Environmental history of pampa plain shallow lakes (Argentina) since middle Holocene: Paleoclimatic inferences
Keywords:
Regimen Shifts, Clear State, Turbid State, Submerged Macrophytes, Climate Change, Pampa Plain.Abstract
High-resolution paleolimnological studies based on multi-proxy analysis constitute an important tool to reconstruct the evolution of aquatic systems as well as evaluating their responses to natural and/or anthropogenic forcing factors (Lotter, 2003; Birks and Birks, 2006). While individual palaeoecological studies reveal local developments, general patterns often only emerge when information from several sites is combined together. Numerous shallow lakes occur throughout the Pampa plain of Argentina, between 33° to 39°S and 57° to 66°W. These lakes present two alternative states of equilibrium (Sche- ffer and Jeppesen, 2007; Scheffer and van Ness, 2007). Some of them are turbid lakes due to the high amount of algae, while others are clear macrophyte- dominated lakes. A third type of lake that can be recognized within the region is inorganic-turbid lakes, in which turbidity is caused by high amount of suspended inorganic material (Quirós et al., 2002; Allende et al., 2009). These lakes are characterized by low productivity, with scarce phytoplankton and macrophytes. Most of the lakes developed on defla- tion basins that originated during the late Pleistocene by the prevailing westerly winds. Often, the lakes are associated to lunettes, fixed palaeodunes that developed at the shore, on the windward side of the basins (Tricart, 1973; Zárate and Tripaldi, 2012). During the Holocene, the basins became areas of groundwater discharge and surface water accumu- lation gradually filling with sediments. Today, the lakes are nutrient-rich, eutrophic to hypereutrophic, and polymictic, too shallow to develop thermal stra- tification. Water depth and salinity are highly variable. During summer and/or during episodic droughts the lakes suffer significant reduction in water volume, and thus strong fluctuations in their water levels (Quirós and Drago, 1999; Sosnovsky and Quirós, 2006). These aquatic systems are able to support an abundance of macrophytes and phyto- plankton, which have proven to leave an exceptional fossil record of environmental changes (Stutz et al. 2002, 2006, 2010, 2012; Fontana, 2005). For more than a decade the authors have been investigating these aquatic systems in order to reconstruct their evolutionary history and the regional environments with the main goal of inferring the past climatic conditions. In order to achieve this, multi-proxy analysis of diverse biological indicators were carried out in several lakes of the south-east region of the Pampa plain. Pollen, non-pollen palynomorphs and plant macrofossil remains and associated fauna were analysed in sediment sequences from lake Hinojales- San Leoncio (37º23’S; 57º23’W) and lake Tobares (37°30’S; 57°28’W). These new results were then combined with former investigations from lakes Lonkoy (37º12’S; 57º25’W), Nahuel Rucá (37º37’S; 57º26’W) and Hinojales (37º34’S; 57º27’W) (Fig. 1). The studied lakes range in suface from 200 to 300 ha and a water depth of about 1 m. The regional vegeta- tion is characterized by temperate subhumid grass- lands, knowns as pampas. The modern landscape is strongly influenced by human activities since the establishment of European settlements in the XVI century. The land has been intensively used, in particular for grassing, as well as for agriculture. Native trees are absent in the vegetation, except for Celtis ehrenbergiana, a deciduous tree known as tala, which occurs on Pleistocene lunette dunes and Holocene ridges of shell debris. The aquatic plant communities of the studied sites are characterized by several species of emergent, free-floating leaved and submerged macrophytes. The lakes are surrounded by a ring of Schoenoplectus californicus, among which other emergent macrophytes occur: e.g. zizaniopsis bonariensis, typha latifolia, Hydro cotyle bonariensis, H. ranunculoides, alternanthera philloxeroides, Solanum glaucophyllum, Bacopa monnieri, Polygonum punctatum, ranunculus apiifo lius, triglochin striata, and Phyla canescens. Near the shore, in sheltered areas, free floating plants like ricciocarpus natans, azolla filiculoides, limnobium laevigatum, lemna valdiviana, Wolffia brasiliensis, Wolffiella lingulata and W. oblonga form a dense carpet. Diverse submerged macrophytes occur when the water