Eocene fine-grained deposits of the Upper Lumbrera Formation (Salta, Argentina): Discussion about a possible eolian origin

Authors

  • Ayelén T. Lapiana Centro de Investigaciones en Ciencias de la Tierra, Facultad de Ciencias Exactas, Físicas y Naturales, CONICET, Universidad Nacional de Córdoba. Av. Vélez Sarsfield 1611, X5016GCA, Córdoba Capital, Argentina.
  • Cecilia del Papa del Papa Centro de Investigaciones en Ciencias de la Tierra, Facultad de Ciencias Exactas, Físicas y Naturales, CONICET, Universidad Nacional de Córdoba. Av. Vélez Sarsfield 1611, X5016GCA, Córdoba Capital, Argentina.
  • Diego Gaiero Centro de Investigaciones en Ciencias de la Tierra, Facultad de Ciencias Exactas, Físicas y Naturales, CONICET, Universidad Nacional de Córdoba. Av. Vélez Sarsfield 1611, X5016GCA, Córdoba Capital, Argentina.

Keywords:

Salta Group, Paleogene, Grain-size analy- sis, Northwestern Argentina.

Abstract

This paper focuses on the sedimentological characteristics of the basal mudstone-dominated deposits of the upper Lumbrera Formation, the uppermost unit of the Salta Group (Turner, 1959) (Fig. 1a) exposed in the El Simbolar and Juramento River sites, in the Salta province (Fig. 1b). At El Simbolar, a rich vertebrate fauna and a dated volcanic tuff (i.e., 39.9 Ma, U/Pb method) (Fig. 2) constrain a middle Eocene age for this unit (del Papa et al., 2010). On the bases of macro and microfacies descrip- tions, combined with petrographic, grain-size, and mineralogical studies, we interpret depositional pro- cesses and discuss a possible eolian origin for the fine-grained sediments and the paleogeographic scenario.

The upper Lumbrera Formation is a thick unit (100-270 m) with blanket-like geometry dominated by reddish siltstones and sandy siltstones (Fig. 3a). The dominant sedimentary features are bioturba- tion, decolorized halos, desiccation cracks, carbo- nate nodules and pedological structures (Fig. 3 b-d). In the lower part of the unit there is a 2-3 m thick interval of fine-grained laminated sandstones and heterolithic deposits, consisting of wavy and lenticular bedding (Fig. 3c,e). Five sedimentary facies were identified: 1) Bio- turbated siltstone, 2) Calcareous siltstone, 3) White fine-grained sandstone, 4) Heterolithic facies and 5) Volcanic tuff. 1) Bioturbated siltstone facies: this is a fine- to coarse-grained siltstones with subordinate percentage of clay, micro spar and hematite (Fig. 4a); some levels present volcanic shard fragments (Fig. 4b). This facies presents clay and hematite coating pores, cracks and grains. In some parts, it is possible to observe the preferential orientation of clays, interpreted as microslickensides (Fig. 4c) and delineating aggregates with low to moderate birefringence of the micro-mass. Ferric oxides minerals form nodules, concretions (Fig. 4d), and pendant cements. Also, pisolites structures floa- ting in the fined-grained matrix are observed (Fig. 4e). The presence of chambers and tubes with open pores or filled with spar cement (Fig. 4f) are common structures. 2) Calcareous siltstone facies is characterized by the relative increment in the calcite content (Fig. 4g,h), and the moderate to high birefringence of the micro-mass (Fig. 4g). 3) White fine-grained sandstone facies: consists of fine- to very fine-grained feldspathic arenite. The beds are tabular, with internal horizontal lamination and wave ripple cross-lamination capped by mudstone drapes (Fig. 3c). 4) Heterolithic facies: consists of alternation of fine-grained sandstones and mudstones levels showing wavy and lenticular bedding (Fig. 3c,e). Vertical burrows and ferruginous nodules are also observed. 5) Volcanic tuff facies: consists of whitish, 25 cm thick beds composed of crystal tuff. The sedimentary features described in the upper Lumbrera Formation allow to reconstruct vegetated plain paleoenvironments dominated by fine-grained sedimentation from setting and sporadic low-energy water flows that temporally flooded some topographic depression. The presence of micro-fabric, micro- structures and features such as birefringence, aggre- gates, cutans, glaebules, pisolites, crystalarias, root traces, and bioturbation are all indicative of paleosols development.

