Iron-bearing minerals in clays related to the Holocene marine ingression in the coastal plain of the Río de la Plata estuary (Argentina): paleoenvironmental implications
Keywords:
Fesmectites, Goethite, Saltmarsh, Verti sol, Earth´s Critical Zone, ArgentinaAbstract
Iron in sediments can be part of a wide variety of minerals which characteristics are heavily dependent upon the environmental conditions. Hence, their knowledge is useful for paleoenvironmental inter pretations. The aim of this work is to contribute to the understanding of ironbearing minerals in clay deposits associated whit the Holocene hypsthermal sealevel fall, in the coastal plain of the Río de la Plata estuary, at Ensenada, Berisso and La Plata localities (Figs. 1, 2a). The studied unit corresponds to the Villa Elisa Facies of the Las Escobas Formation (Cavallotto, 1995 , Fig. 2b). The aforementioned author indicated that the analyzed deposits reflected sedimentation in a marinecontinental transition linked to a saltmarsh environment, developed when the Holocene sea flooded the coastal plain. Cavallotto (1995) also indicated that this lowenergy environment would have received suspended material from different origins (such as creeks and tidal currents), which flocculated as result of a high salinity. An important aspect to emphasize is that these deposits comprise the parent materials of the soils of the region that has been classified as Vertisols (see Imbellone and Mormeneo, 2011). The present study includes the use of several techniques of proven effectiveness for mineralogical characterization, especially related to ironbearing minerals in order to contribute to the paleoenvironmental interpretation of this unit. In addition, the results allow performing inferences that may interest to Soil and Environmental Sciences. Sampling was performed in eight excavations (Figs. 2a, 3) where eleven samples were obtained at depths ranging from 20 to 110 cm. The most affected levels by the current pedogenetic cycle (A horizons) were not taken into account. Routine analyses such as color, grain size, organic matter and swelling were performed (Table 1), in addition to chemical analysis (Table 2), Mössbauer spectroscopy (Fig. 4; Table 3), magnetic properties (Figs. 6, 7; Table 4,), Xray diffraction (Fig. 8; Table 5) and differential thermalthermogravimetric ana lysis (Fig. 9). The analyzed samples are grayolive in color (commonly known in Soil Science as gley colors) and show a clear predominance of clay fraction. From a textural point of view, the materials are classified as clays (Fig. 4). Samples are composed of a mineralogical complex association, although considering the wide area of sampling, the composition (e.g., texture, magnetic parameters, chemical elements) are similar in all samples. This association results from the combination of multiple factors, including processes related to the source area, the depositional environment at a saltmarsh, and also the current pedogenetic environment. The clay minerals (approximately 60% of total) are dominant over the other mineral phases, represented mainly by smectites and illite, and secondarily by kaolinite and interstratified I/S (Table 5; Fig. 8). Also quartz, plagioclase, alkaline feldspar, and to a lesser extent calcite and iron oxyhydroxides (goethite and probably ferrihydrite), are present. The presence of goethite is consistent with the magnetic and differential thermalthermogravimetric results (Table 4; Figs. 6, 9), which also evidenced a low concentration of this mineral (less than 3%). Samples have shown a considerable total iron content (about 10%; Table 2) and according to the Mössbauer spectroscopy the ferric iron (Fe3+) predominates over the ferrous (Fe2+), being the relative percent of Fe3+ phase approximately 92% and Fe2+ phase only around 8% (Table 3; Fig. 5). In view of these results the iron oxyhydroxides do not constitute a dominant mineral phase, and therefore do not represent the main ironbearing minerals. On the basis of the obtained results, it is concluded that Fe3+ is mainly within the clay minerals structure, in particular in ironrich smectites, of the nontronite/Febeidellite type. The mineral association presented here has important implications for paleoenvironmental inter pretations. Taking into account the previous mo dels that considered the Villa Elisa saltmarshes Facies of Las Escobas Formation, we concluded that this environment received clay minerals, coming from the erosion of loessic soils (mainly smectites and illite) in addition to a tidal input (more rich in smectites and kaolinite). Once deposited, those materials were subjected to the environmental con ditions, including repeated wettingdrying cycles and their respective Eh fluctuations under slightly alkaline pH conditions. Such conditions gave rise to complex mechanisms, which allowed the incor poration of iron into the smectites structure. One interesting aspect to emphasize is that the gley colors of these materials were originated by Fe3+ bearing minerals as Fesmectites, which contradicts the traditional assignation of this color pattern to Fe2+ iron minerals. Besides, it is highlighted that the participation of Fesmectites in association with iron oxyhydroxides, contributes to the adsorption of heavy metals and other contaminants of the region. This aspect gives to the Villa Elisa Facies a great environmental importance.
