Análisis Estratigráfico Secuencial de las Formaciones Huincul y Lisandro del Subgrupo Río Limay (Grupo Neuquén - Cretácico Tardío) en el Departamento El Cuy, Río Negro, Argentina

Authors

  • María Lidia Sánchez Departamento de Geología - Universidad Nacional de Río Cuarto - Enlace Ruta 8 y 36 km 603 (5800) Río Cuarto, Argentina
  • J. Rossi Departamento de Geología - Universidad Nacional de Río Cuarto - Enlace Ruta 8 y 36 km 603 (5800) Río Cuarto, Argentina
  • S. Morra Departamento de Geología - Universidad Nacional de Río Cuarto - Enlace Ruta 8 y 36 km 603 (5800) Río Cuarto, Argentina
  • Paula Armas Departamento de Geología - Universidad Nacional de Río Cuarto - Enlace Ruta 8 y 36 km 603 (5800) Río Cuarto, Argentina

Keywords:

Stratigraphy Sequence; Sedimentology; Río Limay Sugroup; Neuquén Group; Río Negro

Abstract

In the Cuy Department, Rio Negro Province (Fig. 1), there are outcrops of the Late Cretaceous continental deposits of the Subgroup Rio Limay (Fig. 2), in virtually continuous exposures that allow detail studies and exploration of the architecture of the sedimentary bodies. This contribution presents the results of the sedimentological study and sequential stratigraphic analysis for the depositional period of the Huincul and Lisandro formations (Subgroup Río Limay). The outcrops appear in the Planicie de Rentaría (Area A), with continuous sections longer than 3 km and Anfiteatro (Area B) with outcrops of more than 5 km (Fig. 1). In these areas we made detailed sedimentological profiles (Fig. 3), we described and interpreted lithofacies and architectural elements employing photograms and we defined stratigraphically significant discontinuities. We identified 11 fluvial lithofacies, 4 conglomerates (Gm, Gh, Gp and Gt), 5 sandstones (Sm, St., Sp, and Mr. Sh), and 2 pelitic (Fl and Fm), according to the nomenclature of Miall (1996). In addition, 2 volcaniclastic lithofacies, 1 primary pyroclastic lithofacies (Tlpm) and 1 volcaniclastic sineruptive lithofacies (TLpe) following criteria Mc Phie et al. (1993) were defined, and finally 3 eolic lithofacies (Spe, She and Sathya) (Fig. 4). These were grouped into 11 fluvial architectural elements and 4 eolic (Fig. 5). We have recognized channel elements (CHI) and CHII), intrachannel (LA, DAI, DAII, SBI and SBII) and floodplain (CRI, CRII, CS and OF). The eolic architectural elements include dunes (ED) and interdunes (DI, and WI FI).

The paleoenvironments sedimentary include river systems, terminal fans and dune fields. The Sistema Fluvial I (SF-I) is integrated by LA, DAI, DAII, SBI, CHI, CRI, CRII and OF (Fig. 6). The meanders loops show, in most cases, complete filling sequences in which records of migration of large sand dunes are preserved which retain topsets deposits and the scrolls their undulating tops. The channel belts are separated by potent floodplain deposits, with frequent intercalation of levels of overflow both channelized or in mantle, and show a multilateral persistence in potent sections of the column. The crevasse splay exhibits paleosoils with low levels of development, frequent presence of gleyzed horizons and high degree of bioturbation. The general characteristics of the S-FI are proper of aggrading fluvial systems of high sinuosity. The Sistema Fluvial II (SF-II) is characterized by LA, DAI, DAII, SBI and to a lesser proportion, by CRI and OF (Fig. 6). The meanders loops often show preservation of the channel fill by lateral accretion with complete successions. Also the dunes preserve topsets deposits and the scrolls the original topography (Fig. 7). The frequency of conservation of filling phase of the abandoned channel with strong bioturbation and development gleyzed horizons suggests frequent avulsion by strangulation. The preservation of the floodplain is low, and it is characterized by intense bioturbation, and a high volcaniclastic participation in some reaches. We consider that the fluvial system model is of high sinuosity highly aggrading. The terminal fan system (Sistema Abanico Terminal) (TSS), characteristic of semiarid regions with strong seasonal climatology, is represented by CHII, CS or SBII and OF (Fig. 6). These constitute flooding basin deposits (CI), simple multiepisodic channel fillings corresponding to middle sections of the distributary plain and simple channels with development of small transversal cross bars and multilateral relations of distal distributary plain. The aeolian system (Sistema Eolico) (IS) consists of SD, DI, WD and FD. The spatial distribution of dunes and interdunes, the high dispersion of paleocurrents with a principal mode at the avalanche deposits and multiple stabilization surfaces suggest the development of a field of barchan dunes. In the element WI, we identified ferric and mottled halos and bioturbations that indicate the presence of paleosoils with gleyzed horizons (Retallack, 1976, 1990) which and characterize environments with good oxygenation.