tends to be clear, so the light available is enough for their development: e.g. Myriophyllum elatinoides, Ceratophyllum demersum, Potamogeton pectinatus, and zannichellia palustris together with diverse Charophytes. The studied sediment records were recovered with different samplers: Dacknovsky (Hinojales), vibracorer (Nahuel Rucá, Hinojales-SL and Tobares) and Livingston-type corer (Lonkoy). The chronology of the records is based on AMS radiocarbon age determinations on terrestrial plant remains, where possible (Table 1). Gastropod shells of Heleobia parchappii have also been used for dating, since previous studies have yielded reliable results (Fontana, 2005, 2007). Age-depth models (Fig. 2) are constructed using CLAM 2.2 (Blaauw, 2010) with the Southern Hemisphere calibration curve, SHCal13 (Hogg et al., 2013). The studied records, spanning the time since the middle Holocene, document similar evolutionary pattern. Changes in the different proxies are consistent, showing similar trends in the evolution of the aquatic ecosystems (Figs. 3-7). At the beginning of the records a clear phase characterized the water bodies, dominated by the green algae Chara, the dinoflagellate Peridinium and aquatic plants such as Myriophyllum, ruppia and/or Potamogeton. At ca. 2,000 cal yr BP the diversity of submerged macro- phyte communities increased, indicating clear water lakes with increasing nutrient content. Towards ca. 700-500 cal yr BP the lakes switched to a turbid phase dominated by phytoplankton together with water fleas and flatworms. Among the phytoplankton the main constitutes are: Pediastrum, Scenedesmus and tetraedron species of green algae Desmidiaceae and the cyanobacterium Gloeotrichia. On land, halophyte plant communities, dominated by Cheno- podiaceae, surrounded the water bodies during the first clear-water phase, suggesting instable periods with brackish conditions. Towards the present, the surroundings of the lakes are characterized by dominance of Cyperaceae together with Bacopa, ranunculus, Polygonum, typha and apiaceae. This vegetation is characteristic of more stable environ- mental conditions. During the middle Holocene and part of the late Holocene, brackish-shallow lakes with clear water phases characterised the landscape of the south-east pampean plain. After ca. 2,000 cal. yr BP, water run-off and/or wind action increased, incorporating organic matter from the surroundings into the basins and initiating a gradual change towards the next phase. This dynamics could be associated to periods of pronounced drought followed by floods. A marked seasonality in the annual precipitation regimen would explain this dynamics indicating a regionally instable environ- ment with dryer climatic conditions than present (Zárate et al., 1998; Zárate, 2005; Vilanova et al., 2010; Laprida et al., 2014). The change to turbid conditions at around 700-500 cal yr BP was probably caused by a significant input of nutrients into the basin, impeding the development of submerged aquatic plants, characteristic of the clear phase, which in turn favoured the expansion of phyto- plankton. However, the presence of submerged macrophytes that tolerate some degree of turbidity like Miryophyllum, Ceratophyllum and Potamogeton would suggest that during some periods the level of turbidity did not reach critical values. The presence of submerged flowering plants may also suggest alternate periods of clear phases within a general turbid state. The synchronous change to a turbid face in all studied sites suggests a climatic regional trigger like an increase of precipitation, with a more stable seasonal regime. Similar values of precipitation compared to today did not occur until historical times (Irurzun et al., 2014; Laprida et al., 2014). This study constitutes the first of its type basing the reconstruction of paleoenvironmental and paleocli- matic conditions on the dynamics and functioning of the shallow lakes, studied in the context of multi- proxy and multi-site analysis.
References
Allende, L., G. tell, H. Zagarese, A. torremorell, G. Pérez, J. bustingorry, R. Escaray e I. Izaguirre, 2009. Phytoplancton and primary production in clear-vegetated, inorganic- turbid, and algal-turbid shallow lakes from the Pampa plain (Argentina). Hydrobiologia 624:45-60.
Bakker, E.s., E. Van donk, s.A.J. declerck, n.R. Helmsing, b. Hidding y b.A. nolet, 2010. Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal bloms. Basic and applied ecology 11:432-439.