References
Abete, L.A. y M. Sánchez, 1970. Relación entre las constantes de Atterberg y su estimación rápida mediante el ensayo de expansión libre. Primera Reunión Argentina de Mecánica de Suelos Memorias:241¬250, La Plata.
Anthony, E.J., 2004. Sediment dynamics and morphological stability of estuarine mangrove swamps in Sherbro Bay, West Africa. Marine Geology 208:207¬224.
Arden, T.V., 1950. The solubility products of ferrous and ferrosic hydroxides. Journal of Chemical Society 179:882¬885.
Barrón, V. y J. Torrent, 2002. Evidence for a simple pathway to maghemite in Earth and Mars soils. Geochimica et Cosmochimica Acta 66:2801¬2806.
Bartel, A., J.C. Bidegain y A.M. Sinito, 2005. Propiedades magnéticas de diferentes suelos del partido de La Plata, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 60:591¬598.
Bidegain, J.C. y Y. Rico, 2004. Mineralogía magnética y registros de susceptibilidad en sedimentos cuaternarios de polaridad normal (Brunhes) y reversa (Matuyama) de la cantera de Juárez, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 59:451¬461.
Bidegain, J.C., M.A.E. Chaparro, D.C. Marié y S. Jurado, 2011. Air pollution caused by manufacturing coal from petroleum coke in Argentina. Environmental Earth Science 62:62¬855.
Bidegain, J.C., R.R. Iasi, R.H. Pérez y R. Pavlicevic, 1995. Correlación de Parámetros Magnéticos con la Concentración de Óxido Ferroso en Sedimentos Cuaternarios de la Localidad de Hernández, La Plata. Provincia de Buenos Aires. IV Jornadas Geológicas y Geofísicas Bonaerenes Acta I:177¬185, Junín.
Bidegain, J.C., R. Pavlicevic, R. Iasi, y R. Pérez, 1996. Suscep¬ tibilidad Magnética y Concentraciones de FeO en Loess y Paleosuelos Cuaternarios como Indicadores de Cambios Paleoambientales y Paleoclimáticos. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos Actas II:521¬535, Buenos Aires.
Boff, L., C. Russo y M. Camilión, 2000. Contenido de metales pesados en suelos hidromórficos. XVII Congreso Argentino de la Ciencia del Suelo, Mar del Plata.
Borggaard, O.K., 1990. Dissolution and adsorption properties of soil iron oxides. Chemistry Department Royal Veterinary and Agricultural University, Copenhague, 122 pp.
Bradl, H.B., 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid Interface Science 277:1¬18.
Camilión, M.C., 1993. Clay mineral composition of pampean loess (Argentina). Quaternary International 17:27¬31.
Camilión, M.C., M. Manassero, M., M.A. Hurtado, A. Ronco, I. Challiol, M. Da Silva y L. Boff, 2000. Distribución areal a nivel superficial de metales pesados en suelos y sedimentos de lecho de la vertiente del Río de la Plata (Gran La Plata). Segundo Taller sobre sedimentología y medio ambiente, Aso¬ ciación Argentina de Sedimentología, p. 13, Buenos Aires.
Cappannini, D. y V. Mauriño, 1966. Suelos de la zona litoral estuárica comprendida entre las ciudades de Buenos Aires al norte y La Plata al sur. INTA. Colección Suelos, 45 pp, Buenos Aires.
Cavallotto, J.L., 1995. Evolución geomorfológica de la llanura costera ubicada en el margen sus del Río de la Plata. Tesis Doctoral 635. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 237 pp. (inédito).
Cavallotto, J.L., 2002. Evolución holocena de la llanura costera del margen sur del Río de la Plata. Revista de la Asociación Geológica Argentina 57:376¬388.
Cellone, F., E. Carol y L. Tosi, 2016. Coastal erosion and loss of wetlands in the middle Río de la Plata estuary (Argentina). Applied Geography 76:37¬48.