Grain-size analysis show silt as the main fraction (3.9 - 63 µm) with up to a 50% of volume in weight, following by fine-grained sand (63 - 500 µm) (ranging 5.7 and 43.22%) and with 20% of clay fraction (< 3.9 µm) (Table 1). The grain-size curves (Fig. 5a) display a bimodal distribution pattern where the main mode is fine silt (7.8 - 15.6 µm), while in only three samples the modes are very fine sand (63 - 125 µm). The secondary observed mode is variable but in all cases is represented by very fine sand. The median of the analyzed samples are medium silt fraction (15.6 – 31 µm) and fine silt (7.8 - 15.6 µm) (Table 2).

The samples are sandy siltstones and siltstones (Fig. 5b) according to Folk´s (1974) textural classifi- cation. Moreover, the DRX diagrams (Fig. 6) perfor- med on whole rock remark the mineralogical homogeneity along the studied section. Two minera- logical groups are identified: 1) detrital or allogenic, composed of quartz, plagioclase and illite/muscovite, and 2) autigenic, including calcite, analcime and hematite. One of the key features to identify the loess is the dominant presence of silt particles (Pye, 1987, 1995). Although a “typical loess” is characterized by more than 80% of silt (Pye, 1987), this percentage is variable, and sometimes samples are classified as loess deposits with more than 50% of silt and important percentages of sand (sandy loess) and clay (clayey loess) fractions (Pye, 1995). On the base of the sedimentological studies presented here we interpret the deposits of upper Lumbrera Formation as sandy loess. Our results are compared with similar deposits from Quaternary loess (Pampean loess, Córdoba province) and modern dust (Marco Juarez, Córdoba province) (Gaiero et al., 2013). Figure 7 shows the existence of similarities between the mean grain-size distributions of the studied materials. We interpret that the source of loess particles is associated with the proto-Andes that was under uplift during the Eocene-Oligocene, contempora- neously with the upper Lumbrera sedimentation. Furthermore, we consider the existence of a secondary source probably linked to material derived from the volcanic arc, active in Chile at that time.

References

Andreis, R.R., 1981. Identificación e importancia geológica de los paleosuelos. UFRGS, Porto Alegre, 67 pp.

Argüello, G.L., R. Dohrmann, J.A. Sanabria y E. Zahn, 2010. Genetic implications of a retransported loess profile near Córdoba, Argentina. Journal of South American Earth Sciences 29:642-649.

Bettis III, E.A., D.R. Muhs, H.M. Roberts y A.G. Wintle, 2003. Last Glacial loess in the conterminous U.S.A. Quaternary Science Reviews 22:1907-1946.

Bond, M. y G. López, 1995. Los Mamíferos de la Formación Casa Grande (Eoceno) de la Provincia de Jujuy, Argentina. Ameghiniana 32:301-309.

Bond, M. y M.G. Vucetich, 1983. Indalecia grandesis gen. et sp. nov. del Eoceno temprano del Noroeste Argentino, tipo de una nueva subfamilia de los Adianthidae (Mammalia, Litopterna). Revista de la Asociación Geológica Argentina 37:107-117.

Bond, M., M.G. Vucetich y R. Pascual, 1984. Un nuevo Notoungulata de la Formación Lumbrera (Eoceno) de la Provincia de Salta, Argentina. I Jornadas Argentinas de Paleontología de Vertebrados Actas I:20, La Plata.

Brewer, R., 1976. Fabric and Mineral Analysis of Soils. Krieger, New York, 482 pp.

Carrapa, B., D. Adelmann, G. Hilley, E. Mortimer, E. Sobel y M. Strecker, 2005. Oligocene range uplift and development of plateau morphology in the southern central Andes. Tectonics 24:TC401.

Carver, R.E., 1970. Procedures in Sedimentary Petrology. Wiley, New York, 653 pp.

Chamley, H., 1989. Clay Sedimentology. Springer-Verlag, Berlin, 623 pp.

Daniels, R.B., E.E. Gamble y L.A. Nelson, 1971. Relation between soil morphology and water-table levels on a dissected North Carolina Coastal Plain surface. Soil Science Society of America Journal 35:781-784.