Barrientos, G. Y S.I. Perez, 2005. Was there a population replacement during the Late mid-Holocene in the south- eastern Pampas of Argentina? Archaeological evidence and paleoecological basis. Quaternary international 132:95-105.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. Y F. Courchand, 2012. Impacts of Climate Change on the future of biodiversity. ecological letters 15:365-377.
Birks, H.H. Y H.J.B. Birks, 2006. Multi-proxy studies in palaeolimnology. vegetation History and archaeobotany 15:235-251.
Blaauw, M. y E. Heegaard, 2012. Estimation of age-depth relationship. En H.J.B. Birks, S. Juggins, A. Lotter y J.P. Smol (Eds.), tracking environmental change using lake sediments. vol. 5: Data handling and numerical techniques. Kluwer Academic Publishers, Dordrecht:379-413.
Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5:512- 518.
Blindow, I., 1992. Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology 28:15-27.
Borel, c.M., G.R. Guerstein y A.R. Prieto, 2003. Palinomorfos acuáticos (algas y acritarcos) del Holoceno de la laguna Hinojales (Buenos Aires, Argentina): interpretación paleoeco- lógica. ameghiniana 40:531-544.
Chaneton, E.J., s.b. Perelman, M. Omacini y R.J.c León, 2002. Grazing, Environmental Heterogeneity and Alien Plant Invasions in Temperate Pampa Grasslands. Biological invasions 4:7-24.
Córdoba, F.E., 2012. el registro climático del Holoceno tardío en latitudes medias del Se de Sudamérica: limnogeología de las lagunas encadenadas del oeste, argentina. Tesis de Doctorado en Ciencias Geológicas, Universidad de Córdoba, 285 pp. (inédito).
de Francesco, c.G., E. tietze y P.A. cristini, 2013. Mollusk succesions of Holocene shallow–lake deposits from the southeastern Pampa plain, Argentina. Palaios 28:851-862.
Dumont, H.J., A.c. Rietzler y b.P. Han, 2014. A review of typhloplanid flatworm ecology, with emphasis on pelagic species. inland Waters 4:257-270.
Faegri, K. y J. Iversen, 1992. Texbook of Pollen Analysis, IV Edition. En K. Faegri, P. E. Kalana y K. Krzywinski (Eds.). John Willey and Sons, New York:328-332.
Fontana, s.L., 2005. Holocene vegetation history and palaeoen- vironmental conditions of the temperate Atlantic coast of Argentina, as inferred from multiple proxy lacustrine records. Journal of Paleolimnology 34:445-469.
Fontana, s.L., 2007. Radiocarbon chronologies of Holocene lacustrine sediments from the southern coast of Buenos Aires province, Argentina. radiocarbon 49:103-116.
Geraldi, A.M., M.c. Piccolo y G.M.E. Perillo, 2011. Lagunas bonaerenses en el paisaje pampeano. Ciencia Hoy 21:17-22.
Hassan G.s., 2013. Diatom-based reconstruction of Middle to Late Holocene paleoenvironments in Lake Lonkoy, southern Pampas, Argentina. Diatom research 28:473-486.
Hilt, s., J. Köhler, R. Adrian, M.t. Monaghan y C.D. Sayer, 2013. Clear, crashing, turbid and back – long-term changes in macrophyte assemblages in a shallow lake. Freshwater Biology 58:2017-2036.
Hogg, A.G., Q. Hua, P.G. blackwell, M. niu, c.E. buck, t.P. Guilderson, t.J. Heaton, J.G. Palmer, P.J. Reimer, R.W. Reimer,
c.s.M. turney y s.R.J. Zimmerman, 2013. SHCal13 southern hemisphere calibration, 0 - 50,000 cal BP. radiocarbon 55:1889-1903.
Irurzún, A., c.s.G. Gogorza, A.M. sinito, M.A.E. chaparro, A.R. Prieto, c. Laprida, J.M. Lirio, A.M. navas y H. nuñez, 2014. A high resolution palaeoclimate record for the last 4800 cal. years BP on lake La Brava, SE Pampa plains, Argentina. Geofisica internacional 53:365-383.
Izaguirre I., L. Allende, R. Escaray, J. bustingorry, G. Pérez y G. tell, 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698:203-216.