According to the temporal and spatial arrangement of the different paleoenvironments, their evolutionary trend and the analysis of significant discontinuity surfaces, we produced the stratigraphic sequence for the Subgroup Rio Limay (Fig. 8). The sequence starts with the Secuencia I, corresponding to the base of the Huincul Fm and is represented by SF-I, defined by belts of potent channels, isolated in floodplain deposits and with the development of overflow fans under conditions of rapid aggradation. The avulsion by overflow crevasse splay was the control mechanism of the system. The development of composite paleosoils in distal segments of the plain indicates the existence of long periods during which the channel band remained relatively stable positions. The incorporation of volcaniclastic materials to fluvial deposits claims a volcanic activity close in time. The geometry and continuity of the sandy bodies and its proportion in relation to the floodplain deposits suggests periods of low frequency of avulsion/subsidence rate. The large-scale architecture observed is the equivalent to a High Accommodation System Track (Cortejo) (AA) with a ratio A/S close to 1 associated with a gradual decline in the base level under conditions of high sediment supply. A net surface (Discontinuidad D-IS-IS) is the basis of the sequence II, marked by an abrupt change in the fluvial architecture river (SF-II). The mechanism of lateral migration was by strangulation and abrupt cut of the bends. Only underdeveloped paleosoils in the abandoned channel fillings and the little preservation of the floodplain deposits are recognized. The stacking of channel belts signs out a reduction in the accommodation space. The top layer of Huincul Fm is interpreted as Lower Accommodation System Track (Cortejo) (BA). The Discontinuity IIC (D-IIC) marks the base of Lisandro Fm, which is an surface of fluvial flooding defining the expansion of a terminal fan system associated with an abrupt increase in the accommodation space and rapid progradation of the facies of an environment of intermediate distributary plain. This stretch of the Sequence is interpreted as the High Accommodation System Track (Cortejo) (AA) of the Sequence II (S-II) was associated with a period of high subsidence. The deposits of terminal fans are covered by a wet eolian system (IS). The change in the depositional environment marks the beginning of the Sequence III (SIII), limited at the base by D-IIIS. The development of a field of parabolic dunes associated with environments dry, wet and flooded interdune indicates a gradual rise in the water table that, eventually, was above the depositional surface generating shallow lagoons. The short-term climatic changes related with an increase in precipitation and the relative position of the water table controlled the development stabilization surfaces and the growth and migration of aeolian forms. We identified two supersurfaces (D-IV and DV, Fig. 18) which may be assigned to periods with an increase in the supply or availability of sediment climatically conditioned. Periodically, the interdune corridors were overrun by ephemeral streams associated with the flood basin environments of SAT during flooding events. All deposits, characterized by a strong stacking of the eolian successions are interpreted as the Cortejo BA from the Sequence III. A new fluvial flood event marked by the Discontinuity VIC, is represented by facies flood basin, a distributary plain with the development of intertwined channels showing evidence of the SAT progradation. This sector is interpreted as the (Cortejo) AA System Track of S-III associated with a period of renewed subsidence. D-VIIS limits the base of the S-IV whose (Cortejo) BA System Track is similar to the previous Sequence and includes 3 supersurfaces (D-D-VIIIIX / X). The expansion of the flooding basin facies of a limited terminal fan at the base by D-XIC represents the base of the (Cortejo) AA System Track of the Sequence IV. Tabular units associated with a distal distributary plain that replaced towards the top by thick channels of low sinuosity close to the backbone of the system represent an progradation event of the SAT. The beginning of the Sequence V is marked D-XIIS associated with the development of a new SE. The architectural design of large scale is similar to that of the (Cortejos) BA System Tracks of the Sequences III and IV and includes supersurfaces D-D-XIII and XIV. Something similar occurs with the surface of fluvial flooding (D-XVC) on which we identified a prograding succession of SAT. The characteristics of the systems involved in the Lisandro Fm suggest a climate change to semi-arid conditions and low gradient in the depositional environment.

The sequential stratigraphic analysis of the formations Huincul and Lisandro suggests that the deposits are sinorogénic and the different pulses of subsidence are registered in the (Cortejos) AA and BA System Tracks defined in this study.

References

Ahlbrandt, T. y S. Fryberger, 1981. Introduction to eolian sediments. En: Sandstone Depositional Environments,. P.A. Scholle y D. Spearing (Eds.). American Association of Petroleum Geologists, Memoir 31:11-47.

Alexander, J. y R. Gawthorpe, 1993. The complex nature of a Jurassic multistorey, alluvial sandstone body, Whitby, North Yorkshire. En: North, C. y Prosser, D. (Eds.): Characterization of fluvial and aeolian reservoirs. Geological Society Special Publications 73, 123-142.