Cooper, J.A.G., 2001. Geomorphological variability among micro¬ tidal estuaries from the wave¬dominated South African coast. Geomorphology 40:99¬122
Cornell, R.M. y U. Schwertmann, 1996. The iron oxides: Structure, properties, reactions, occurrence and uses. John Wiley & Sons, Weinheim, 703 pp.
Cortelezzi, C., 1977. Datación de las formaciones marinas en el Cuaternario de las proximidades de La Plata¬Magdalena, Provincia de Buenos Aires. Anales del Laboratorio de Ensayo de Materiales e Investigaciones Tecnológicas (LEMIT), Serie 2:75¬93, La Plata.
Cravero, F., S.A. Marfil, C.P. Ramos y P. Maiza, 2014. Coexistence of halloysite and iron bearing clays in an altered ignimbrite, Patagonia, Argentina. Clay Minerals 49: 429¬441.
Depetris, P.J. y J.J. Griffin, 1968. Suspended Load in the Río de la Plata drainage basin. Sedimentology 11:53¬60.
de Souza¬Júnior, V.S., P. Vidal¬Torrado, M.T. García¬González, F. Macías y X.L. Otero, 2010. Smectite in mangrove soils of the State of São Paulo, Brazil. Scientia Agricola 67:47¬52.
Dearing, J.A., R.J.L. Dann, K. Hay, J.A. Lees, P.J. Loveland, B.A. Maher y K. O’Grady, 1996. Frequency¬dependent susceptibility measurements of environmental materials. Geophysical Journal International 124:228¬240.
Di Giuseppe, D., L. Vittori Antisari, C. Ferronato y G. Bianchini, 2014. New insights on mobility and bioavailability of heavy metals in soils of the Padanian alluvial plain (Ferrara Province, northern Italy). Chemie der Erde - Geochemistry 74:615¬623.
Eggleton R.A. y R.W. Fitzpatrick, 1988. New data and a revised structural model for ferrihydrite. Clays and Clay Minerals 36:111¬124.
Fernandez¬Caliani, J.C., E. Crespo, M. Rodas, J.F. Barrenechea y F.J. Luque, 2004. Formation of nontronite from oxidative dissolution of pyrite disseminated in precambrian felsic metavolcanics of the southern Iberian massif (Spain). Clays and Clay Minerals 52:106¬114.
Ferreira, T.O., P. Vidal¬Torrado, X.L. Otero y F. Macías, 2007. Are mangrove forest substrates sediments or soils? A case study in southeastern Brazil. Catena 70:79¬91.
Fidalgo, F., U.R. Colado y F.O. De Francesco, 1973. Sobre ingre¬ siones marinas cuaternarias en los partidos de Castelli, Chas¬ comús y Magdalena (Provincia de Buenos Aires). 5° Congreso Geológico Argentino Actas 4:225¬240, Carlos Paz.
Fidalgo, F., A. Figini, G. Gómez, J. Carbonari y R. Huarte, 1981. Dataciones radiocarbónicas en las Formaciones Las Escobas y Destacamento Río Salado, provincia de Buenos Aires. 8° Congreso Geológico Argentino Actas 4:43¬56, San Luis.
Fidalgo, F. y O. Martínez, 1983. Algunas características geomor¬ fológicas dentro del Partido de La Plata. Revista de la Asociación Geológica Argentina 38:263¬279.
Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. Journal of Geology 62:344¬359.
Frenguelli, J., 1944. Forma y origen de la pampa. Boletin de Gaea 8:1¬4.
Frenguelli, J., 1950. Rasgos generales de la morfología y la geología de la provincia de Buenos Aires. Anales del Laboratorio de Ensayo de Materiales e Investigaciones Tecnológicas (LEMIT), Serie 2:1¬72, La Plata.
Frost, R. L., H. Ruana, J.T. Kloprogge y W.P. Gates, 2000. Dehydration and dehydroxylation of nontronites and ferru¬ ginous smectite. Thermochimica Acta 346:63-72.
Fucks, E.E., E.J. Schnack y M.L. Aguirre, 2010. Nuevo ordena¬ miento estratigráfico de las secuencias marinas del sector continental de la Bahía Samborombón, Provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 67:27¬39. Galenhouse, J., 1971. Sedimentation analysis. En R. Carver (Ed.), Procedures in sedimentary petrology. Wiley¬Interscience, New
York:65¬94.