Jeppesen, E, M. sondergaard, J.P. Jensen, P. Mortensen, A.M. Hansen y t.s. Jorgensen, 1998. Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: A 18-year study of a shallow hypertrophic lake. ecosystems 1:250-267.
Labraga, J.c., b. scian y O. Frumento, 2002. Anomalies in the atmospheric circulation associated with the rainfalk excess or deficit in the Pampa Region in Argentina. Journal of
Geophysical Research: Atmospheres 107:2-15.
Lagomarsino, L, G.L. Pérez, R. Escaray, J. bustingorry y H.E. Zagarese, 2011.Weather variables as drivers of seasonal phosphorus dynamics in a shallow hypertophic lake (Laguna Chascomús, Argentina). Fundamental applied limnology 178:191-201.
Laprida, c. y b. Valero-Garcés, 2009. Cambios ambientales de épocas históricas en la pampa bonaerense en base a ostrácodos: historia hidrológica de la laguna Chascomús. ameghiniana 46:95-111.
Laprida, c, M.J. Orgeira y n. García chapori, 2009. El registro de la Pequeña Edad de Hielo en lagunas pampeanas. revista asociación Geológica argentina 65:603-611.
Laprida, c., M.s. Plastani, A. Irurzún, c. Gogorza, A.M. navas, Valero-Garcés y A.M. sinito, 2014. Mid-late Holocene lake levels and trophic states of a shallow lake from the southern Pampa plain, Argentina. Journal of limnology 73:325-339.
León, R.J.c., 1991. Setting and vegetation. En Coupland, R.T. (Ed.), natural Grassland: introduction and Western Hemisphere. Elsevier, Amsterdam:371-389.
Lotter, A.F., 2003. Multi-proxy climatic reconstructions. En Mackay A., R.W. Batarrbee, H.J.B. Birks y F. Olfield (Eds.), Glo¬ bal Change in the Holocene. Hodder Arnold, London:373-383.
Mancini, M.V., M.M. Paez, A.R. Prieto, stutz, M.s. tonello e. Vilanova, 2005. Mid-Holocene climatic variability re- construction from pollen records (32°–52°S, Argentina). Quaternary international 132:47-59.
Pelatachy, M., E. Pronin y A. Pukacz, 2014. Charophyte occurrence in Ceratophyllum demersum stands. Hydrobiologia 737:111- 120.
Piovano, E., 2011. Laguna Mar Chiquita: a unique sensor of past and present hydroclimatic variability in south-eastern South America. 11th international Conference on Salt lake research:23, Miramar.
Piovano, E.L., d. Ariztegui, F.E. córdoba, M. cioccale y F. sylvestre, 2009. Hidrological variability in South America below the tropic of Capricornio (Pampas and Patagonia, Argentina) during the last 13.0 Ka. En F. Vimeux (Ed.), Past climate variability in South america and surrounding regions. Developments in Paleoenvironmental Research:323-351.
Quirós, R. y E. drago, 1999. The environmental state of Argen- tinean lakes: An overview. lakes and reservories: research and Management 4:55-64.
Quirós, R., A.M. Rennella, M.A. boveri, J.J. Rosso y A. sosnovsky, 2002. Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. ecología austral 12:175-185.
R core team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
Ritcher, d. y E.M. Gross, 2013. Chara can outcompete Myriophyllum under low phosphorous supply. aquatic Sciences 75:457-467.
Sánchez, M.L., H. Pizarro, G. tell e I. Izaguirre, 2010. Relative importance of periphyton and phytoplankton in turbid and clear vegetated shallow lakes from the Pampa Plain (Argentina): a comparative experimental study. Hydrobilogia 646:271-280.
Sayer, c.d., A. burgess, K. Kari, t.A. davidson y n. Rose, 2010. Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: implications for the stability of macrophyte-dominance. Freshwater Biology 55:565-583.
Scheffer, M. y E. Jeppesen, 2007. Regime shifts in shallow lakes. Ecosystems 10:1-3.
Scheffer, M. y E.H. vannes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455-466.
Scheffer, M., s. carpenter, J.A. Foley, A. Folke y b. Walker, 2001. Catastrophic shifts in ecosystems. nature 413:591-596.