Alexander, J., J. Bridge, R. Cheel y S. Leclair, 2001. Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds. Sedimentology 48(1):133-152.

Allen, J., 1979. Studies in fluviatile sedimentation: and exploratory quantitative model for the architecture of avulsion-controlled alluvial suites. Sedimentary Geology 21:129-147.

Allen, J., 1983. Studies in fluviatile sedimentation: Bars, Bars complexes and sandstone sheets (low sinuosity braided streams) in the Brownstone (L. Devonian), welsh borders. Sedimentary Geology 33:237-283.

Aslan, A. y M. Blum, 1999. Contrasting styles of Holocene avulsion, Texas Gulf Coastal Plain. USA. In: Smith, N. and Rogers, J. (Eds.): Fluvial Sedimentology VI. Special Publication N° 28 of International Association of Sedimentologists.

Best, J., P. Ashworth, C. Bristow y J. Roden, 2003. Three-dimensional sedimentary architecture of a large, mid-channel sand braid bar, Jamuna River, Bangladesh. Journal of Sedimentary Research 73(4):516-530.

Bigarella, J., 1972. Eolian environments: their characteristics, recognition, and importance. In: Rigby, J. and Hamblin, W. (Eds): Recognition of Ancient Sedimentary Environments. Society of Economic Paleontologists and Mineralogists, Special Publication 16:12-62.

Blakey, R. y R. Gubitosa, 1984. Controls of sandstone body and architecture in the Chinle Formation (Upper Triassic), Colorado Plateau. Sedimentary Geology 38:51-86.

Blarasin, M. y M. Sánchez, 1987. Secuencia Evolutiva de Dunas Cuaternarias en el Sector de Laguna Oscura, Dpto. Río Cuarto, Prov. de Córdoba. X Congreso Geológico Argentino, Tomo III: 297-300. San Miguel de Tucumán.

Bordy, E. y O. Catuneanu, 2002. Sedimentology of the Beaufort- Molteno Karoo fluvial strata in the Tuli Basin. South Africa. South African Journal of Geology 105:51-66.

Bourke, M., 2003. Current ripples: a small-scale thoughflow outburst in a heterolíthic ephemeral channel. Journal of Sedimentary Research 73(1):2-4.

Bown, T. y M. Kraus, 1981. Lower Eocene alluvial paleosols (Willwood Formation, northwest Wyoming, USA) and their significance for paleoecology paleoclimatology, and basin analysis. Palaeogeogreography, Palaeoclimatology, Palaeoecology 34:1-30.

Brakenridge, G., 1988. River flood regime and flood-plain stratigraphy. En V. Baker, C. Kochel y P. Patton (Eds.). Flood Geomorphology. Wiley. New York. 139-156.

Bridge, J. y J. Best, 1997. Preservation of planar laminae due to migration of low-relief bed waves over aggrading upper-stage plane beds: comparison of experimental data with theory. Sedimentology 44(2):253-262.

Bridge, J. y M. Leeder, 1979. A simulation model of alluvial stratigraphy. Sedimentology 26:617-644.

Bristow, C., R. Skelly y F. Ethridge, 1999. Crevasse splay from rapidily aggradating, sand-bed, braided Niobrara River, Nebraska: effect of base level rise. Sedimentology 46(6):1029-1048.

Brookfield, M., 1977. The origin of bounding surfaces in ancient aeolian sandstones. Sedimentology 24:303-332.

Calvo, J., 1989. Nuevos hallazgos de huellas de dinosaurios en el Albiano-Cenomaniano del la localidad de Picún Leufú, provincia del Neuquén. Patagonia. Argentina. 6° Jornadas Argentinas Paleontología de Vertebrados (San Juan). Instituto y Museo Ciencias Naturales, Resúmenes:66-70.

Calvo, J., 1991. Huellas de Dinosaurios en la Formación Río Limay (Albiano-Cenomaniano), Picún Leufú, provincia del Neuquén. Argentina. (Ornithinchia-Saurischia-Sauropoda-Theropoda). Ameghiniana 28:241-258.

Calvo, J. y J. Bonaparte, 1991. Andesaurus delgadoi gen. et sp. nov. (Saurischia-Sauropoda), dinosaurio titanosauridae de la Formación Río Limay (Albiano-Cenomaniano), Neuquén, Argentina. Ameghiniana 28:303-310.

Cant, D. y R. Walker, 1978. Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology 25:625-648.

Catuneanu, O., 2004. Basement control on flexural profiles and the distribution of foreland facies: The Dwyka Group of the Karoo Basin, South Africa. Geology 32(6):517-520.

Cazau, L. y M. Uliana, 1972. El Cretácico Tardío continental de la Cuenca Neuquina. 5° Congreso Geológico Argentino. Actas 3: 131-163.

Cobbold, P. y E. Rossello, 2003. Aptian to recent compresional deformation, foothills of the Neuquén Basin, Argentina. Marine and Petroleum Geology 20:429-443.