Deeken, A., E. Sobel, I. Coutand, M. Haschke, U. Riller y M. Strecker, 2006. Development of the southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: From early Cretaceous extension to middle Miocene shortening. Tectonics 25:TC6003.

del Papa, C.E., 2006. Estratigrafía y Paleoambientes de la Forma- ción Lumbrera, Grupo Salta, Noroeste Argentino. Revista de la Asociación Geológica Argentina 61:15-29.

del Papa, C.E., V. García y M. Quattrocchio, 2002. Sedimentary facies and palynofacies assemblage in Eocene perennial lake, Lumbrera Formation, northwest Argentina. Journal of South American Earth Sciences 15:553-569.

del Papa, C.E., A. Kirschbaum, J. Powell, J.A. Brod, F.D. Hongn y M. Pimentel, 2010. Sedimentological, geochemical and paleontological insights applied to continental omission surfaces: A new approach for reconstructing an Eocene foreland basin in NW Argentina. Journal of South American Earth Sciences 29:327-345.

del Papa, C.E., F. Hongn, J. Powell, P. Payrola, M. Do Campo, M.R. Strecker, I. Petrinovic, A.K. Schmitt y R. Pereyra, 2013. Middle Eocene-Oligocene broken foreland evolution in the Andean Calchaquí Valley, NW Argentina: insights from stratigraphic, structural and provenances studies. Basin Research 25:574-593.

Deraco, M.V., 2013. Los leontínidos (Mammalia, Notoungulata) del Eoceno del Noroeste Argentino. Relaciones filogenéticas, implicancias cronológicas y aspectos tafonómicos. Tesis Doctoral, Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, 257 pp (inédito).

Deraco, M.V., J.L. Powell y G. López, 2008. Primer leontínido (Mammalia, Notoungulata) de la Formación Lumbrera (Subgrupo Santa Bárbara, Grupo Salta – Paleógeno) del Noro- este Argentino. Ameghiniana 45:83-91.

Ding, Z.L., S.F. Xiong, J.M. Sun, S.L. Yang, Z.Y. Gu y T.S. Liu, 1999. Pedostratigraphy and paleomagnetism of a ~7.0 Ma. eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeography, Palaeoclimatology. Palaeoecology 152:49-66.

Do Campo, M., C.E. del Papa, F. Nieto, F. Hongn y I. Petrinovic, 2010. Integrated analysis for constraining paleoclimatic and volcanic influences on clay-mineral assemblages in orogenic basins (Palaeogene Andean foreland, Northwestern Argentina). Sedimentary Geology 228:98-112.

Duchaufour, P., 1982. Pedology: Pedogenesis and Classification. George Allen y Unwin, London, 442 pp.

Folk, R.L., 1974. Petrology and sedimentary rocks. Hemphill Publishing Company, Austin, Texas, 182 pp.

Gaiero D.M., L. Simonella, S. Gassó, S. Gili, A.F. Stein, P. Sosa, R. Becchio, J. Arce y H. Marelli, 2013. Ground/satellite observations and atmospheric modeling of dust storms originating in the high Puna-Altiplano deserts (South America): Implications for the interpretation of paleo-climatic archives. Journal of Geophysical Research: Atmospheres 118:1-15.

García López, D.A. y J.E. Powell, 2009. Un nuevo Oldfieldthomasiidae (Mammalia:Notoungulata) del Paleógeno de la provincia de Salta, Argentina. Ameghiniana 46:153-164.

Gilli, S. y D. Gaiero, 2014. South American dust signature in geological archives of the southern Hemisphere. Past Global Changes Magazine 22:78-79.

Gómez Omil, R.J., A. Boll y R.M. Hernández, 1989. Cuenca cretácico-terciaria del Noroeste argentino (Grupo Salta). En

G.A. Chebli y L.A. Spalletti (Eds.), Cuencas Sedimentarias Argentinas. Universidad Nacional de Tucumán 6:43-64.

Goudie, A.S., 1983. Dust storms in space and time. Progress in Physical Geography 7:502-530.

Guo, Z.T., B. Sun, Z.S. Zhang, S.Z. Peng, G.Q. Xiao, J.Y. Ge, Q.Z. Hao, Y.S. Qiao, M.Y. Liang, J.F. Liu, Q.Z. Yin y J.J. Wei, 2008. A major reorganization of Asian climate by the early Miocene. Climate of the Past 4:153-174.

Hay, R.L. y Sheppard, R.A., 2001. Occurrence of zeolites in sedimentary rocks: An overview. En D.L. Bish y D.W. Ming (Eds.), Natural Zeolites: Occurrence, Properties, Applications: Reviews in Mineralogy and Geochemistry. Mineralogical Society of America 45:217-234.

Herrera, C.M. y J.E. Powell, 2007. Un peculiar armadillo (Xenarthra, Dasypodidae) del Paleógeno del Noroeste argen- tino. Su valor cronoestratigráfico. XXI Jornadas Argentinas de Mastozoología Actas:244-245, Tafí del Valle.

Herrera, C.M., J.E. Powell y C.E. del Papa, 2012. Un nuevo Dasypodidae (Mammalia, Xenarthra) de la Formación Casa Grande (Eoceno) de la Provincia de Jujuy, Argentina. Ameghiniana 49:267-271.