Sosnovsky, A. y R. Quirós, 2006. El estado trófico de pequeñas lagunas pampeanas, su relación con la hidrología y el uso de la tierra. ecología austral 16:115-124.
Stutz, s., A.R. Prieto y F.I. Isla, 2002. Historia de la vegetación de la laguna Hinojales, sudeste de la provincia de Buenos Aires, Argentina. ameghiniana 39:85-94.
Stutz, s., A.R. Prieto y F.I. Isla, 2006. Holocene evolution of the Mar Chiquita coastal lagoon area, Argentina, indicated by pollen analysis. Journal of Quaternary Science 21:17-28.
Stutz, s., c.M. borel, s.L. Fontana, L. del Puerto, H. Inda, F. García- Rodriguez y M.s. tonello, 2010. Late Holocene environmental evolution of Nahuel Rucá freshwater shallow lake, SE Pampa grasslands, Argentina. Journal of Paleolimnology 44:761- 775.
Stutz, s., c.M. borel, s.L. Fontana y M.s. tonello, 2012. Holocene evolution of three shallow lakes in the SE Pampa plain (Argentina) as evidenced by analyses of pollen, non-pollen palynomorphs and plant macrofossils.the Holocene 22:1215-1222.
Stutz, s., M.s. tonello, M.A. González sagrario y d. navarro, 2015. Evolución ambiental de dos lagos someros del SE de la llanura Pampeana durante el Holoceno. Inferencias paleoclimáticas. vi Congreso argentino de Cuaternario y Geomorfología Libro de Resúmenes:17, Ushuaia.
Tonello M.s., s. stutz y d. navarro, 2014. Variabilidad climática durante los últimos 1500 años a partir del análisis de múltiples indicadores en el Sudeste de la llanura Pampeana. XiX Congreso Geológico argentino, Actas en CD, Córdoba.
Torremorell A., J. bustigorry, R. Escaray y H.E. Zagarese, 2007. Seasonal dynamics of a large, shallow lake, laguna Chascomús: the role of light limitation and other physical variables. limnologica 37:100-108.
Tricart, R., 1973. Geomorfología de la Pampa Deprimida. Base para los estudios edafológicos y agronómicos. Xii Colección científica. INTA. 201pp.
Vera, c., W. Higgins, J. Amador, t. Ambrizzi, R. Garreaud, d. Gochis, d. Gutzler, d. Lettenmaier, J. Marengo, c.R. Mechoso, nogues-Paegle, P.L. silva diaz y c. Zhang, 2006. Towards a unified view of the American Monsoon System. Journal of Climate 19:4977-5000.
Vilanova, I., A.R. Prieto, s. stutz y E.A. bettis, 2010. Holocene vegetation changes along the southeastern coast of the Argentinean Pampa grasslands in relation to sea-level fluctuations and climatic variability: palynological analysis of alluvial sequences from Arroyo Claromecó. Paleogeography, Paleoecology, Paleoclimatology 298:210-223.
Woodward, G., d.M. Perkins y L.E. brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical transactions of the royal Society 365:2093-2106.
Zárate, M.A., 2005. El Cenozoico tardío continental de la provincia de Buenos Aires. En R.E. de Barrio, R.O. Etcheverry, M.F. Caballé y E. Llambías (Eds.), Geología y recursos Minerales de la provincia de Buenos aires. 16° Congreso Geológico Argentino:139-158.
Zárate, M.A. y A. tripaldi, 2012. The aeolian system of central Argentina. aeolian research 3:401-417.
Zárate, M.A., M. Espinosa y L. Ferrero, 1998. Paleoenvironmental implications of a Holocene diatomite. Quaternary of South america and antarctic Peninsula 12:135-52.
Zárate, M.A., R.A. Kemp, M.A. Espinosa y L. Ferrero, 2000. Pedosedimentary and palaeoenvironmental significance of a Holocene alluvial sequence in the southern Pampas, Argentina. The Holocene 10:481-488.
Zhao, Y. y s. Harrison, 2012. Mid-Holocene monsoons: a multi- model analysis of the interhemispheric differences in the responses to orbital forcing and ocean feedbacks. Climate Dynamics 39:1457-1487.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.