Gaucher, G., 1971. Tratado de Pedología Agrícola. El suelo y sus características agronómicas. Ediciones Ómega. Barcelona, 647 pp.
Giménez, J.E., M. Cabral, M.A. Hurtado, O.R. Martínez, C.A. Sanchez, M.M. Da Silva, L. Forte, A.C. Crincoli y D. Muntz, 2005. Elaboración y Transferencia de Cartografía Temática e Implementación de un Sistema de Información Geográfica para el Planeamiento (Partido de Berisso). Trabajo Inédito. Comisión de Investigaciones Científicas, Provincia de Buenos Aires, 70 pp.
Giménez, J.E., P.A. Imbellone y M.C. Camillón, 1993. Suelos con rasgos vérticos desarrollados sobre loess del Partido de La Plata. XII Congreso Latinoamericano de la Ciencia del Suelo Actas:975¬982, Sevilla.
Gómez Samus, M., Y. Rico, S. Ziccarelli, A.V. Parodi y J.C. Bidegain, 2017. Efectos del contenido de CaCO3 inicial en las propiedades magnéticas de sedimentos calcinados. Resultados preliminares. Boletín de la Sociedad Geológica Mexicana 69:261-278.
González Bonorino, F., 1965. Mineralogía de las fracciones arcilla y limo del pampeano en el área de la Ciudad de Buenos Aires y su significado estratigráfico y sedimentológico. Revista de la Asociación Geológica Argentina 20:67¬148.
Grathoff, G.H. y D.M. Moore, 1996. Illite polytype quantification using wildfire calculated X-ray diffraction patterns. Clays and Clay Minerals 44:835¬842.
Grim, R.E. y R.A. Rowland, 1942. Differential thermal analysis of clay minerals and other hydrous materials. American Mineralogist 27:801¬818.
Grill, S. y D. Cuadrado, 2012. Palinofacies en sedimentos actuales del estuario de Bahía Blanca (Argentina). Primeros resultados. XV Simposio Argentino de Paleobotánica y Palinología; II Simposio Argentino de Melisopalinología, Actas Digitales, Corrientes.
Guerra, D.J.L., J. Goco, J., Nascimento y I. Melo, 2016. Adsorption of divalent metals on natural and functionalized nontronite hybrid surfaces: An evidence of the chelate effect. Journal of Saudi Chemical Society 20:S552¬S565.
Hansen, H.C.B., 1989. Composition, stabilization, and light absorption of Fe(II)Fe(III) hydroxy¬carbonate (‘green rust’). Clay Minerals 24:663¬669.
Hillier, S., 1995. Erosion, Sedimentation and Sedimentary Origin of Clays. En B. Velde (Ed), Origin and Mineralogy of Clays. Springer ¬ Verlag, Berlin, Heidelberg, 162¬219.
Holtz, W.G. y H.J. Gibbs, 1956. Engineering properties of expan¬ sive clays. Transactions ASCE 121:641¬677.
Hurtado, M.A., J.E. Giménez y M.G. Cabral, 2006. Análisis am- biental del partido de La Plata. Aportes al ordenamiento terri- torial. Consejo Federal de Inversiones. 124 pp.
Imbellone, P.A. y J.E. Giménez, 1990. Propiedades Físicas, Mine¬ ralógicas y Micromorfológicas de suelos con características vérticas del partido de La Plata (Provincia de Buenos Aires). Ciencias del Suelo 8:231¬236.
Imbellone, P.A., B.A. Guichon y J.E. Giménez, 2009. Hydromorphic soils of the Río de la Plata Coastal Plain, Argentina. Latin Ame- rican Journal of Sedimentology and Basin Analysis 16:3¬18.
Imbellone, P. y L. Mormeneo, 2011. Vertisoles hidromórficos de la planicie costera del Río de la Plata, Argentina. Ciencias del Suelo 29:107¬127.
Iriondo, M., 1980. El cuaternario de Entre Ríos. Revista de la Asociación de Ciencias Naturales del Litoral 11:125¬141.
Iriondo, M., 2009. Multisol ¬ a proposal. Quaternary International
:131¬141.
Jackson, T.A., 1998. The biogeochemical and ecological signifi¬ cance of interactions between colloidal minerals and trace elements. En A. Parker y J.E. Rae (Eds.), Environmental Interactions of Clays. Springer, Berlin, 93¬180.