Coria, J. y L. Salgado, 1995. A new giant carnivorous dinosaur from Cretaceous of Patagonia. Nature, 377:224-226.

Crabaugh, M. y G. Kocurek, 1993. Entrada Sandstone: an example of a wet aeolian system. In: Pye, K. (Ed.). The dynamics and environmental context of aeolian sedimentary system. Geological Society Special Publication 72:103-126.

Davies, D., B. Williams y R. Vessell, 1993. Dimensions and quality of reservoirs originating in low and high sinuosity channel systems, Lower Cretaceous Travis Peak Formation, East Texas, USA. In: North, C and Prosser, D. (Eds.): Characterization of Fluvial and Aeolian Reservoirs. Geological Society Special Publication, 73:95-121.

Davies-Vollum, K. y M. Kraus, 2001. A relationship between alluvial backswamps and avulsion cycles: an example from the Willwood Formation of the Bighorn Basin, Wyoming. Sedimentary Geology 140(3-4):235-249.

De Ferrariis, C., 1968. El Cretácico del norte de la Patagonia. 3° Jornadas Geológicas Argentinas. Actas 1:121-144.

Decelles, P., B. Gray, K. Ridgway, R. Cole, D. Pivnic, N. Pequera y P. Srivastava, 1991. Control on synorogenic alluvial-fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana. Sedimentology 38:567-590.

Dreyer, T., 1993. Quantified fluvial architecture in ephemeral stream deposits of the Es-plugafreda Formation (Paleocene), Tremp- Graus Basi, northern Spain. En: M. Marzo & C. Puigdefábregas (Eds.), Alluvial Sedimentation, Special Publication International Association of Sedimentologists, 17:337-362.

Fielding, Ch., 2006. Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies. Sedimentary Geology 190:227-240

Flores, R., 1981. Coal deposition in fluvial paleoenvironments of the Paleocene Tongue River Member of the Fort Union Formation, Powder River Area, Powder River Basin, Wyoming and Montana. In: Ethridge, F. y Flores, R. (Eds.): Recent and Ancient Nonmarine depositional environments: Models for exploration. Society of Economic Paleontologists and Mineralogists, Special Publication 31:169-190.

Franzese, J. y L. Spalletti, 2001. Late Triassic-early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. Journal of South American Earth Sciences 14:257-270.

Fryberger, S., 1993. A review of aeolian bounding surfaces, with examples from the Permian Minnelusa Formation, USA. In: North, C and Prosser, D. (Eds.): Characterization of Fluvial and Aeolian Reservoirs. Geological Society Special Publication, 73:167-197.

Fryberger, S., C. Schenk y L. Krystinik, 1988. Stokes surfaces and the effects of near-surface groundwater-table on aeolian deposition. Sedimentology 35:21-41.

García-Hidalgo J., J. Temiño y M. Segura, 2002. Holocene eolian sediments on the southern border of the Duero Basin (Spain): origin and development of an eolian system in a temperate zone. Journal of Sedimentary Research 72(1):30-39.

George, G. y J. Berry, 1993. A new lithostratigraphy and depositional model for de Upper Rotliegend of the UK Sector of the southern Noth Sea. En North, C y D. Prosser (Eds.) Characterization of Fluvial and Aeolian Reservoirs. Geological Society Special Publication 73:247-264.

Gersib, G. y B. McCabe, 1981. Continental coal-bearing sediments of the Port Hood Formation (Carboniferous), Cape Lizee, Nova Scotia, Canada. In: Ethridge, F. and Flores, R. (Eds.): Recent and Ancient Nonmarine depositional environments: Models for exploration. Society of Economic Paleontologists and Mineralogists, Special Publication 31:95-108.

Ghosh, P., S. Sarkar y P. Maulik, 2006. Sedimentology of a muddy alluvial deposit: Triassic Denwa Formation, India. Sedimentary Geology 191:3-36.

Glennie, K., 1987. Desert sedimentary environments, present and past-a summary. Sedimentary Geology 50: 135-165.

González Bonorino, G., P. Kraemer y G. Re, 2001. Andean Cenozoic foreland basins: a review. Journal of South American Earth Science 14: 651-664.

Havholm, K., R. Blakey, M. Capps, L. Jones, D. King y G. Kocurek, 1993. Aeolian genetic stratigraphy: an example from the Middle Jurassic Page Stone, Colorado Plateau. In: Pye, K. and Lancaster, N. (Eds.): Aeolian Sediments: Ancient and Modern, 167 pp. Special Publication International Association of Sedimentologists 16:87- 107.

Herrero Duclox, A., 1939. Estratigrafía y tectónica de los Estratos de Dinosaurios del Neuquén. Boletín Informativo Petrolero 16 (180): 16-17.

Herrero Duclox, A., 1946. Contribución al conocimiento geológico del Neuquén extraandino. Boletín Informativo Petrolero 266.

