., 1927. The Roca Formation in Argentina. American Journal of Science. 5:417-434.
Weber, E., 1983. Descripción geológica de la Hoja 40j, Cerro El Fuerte, Prov. de Río Negro. Servicio Geológico Nacional, Boletín 196. Buenos Aires.
Wichmann, R., 1918. Estudios geológicos en hidrológicos en la región comprendida entre la Boca del Río Negro, San Antonio y Choele Choel. Anales Ministerio de Agricultura de la Nación. Sec. Geología, Mineralogía y Minería. T. 23. Nº 3. Bs.As.
Wilson, J.L., 1975. Carbonate facies. In Geologic History. Springer-Verlag. 472 pp.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.