Hongn, F., C. del Papa, J. Powell, I. Petrinovic, R. Mon y V. Deraco, 2007. Middle Eocene deformation and sedimentation in the Puna-Eastern Cordillera transition (23°- 26°S): Control by preexisting heterogeneities on the pattern of initial Andean shortening. Geology 35:271-274.

Insel, N., M. Grove, M. Haschke, J.B. Barnes, A.K. Schmitt y M.R. Strecker, 2012. Paleozoic to early Cenozoic cooling and exhumation of basement underlying the eastern Puna Plateau margin prior to plateau growth. Tectonics 31:TC6006.

Iriondo, M., 1997. Models of deposition of loess and loessoids in the upper quaternary of South America. Journal of South American Earth Sciences 10:71-79.

Iriondo, M. y D. Kröhling, 2007. Geomorfología y sedimentología de la cuenca superior del Río Salado (sur de Santa Fe y noroeste de Buenos Aires, Argentina). Latin American Journal of Sedimentology and Basin Analysis 14:1-23.

Kemp, R.A., M. Zárate, P. Toms, M. King, J. Sanabria y G. Argüello, 2006. Late Quaternary paleosols, stratigraphy and landscape evolution in the Northern Pampa, Argentina. Quaternary Research 66:119-132.

Klein, C. y C. Hurlburt, 1996. Manual de Mineralogía. Reberté S.A, Barcelona, 392 pp.

Kröhling, D. y O. Orfeo, 2002. Sedimentología de unidades loéssicas (Pleistoceno tardío Holoceno) del centro-sur de Santa Fe. Asociación Argentina de Sedimentología 9:135-154.

Kröhling, D., E. Passeggi, A.F. Zucol, M. Aguirre, S. Miquel y M. Brea, 2006. Sedimentología y bioestratigrafía del loess pampeano del Pleistoceno tardío (Fm Tezanos Pinto) en el SO de Entre Ríos. IV Congreso Latinoamericano de Sedimentología, XI Reunión Argentina de Sedimentología Acta:127, San Carlos de Bariloche.

Licht A., M. Van Cappelle, H. Abels, J. Ladant, J. Trabucho- Alexandre, C. France-Lanord, Y. Donnadieu, J. Vandenberghr,

T. Rigaudier, C. Lécuyer, D. Terry Jr., R. Adriaens, A. Boura,

Z. Guo, A. Naing Soe, J. Quade, G. Dupont-Nivet y J. Jaeger, 2014. Asian monsoons in a late Eocene greenhouse world. Nature 513:501-506.

Liu T.S., 1985. Loess and the Environment (in Chinese). Science Press, Beijing, 224 pp.

Maksaev, V. y M. Zentilli, 1999. Fission track thermochronology of the Domeyko Cordillera, Northern Chile: implications for Andean tectonics and porphyry copper metallogenesis. Exploration and Mining Geology 8:65-89.

Moore, D.M. y J. Reynolds, 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 332 pp.

Moreno, J.A., 1970. Estratigrafía y paleogeografía del Cretácico superior en la cuenca del noroeste argentino, con especial mención de los Subgrupos Balbuena y Santa Bárbara. Revista de la Asociación Geológica Argentina 25:9-44.

Muhs, D.R. y E.A. Bettis III, 2003. Quaternary loess-paleosol sequences as examples of climate- driven sedimentary extre- mes. Geological Society of America, Special Publication 370:53-74.

Muhs, D.R. y M. Zárate, 2001. Late Quaternary eolian records of the Americas and their paleoclimatic significance. Interhemispheric Climate Linkages 12:183-216.

Muhs, D.R., S.R. Cattle, O. Crouvi, D. Rousseau, J. Sun y M. Zárate, 2014. Loess Records. En P. Knippertz y J.W. Stuut (Eds.), Mineral Dust. Springer Science+Business Media, Springer:411-441.

Pascual, R., M. Bond y M. Vucetich, 1981. El Subgrupo Santa Bárbara (Grupo Salta) y sus vertebrados. Cronología, paleoambientes y paleobiogeografía. VIII Congreso Geológico Argentino Actas III:743-758, Buenos Aires.

Pecsi, M., 1990. Loess is not just accumulation of airborne dust. Quaternary International 8:1-21.

Pettijohn, F.J., 1980. Rocas sedimentarias. Eudeba, Buenos Aires, 731 pp.