Herries, R., 1993. Contrasting styles of fluvial-aeolian interaction at a downwind erg margin: Jurassic Kayenta-Navajo transition, northeastern Arizona, USA. In: North, C. y Prosser, D. (Eds.): Characterization of Fluvial and Aeolian Reservoirs. Geological Society Special Publication 73:199-218.

Howell, J., E. Schwarz, L. Spalletti y G. Veiga, 2005. The Neuquén Basin: an overview. En: Veiga, G., L. Spalletti, J. Howell y E. Schwarz (Eds.). The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics. Geological Society, London, Special Publications 252:1-14.

Hunter, R., 1977. Basic types of stratification in small eolian dunes. Sedimentology 24:361-387.

Jervey, M., 1988. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. En:. C.K Wilgus, B.S. Hastings, C.A Ross, H.W. Posamentier, J. van Wagoner and C.G.St.C. Kendall (Eds.). Sea Level Changes: An Integrated Approach Society of Economic Paleontologists and Mineralogists Special Publication 42:47-70.

Jo, H., 2003. Depositional environments, architecture, and controls of Early Cretaceous non-marine successions in the northwestern part of Kyongsang Basin, Korea. Sedimentary Geology 161:269-294.

Kappla, C., 1980. Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27:613-629.

Keidel, J., 1925. Sobre la estructura de las capas petrolíferas del oriente del territorio del Neuquén. Dirección General Nacional de Minas, Geología. y Minería, Boletín Nº 94.

Kelly, S. y H. Olsen, 1993. Terminal Fans-a review with reference to Devonian examples. Sedimentary Geology 85:339-374.

Kocurek, G., 1996. Desert aeolian systems. In: Reading, H. (Ed.): Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Scientic Publications, Oxford, pp. 125.153.

Kocurek , G. y N. Lancaster, 1999. Aeolian system sediment state: theory and Mojave Desert Kelso dune fiel example. Sedimentology 46:505-515.

Kocurek, G., 1988. First-order and super bounding surfaces in eolian sequences- Bounding surfaces revisited. Sedimentary Geology 56:193-206.

Kocurek, G. y K. Havholm, 1993. Eolian sequence stratigraphy - a conceptual framework. En: Weimer, P., and Posamentier, H. (Eds.). Siliciclastic sequence stratigraphy: recent developments and applications, American Association Petroleum Geology. Memoir, 58:393-409.

Kocurek, G. y J. Nielson, 1986. Conditions favourable for the formation of warm-climate aeolian sand sheets. Sedimentology 33:751- 772.

Kraus, M., 1999. Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews, 47:41-70.

Kraus, M. y T. Wells, 1999. Recognizing avulsion deposits in the ancient stratigraphical record. En: Smith, N. y Rogers, J. (Eds.): Fluvial Sedimentology VI. International Association of Sedimentologists Special Publication, 28:251-268.

Lancaster, N., 1993. Origins and sedimentary features of supersufaces in the northwestern Gran Desierto Sand Sea. En: Pye, K. and Lancaster, N. (Eds.): Aeolian Sediments: Ancient and Modern. Special Publication International Association of Sedimentologists 16:71-83.

Langford, R. y M. Chan, 1988. Flood surfaces and deflation surfaces within the Cutler Formation and Cedar Mesa Sandstone (Permian), Southeastern Utah. Geological Society of America Bulletin 100:1541-1549.

Langford, R. y M. Chan, 1989. Fluvian-eolian interactions: Part II, ancient systems. Sedimentology 36:1037-1051.

Langford, R. y M. Chan, 1993. Downwind changes within an ancient dune sea, Permian Cedar Mesa Sandstone, southeast Utah. En: Pye, K. y Lancaster, N. (Eds): Aeolian Sediments: Ancient and Modern, Special Publication International Association of Sedimentologists 16:109-126.

Lawton, S, T. Pollock y R. Robinson, 2003. Integrating sandstone petrology and nonmarine sequence stratigraphy: application to the Late Cretaceous fluvial systems of Southwestern Utah, U.S.A. Journal of Sedimentary Research 73:389-406.

Leanza, H. y C. Hugo, 2001. Cretaceous beds from southern Neuquen Basin (Argentina): age, distribution and stratigraphic discontinuities. Asociación Paleontológica Argentina. Publicación Especial 7. VII International Symposium on Mesozoic Terrestrial Ecosystems; 117-122. Buenos Aires.

Legarreta, L. y C. Gulisano, 1989. Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior), Argentina. En: Chebli, G. y Spalletti, L. (Eds.): Cuencas Sedimentarias Argentinas: Serie Correlación Geológica 6, p. 221-243.