Ketterings, Q.M., J.M. Bigham y V. Leperche, 2000. Changes in Soil Mineralogy and Texture Cause by Slash¬and¬Burn Fires in Sumatra, Indonesia. Soil Science Society of America Journal 64:1108¬1117.
Komadel, P., J. Madejova y J. Stucki, 1995. Reduction and reoxidation of nontronite: Questions of reversibility. Clays and Clay Minerals 43:105¬110.
Lindsay, W.L., 1988. Solubility and redox equilibria of iron compounds in soils. En J.W. Stucki, B.A. Goodman y
U. Schwertmann (Eds), Iron in Soils and Clay Minerals. Reidel Publishing Company, Dordrecht¬Boston¬Lancaster¬ Tokio:37¬62.
Linslay, W.L., 1991. Iron oxide solubilization by organic matter and its effect on iron availability. Plant and Soil 130:27¬34.
Long, G.J., T.E. Cranshaw y G. Longworth, 1983. The ideal Mössbauer effect adsorber thicknesses. Mössbauer Effect Refe- rence and Data Journal 6:42¬49.
Lozano, R.D., 1978. El color y su medición. Américalee S.R.L. Ed.
Buenos Aires, 640 pp.
Manassero, M., C. Camilión y A. Ronco, 2010. Texturas argilo¬ minerales y metales en sedimento de fondo de arroyos de la franja costera sur del Río de la Plata. Revista de la Asociación Geológica Argentina 67:105¬111.
Marangoni, J.C. y C.S.B. Costa, 2009. Diagnóstico ambiental das marismas no estuário da Lagoa dos Patos ¬ RS. Atlântica, Rio Grande 31:85¬98.
Montes, M.L., 2013. Estudio radiológico gamma de suelos de la zona aledaña a la ciudad de La Plata, provincia de Buenos Aires: modelado de perfiles de actividad y correlaciones con las propiedades del suelo. Tesis Doctoral. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 190 pp. (Inédito).
Montes, M.L., M.A. Fernández, M.A. Taylor y R.M. Torres Sanchez, 2015. Interacción de Co2+ con suelos de la región de La Plata. Enfoques Interdisciplinarios para la sustentabilidad del ambiente, Sociedad Argentina de Ciencia y Tecnología Ambiental, Buenos Aires, 338¬343.
Montes, M.L., P.C. Rivas, M.A. Taylor y R.C. Mercader, 2016. Approximate total Fe content determined by Mössbauer spectrometry: Application to determine the correlation bet¬ ween gamma¬ray emmiter activities and total Fe content of Fe phases in soils of the Province of Buenos Aires, Argentina. Journal of Environmental Radioactivity 162¬163:113¬117.
Montes, M.L., L.M.S. Silva, C.S.A. Sá, J. Runco, M.A. Taylor y J. Desimoni, 2013. Inventories and concentration profiles of 137Cs in undisturbed soils in the northeast of Buenos Aires Province, Argentina. Journal of Environmental Radioactivity 116:133¬140.
Morrás, H.J.M., 1998. Mineralogía de arcillas de suelos de islas del Paraná medio. VII Reunión Argentina de Sedimentología Actas:194¬202, Salta.
Morrás, H.J.M. y L. Moretti, 2016. A New Soil¬Landscape Approach to the Genesis and Distribution of Typic and Vertic Argiudolls in the Rolling Pampa of Argentina. En J.A. Zinck, G. Metternicht, G. Bocco, H.F. Del Valle (Eds.), Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies. Springer International Publishing, Switzerland:193¬209.
Moore, D.M. y R.C.J. Reynolds, 1997. X-ray diffraction and the identification and analysis of clay minerals. Oxford, New York, 378 pp.
Murad E., 2010. Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Minerals 45:413¬430
Orgeira, M.J., F.X. Pereyra, C. Vásquez, E. Castañeda y R. Compagnucci, 2008. Environmental magnetism in present soils, Buenos Aires province, Argentina. Journal of South American Earth Sciences 26:217¬224.
Osterrieth, M., 1992. Pirita framboidal en secuencias sedimentarias costeras del Holoceno tardío en Mar Chiquita. Buenos Aires. Argentina. 4° Reunión Argentina de Sedimentología Actas 2:73¬80, La Plata.