Powell, J.E., M.J. Babot, D.A. García López, M.V. Deraco y C. Herrera, 2011. Eocene vertebrates of Northwestern Argentina. En J.A. Salfity y R. Marquillas (Eds.), Cenozoic Geology of the Central Andes of Argentina. SCS Publisher, Salta: 349-370.

Pye, K., 1987. Aeolian Dust and Dust Deposits. Academic Press, London, 334 pp.

Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14:653-667.

Quade, J., M.P. Dettinger, B. Carrapa, P. DeCelles, K.E. Murray, K.W. Huntington, A. Cartwright, A.A. Canavan, G. Gehlers y M. Clementz, 2015. The growth of the Central Andes, 22°S-26°S. En P.G. DeCelles, M.N. Ducea, B. Carrapa y P.A. Kapp (Eds.), Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. Geological Society of America Memoir 212:277-308.

Quattrocchio, M., 1978a. Estudio palinológico preliminar de la Formación Lumbrera (Grupo Salta), localidad Pampa Grande, provincia de Salta, República Argentina. 2° Congreso Argentino de Paleontología y Bioestratigrafía y I Congreso Latinoamericano de Paleontología Actas II:131-149, Buenos Aires.

Quattrocchio, M., 1978b. Datos paleoecológicos y paleoclima- tológicos de la Formación Lumbrera (Terciario Inferior, Grupo Salta). Ameghiniana 15:173-181.

Reinhardt, J. y W.R. Sigleo, 1988. Paleosols and weathering through geologic time: principles and applications. The Geological Society of America, Inc, Reston, 216 pp.

Retallack, G.J., 1990. Soils of the Past. An Introduction to Paleopedology. Urwin Hyman, Inc., Londres, 520 pp.

Reyes, F.C. y J.A. Salfity, 1973. Consideraciones sobre la estratigra- fía del Cretácico (Subgrupo Pirgua) del noroeste argentino. V Congreso Geológico Argentino Actas III:355-385, Buenos Aires.

Rozycki, S.Z., 1991. Loess and loess-like deposits. Ossolineum Press, Polish Academy of Sciences, Varsovia, 187 pp.

Salfity, J.A. y R.A. Marquillas, 1994, Tectonic and sedimentary evolution of Cretaceous-Eocene Salta Group basin, Argentina. En J.A. Salfity (Ed), Cretaceous Tectonics of the Andes. Earth Evolution Sciences 6:266-315.

Schellenberger, A. y H. Veit, 2006. Pedostratigraphy and pedolo- gical and geochemical characterization of Las Carreras loess– paleosol sequence, Valle de Tafí, NW-Argentina. Quaternary Science Reviews 25:811-831.

Schwertmann, U. y R.M. Taylor, 1989. Iron Oxides. En J.B. Dixon y S.B. Weed (Eds.), Minerals in soil environments. Soil Science Society of America, Madison:379-438.

Sayago, J.M., 1995. The Argentine neotropical loess: An overview. Quaternary Science Reviews 14:755-766.

Smith, J., D. Vance, R.A. Kemp, C. Archer, P. Toms, M. King y M. Zarate, 2003. Isotopic constraints on the source of Argentinian loess with implications for atmospheric circulation and the provenance of Antarctic dust during recent glacial maxima. Earth and Planetary Science Letters 212:181-196.

Starck, D. y G. Vergani, 1996. Desarrollo tectosedimentario del Cenozoico en el sur de la provincia de Salta. XIII Congreso Geológico Argentino Actas I:433-452, Buenos Aires.

Sun, D., B. Jan, D.K. Rea, Z. An, V. Jef, H. Lu, R. Su y T. Liu, 2004. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena 55:325-340.

Teruggi, M., 1957. The nature and origin of Argentine loess. Journal of Sedimentary Petrology 27:322-332.

Turner, J.C.M., 1959. Estratigrafía del cordón de Escaya y de la sierra de Rinconada (Jujuy). Revista de la Asociación Geológica Argentina 13:15-39.

Zárate M.A., 2003. Loess of southern South America. Quaternary Science Reviews 22:1987-2006.

Zárate, M.A y A. Blasi, 1993. Late Pleistocene-Holocene eolian deposits of the southern Buenos Aires Province, Argentina: A preliminary model. Quaternary International 17:15-20.

Published

2021-03-31

How to Cite

Lapiana , A. T. ., del Papa, C. del P., & Gaiero, D. . (2021). Eocene fine-grained deposits of the Upper Lumbrera Formation (Salta, Argentina): Discussion about a possible eolian origin. Latin American Journal of Sedimentology and Basin Analysis, 23(1), 71-90. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/130

Issue

Section

Research Papers