Legarreta, L. y M. Uliana, 1999. El Jurásico y Cretácico de la Cordillera Principal y la Cuenca Neuquina. En: Caminos, R. (Ed.): Geología Argentina. Subsecretaría de Minería de la Nación-Servicio Geológico Minero Argentino-Instituto de Geología y Recursos Minerales, Anales 29:399-432.

Lindquist, S., 1988. Practical characterization of eolian reservoirs for development: Nugget Sandstone, Utah-Wyoming thrust belt. Sedimentary Geology, 56:315-339.

Livingstone, I. y A. Warren, 1996, Eolian Geomorphology: An Introduction: Harlow, Essex, Longman, 211 p.

Loope, D., 1981. Deposition, deflation and diagénesis of upper Paleozoic eolian sediments, Canyonlands National Park, Utah. Ph D dissertation. University of Wyoming, Laramie, 170 pp.

Loope, D., 1984. Eolian origin of upper Paleozoic sandstones, southeastern Utah. Journal of Sedimentary Petrology 54:563-580.

Loope, D. y C. Rowe, 2003. Long-lived pluvial episodes during deposition of the Navajo Sandstone. Journal of Geology 111:223-232.

Loope, D., C. Rowe y R. Joeckel, 2001. Annual monsoon rains recorded by Jurassic dunes. Nature 412:64-66.

Lorenz, J. y G. Nadon, 2002. Braided-river deposits in a muddy depositional setting: The Molina Member of the Wasatch Formation (Paleogene), West-Central Colorado, U.S.A. Journal of Sedimentary Research 72(3):376-385.

Lukie, T., G. Ardies, R. Dalrymple y B. Zaitlin, 2002. Alluvial architecture of the Horselfy unit (Basal Quartz) in southern Alberta and northern Montana: influence of accommodation changes and contemporaneous faulting. Bulletin of Canadian Petroleum Geology 50(1):73-91.

Manacorda, L., A. Cafferata, D. Boggetti, M. Pacheco, L. Barrionuevo, M. Reinante y V. Meissinger, 2004. Modelo paleoambiental del Grupo Neuquén en la zona norte de la Cuenca Neuquina. X Reunión de Sedimentología-Simposio Límite K/T de Argentina. 88-90. San Luis.

Marriott, S. y V. Wright, 1993. Paleosols as indicators of geomorphic stability in two Old Red Sandstone alluvial suites, South Wales. Journal of Geological Society of London 150:1109-1120.

Marshall, J., 2000. Sedimentology of a Devonian faults-bounded braidplain and lacustrine fill in the lower part of the Skrinkle Sandstone, Dyfed, Wales. Sedimentology 47(2):325-342.

Martinsen, O, A. Ryseth, W. Helland-Hansen, H. Flesche, G. Torkindsen y S. Idil, 1999. Stratigraphic base level and fluvial architecture: Ericson Sandstone (Campanian), Rock Springs Uplift, SW Wyoming, USA. Sedimentology 46(2):235-259.

Mc Carthy, P., I. Martini y D. Lekie, 1997. Anatomy and evolution of a Lower Cretaceous alluvial plain: sedimentology and paleosols in the Upper Blairmore Group, south-western Alberta, Canada. Sedimentology 44:197-220.

Mc Kee, E., 1979. Introduction to a study of global sand seas. In: Mc Kee, E. (Ed.): A Global Study of Sand Seas, US Geological Survey. Professional Paper 1052.

Mc Kee, E. y J. Bigarella, 1972. Deformational structures in Brazilian coastal dunes. Journal of Sedimentary Petrology 42:670-681.

Mc Kee, E., J. Douglass y S. Rittenhouse, 1971. Deformation of lee side laminae in eolian dunes. Geological Society of America Bulletin 82:359-378.

Mc Phie, J., M. Doyle y R. Allen, 1993. Volcanic textures: A guide to the Interpretation of Textures in Volcanics Rocks. Center for Ore Deposit and Exploration Studies. University of Tasmania. 198 pp.

Miall, A., 1984. Principles of sedimentary basin analysis. Springer, Berlin Heidelberg New York.

Miall A., 1985. Arquitectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Science Review 22:261-308.

Miall, A., 1996. The geology of fluvial deposits. Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag. Italia. 575 pp.

Miall, A., 2002. Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin, based on seismic timeslice analysis. American Association Petroleum Geology Bulletin 86:1201-1216.

Miall, A. y B. Jones, 2003. Fluvial architecture of the Hawkesbury Sandstone (Triassic), Near Sydney, Australia. Journal of Sedimentary Research 73(4):531-545.

Miall, A., 2006. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: A reality check. Association Petroleum Geology Bulletin, 90(7):989-1002.

Morrison, R., 1978. Quaternary soil stratigraphy-concepts, methods, and problems. En: Mahaney, W. (Ed.), Quaternary Soils, Geological Abstracts, Norwich. 77-108.