Otero, X.L., T.O. Ferreira, M. Huerta¬Díaz, C.S.M. Partiti, V. de
Souza Jr, P. Vidal¬Torrado y F. Macías, 2009. Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia ¬ SP, Brazil). Geoderma 148:318¬335.
Retallack, G.J., 2001. Soils of the Past. An introduction to Paleo- pedology 2nd Ed. Blackwell Sience Ltd, Eugene 404 pp.
Richiano, S., A.N. Varela, L. D’Elia, A. Bilmes y M. Aguirre, 2012. Evolución paleoambiental de cordones litorales holo¬ cenos durante una caída del nivel del mar en la Bahía Sambo¬ rombón, Buenos aires, Argentina. Latin American Journal of Sedimentology and Basin Analysis 19:105¬124.
Rietveld, H.M., 1969. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2:65¬71.
Riggi, J.C., F. Fidalgo, O. Martínez y N. Porro, 1986. Geología de los “sedimentos pampeanos” en el partido de La Plata. Revista de la Asociación Geológica Argentina 4:316¬333.
Roden, E.E. y J.W. Edmonds, 1997. Phosphate mobilization in iron¬ rich anaerobic sediments: Microbial Fe(III) oxide reduction versus iron¬sulfide formation. Archiv für. Hydrobiologie 139:347¬378.
Rodríguez Carvajal, J., 2001. Recent development of the Program FULLPROF. Commission on Powder Diffraction (IUCr), News- letter 26:12¬19.
Romero¬Gómez, P., J.C. González, A. Bustamante, A. Ruiz¬Conde y P.J. Sánchez¬Soto, 2013. Estudio in-situ de la transformación térmica de limonita utilizada como pigmento procedente de Perú. Boletín de la Sociedad Española de Cerámica y Vidrio 52:127¬131.
Scheinost, A.C., 2005. Metal Oxides. En D. Hillel Ed. Encyclopedia of Soils in the Environment Elsevier, Oxford, 428¬438.
Schwertmann, U. y R.W. Fitzpatrick, 1992. Iron minerals in surface environments. En H.C.W. Skinner y R.W. Fitzpatrick (Eds). Biomineralization, Processes of Iron and Manganese. Catena Supplemet 7¬30.
Shaheen, S.M., C.D. Tsadilas y J. Rinklebe, 2013. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Adv. Colloid Interface Sci 201¬202:43¬56.
Skinner, H.C.W. y R.W. Fitzpatrick, 1992. Iron and Manganese Biomineralization. En H.C.W. Skinner y R.W. Fitzpatrick (Eds). Biomineralization, Processes of Iron and Manganese. Catena Supplemet 1¬6.
Stucki, J.W., B.A. Goodman y U. Schwertmann, 1988. Iron in soils and clay minerals. Reidel Publishing Company, Dordrecht¬ Boston¬Lancaster¬Tokio, 893 pp.
Stucki, J.W., 1988. Structural Iron in Smectites. En J.W. Stucki, B.A. Goodman y U. Schwertmann (Eds), Iron in soils and clay minerals, D. Reidel, Dordrecht:625¬675
Teruggi, M.E., 1957. The nature and origin of Argentine loess. Journal of Sedimentary Petrology 27:322¬332.
Thompson, R. y F. Oldfield, 1986. Environmental Magnetism. Allen and Unwin, London, 227 pp.
Vandenberghe, R.E., 1991. Mössbauer spectroscopy and applica¬ tions in geology. International Training Centre for Post- Graduate Soil Scientistis, 2nd ed, State University Gent, 88 pp.
Vegter, J.J., 1995. Soil protection in the Netherlands. En W. Salo¬ mons, U. Forstner y O. Mader (Eds), Heavy metals. Springer¬ Verlag, Berlin¬Heidelberg:79¬100.
Velde, B. y T. Church, 1999. Rapid clay transformation in Delaware salt marshes. Applied Geochemistry 14:559¬568.
Walkley, A. y I.A. Black, 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37:29¬37.
Walden J., F. Oldfield y J.P. Smith, 1999. Environmental magnetism: a practical guide. Technical Guide, No 6. Quaternary Research Association, London, 214 pp.
Weaver, C.E., 1989. Clays, Muds and Shales. Elsevier Science, 818 pp.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.