Mosquera, A. y V.A. Ramos, 2006. Intraplate deformation in the Neuquén embayment. En: S. M. Kay y V.A. Ramos (Eds.). Late Cretaceous to Recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquen basin (36-39°S). Geological Society of America, Special Paper (en prensa).

Mpodozis, C y V. Ramos, 1990. The Andes of Chile and Argentina. En E. Ericksen, M. Pinochet y J. Reinemund (Eds.). Geology of the Andes and its relation to hydrocarbon and mineral resources.: Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series: Houston, TX, United States, Circum-Pacific Council for Energy and Mineral Resources 59-90.

Muller, R., J. Nystuen y V. Wright, 2004. Pedogenic mud aggregates and paleosol development in ancient dryland river systems: criteria for interpreting alluvial mudrock origin and floodplain dynamics. Journal of Sedimentary Research 74:537-551.

Newell, A., 2001. Bounding surfaces in a mixed aeolian-fluvial system (Rotieglend, Wessex basin, SW UK. Marine and Petroleum Geology 18:339-347.

Nickling, W., 1994. Aeolian sediment transport. En: Pye, K. (Ed.): Sediment Transport and Depositional Processes. Blackwell Scientific Publications, Oxford, 293-345.

Paola, C., S. Wiele y M. Reinhart, 1989. Upper-regime parallel lamination as the result of turbulent sediment transport and low amplitude bed forms. Sedimentology 36:47-59.

Parkash, B., A. Awasthi y K. Gohain, 1983. Lithofacies of the Markanda terminal fan, KurukShetran district, Haryana, India. Spec. Publs. Int. Ass. Sediment 6:337-344.

Pye, K., 1993. Late Quaternary development of coastal parabolic megadune complexes in northeastern Australia. In: Pye, K. and Lancaster, N. (Eds.): Aeolian Sediments: Ancient and Modern. Special Publication International Association of Sedimentologists 16:23-44.

Pye, K. y H. Tsoar, 1990. Aeolian sand and sand dunes. Unwin Hyman, London, p. 396.

Rafini S. y E. Mercier, 2002. Forward modelling of foreland basins progressive unconformities. Sedimentary Geology 146:75-89.

Ramon, J. y T. Cross, 1997, Characterization and prediction of reservoir architecture and petrophysical properties in fluvial channel sandstones, Middle Magdalena Basin, Columbia: Ciencia, Tecnología y Futuro 1(3):19-46.

Ramos, V., 1999. Rasgos estructurales del territorio argentine, evolución tectónica de Argentina. Geología Argentina, Instituto de Geología y Recursos Naturales, Buenos Aires, Anales 29:715-784.

Ramos, V. y A. Aleman, 2000. Tectonic Evolution of the Andes. En U. Cordani, E. Milani, A. Thomaz Filho y M. Campos Neto (Eds.). Tectonic Evolution of South America: Rio de Janeiro. 635- 685.

Ramos, V. y A. Folguera, 2005. Tectonic evolution of the Andes of Neuquén: constrains derived from the magamatic arc and foreland deformation. En: Veiga, G., L. Spalletti, J. Howell y E. Schwarz (Eds.). The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics. Geological Society, London, Special Publications 252:15-35.

Ramos, E., P. Busquets y J. Vergés, 2002. Interplay between longitudinal fluvial and transverse alluvial fan systems and growing thrusts in a piggyback basin (SE Pyrenees). Sedimentary Geology 146:05-131.

Reading, H., 1996. Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Scientific Publications, Oxford, 688 pp.

Rendell, H., T. Calderon, A. Pérez-González, J. Gallardo, A. Millán y P. Townsend, 1994. Thermoluminiscence and optically stimulated luminiscence dating of Spanish dunes. Quaternary Science Reviews. 13:429-432.

Retallack, G., 1976. Triassic paleosols in the Upper Narrabeen Group of New South Wales. Part I. Features of the paleosols. Journal of the Geological Society of Australia. 23:383-399.

Retallack, G., 1990. Soils of the past: an introduction to paleopedology. Harper Collins Academic, Hammersmith, 520 pp.

Rhee, C. y S. Chough, 1993. The Cretaceous Pyonghae sequence, Southeast Korea: terminal fan facies. Palaeogeography, Palaeoclimatology, Palaeoecology 105:139-156.

Sadler, S. y S. Kelly, 1993. Fluvial Processes and cyclicity in terminal fans deposits: an example from the Late Devonian of southwest Ireland. Sedimentary Geology 85:375-386.

Sánchez, M, 2004. Paleoambientes sedimentarios de la Formación Candeleros (Subgrupo Río Limay), Cretácico Tardío, sudeste del Neuquén. IV Congreso Uruguayo de Geología y II Reunión de Geología Ambiental y Ordenamiento Territorial del MERCOSUR. En CD.

Sánchez, M., 2006. Informe Geológico-Estratigráfico de subsuelo y superficie en el área del Sinclinal de Cinta Roja y alrededores de la Sierra de Cara Cura, borde nordoccidental de Cuenca Neuquina, Mendoza Argentina. Informe inédito Repsol-YPF, 179 pp.

Sánchez, M. y J. Cardozo, 2002. Sedimentología y paleoambientes sedimentarios de la Formación Candeleros (Subgrupo Río Limay), Cretácico Tardío, sudeste del Neuquén. V Congreso de Exploración y Desarrollo de Hidrocarburos. En CD.

Sánchez, M., S. Heredia y J. Calvo, 2004. Paleoambientes sedimentarios de la Formación Candeleros (Subgrupo Río Limay), Cretácico Tardío, en el Cañadón El Escondido, sudeste del Neuquén. X Reunión de Sedimentología-Simposio Límite K/T de Argentina. 158-159. San Luis.

Schenk, C., 1983. Textural and structural characteristics of some experimentally formed eolian strata. En: Brookfield, M. and Ahlbrandt, T. (Eds.): Eolian Sediments and Processes. Developments in Sedimentology, 38:41-51.

Schumm, S., 1993. River response to baselevel change: implications for sequence stratigraphy. Journal of Geology 101:279-294.

Sellwood, B. y P. Valdes, 2006. Mesozoic climates: General circulation models and the rock record. Sedimentary Geology 190:269-287.

Shanley K. y P. McCabe, 1994. Perspectives on the sequence stratigraphy on continental strata. American Association Petroleum Geology Bulletin 78:544-568.

Simpson, E., K. Eriksson, P. Eriksson y A. Bumby, 2002. Eolian dune degradation and generation of massive sandstone bodies in the Paleoproterozoic Makgabeng Formation, Waterberg Group, South Africa. Journal of Sedimentary Research 72(1):40-45.

Sloss, L., 1962. Stratigraphic models in exploration. American Association Petroleum Geology Bulletin 46:1050-1057.

Sneh, A., 1983. Desert stream sequences in the Sinaí Peninsula. Journal of Sedimentary Petrology 53:1271-1279.

Sønderholm, M. y H. Tirsgaard, 1998. Proterozoic fluvial styles: response to changes in accommodation space (Rivieradal sandstones, eastern North Greenland). Sedimentary Geology 120: 257-274.

Stokes, W., 1968. Multiple parallel truncation be planes- feature of wind-deposited sandstone formation. Journal of Sedimentary Petrology 38:510-515.

Talbot, M., 1985. Major bounding surfaces in eolian sandstones - a climatic model. Sedimentology 32:257-265.

Therrien, F., 2005. Palaeoenvironments of the latest Cretaceous (Maastrichtian) dinosaurs of Romania: insights from fluvial deposits and paleosols of the Transylvanian and Haþeg basins. Palaeogeography, Palaeoclimatology, Palaeoecology 218:15-56.

Tunbridge, I., 1984. Sand high-energy flood sedimentation-some criteria of recognition, with an example from the Devonian of S.W. England. Sedimentary Geology 28:79-95.

Twidale, C., 2004. River patterns and their meaning. Earth-Science Reviews 67:159-218.

Veiga, G., J. Howell R. y A. Strömback, 2005. Anatomy of a mixed marine-non marine lowstand wedge in a ramp setting. The record of Barremian-Aptian complex relative sea-level fall in the central Neuquén Basin, Argentina. En: Veiga, G., L. Spalletti, J. Howell y E. Schwarz (Eds.). The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics. Geological Society, London, Special Publications 252:139-162.

Vergés, J., M. Marzo y J. Muñoz, 2002. Growth strata in foreland settings. Sedimentary Geology 146:1-9.

Wadsworth, J., R. Boyd, C. Diessel, D. Leckie y B. Zaitlin, 2002. Stratigraphic style of coal and non-marine strata in a tectonically influenced intermediate accommodation setting: the Mannville Group of the Western Canadian Sedimentary Basin, south-central Alberta. Bulletin of Canadian Petroleum Geology. 50(4): 507- 541.

Williams, C. y F. Krause, 1998. Pedogenic phreatic carbonates on a Middle Devonian (Givetian) terrigenous alluvial-deltaic plain, Gilwood Member (Watt Mountain Formation), northcentral Alberta, Canada. Sedimentology 45:1105-1124.

Williams, C. Hills, L. y F. Krause,1996. Preserved organics matter and miospores in buried Middle Devonian (Givetian) paleosols: indicators of weathering, oxidation and madurity. Catena 28:1-19.

Published

2021-03-31

How to Cite

Sánchez, M. L. ., Rossi, J. ., Morra, S. ., & Armas, P. . (2021). Análisis Estratigráfico Secuencial de las Formaciones Huincul y Lisandro del Subgrupo Río Limay (Grupo Neuquén - Cretácico Tardío) en el Departamento El Cuy, Río Negro, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 15(1), 1-26. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/153

Issue

Section

Research Papers