Deep marine sedimentation in the Argentine Continental Margin: Revision and state-of-the-art

Authors

  • Roberto A. Violante Servicio de Hidrografía Naval, Departamento Oceanografía, División Geología y Geofísica Marina. Montes de Oca 2124, Buenos Aires C1270ABV, Argentina.
  • José L. Cavallotto Servicio de Hidrografía Naval, Departamento Oceanografía, División Geología y Geofísica Marina. Montes de Oca 2124, Buenos Aires C1270ABV, Argentina.
  • Graziella Bozzano Servicio de Hidrografía Naval, Departamento Oceanografía, División Geología y Geofísica Marina. Montes de Oca 2124, Buenos Aires C1270ABV, Argentina.
  • Daniela V. Spoltore Servicio de Hidrografía Naval, Departamento Oceanografía, División Geología y Geofísica Marina. Montes de Oca 2124, Buenos Aires C1270ABV, Argentina.

Keywords:

Sedimentary Processes, Ocean Dynamics, Morphosedimentary Features, Contourites, Argentine Continental Slope.

Abstract

Introduction

The Argentine Continental Margin (ACM), one of the largest margins worldwide, shows varied geotectonic  and  morphosedimentary  settings  (Fig. 1) with a complex oceanographic configuration (Fig. 2), as a consequence of the highly energetic oceanographic framework (Hastenrath, 1982; Berger and Wefer, 1996; Wefer et al., 1996, 2004; Mata et al., 2001; Bryden and Imawaki, 2001; Talley, 2003; Carter and Cortese, 2009). These configurations produce a complex sediments dynamic resulting from two major processes: the formation of nepheloid layers with an enormous amount of suspended sediments (Ewing et al., 1971; Biscaye and Eittreim, 1977; Emery and Uchupi, 1984; Bearmon, 1989; Scholle, 1996) and the activity of very strong bottom currents with high capacity for producing energetic erosive and depositional processes affecting the sea floor. The result of these sets of conditions is responsible of the unusual high sand content of this margin in relation to others in the world (Lonardi and Ewing, 1971; Frenz et al., 2004; Bozzano et al., 2011).

Although the margin has been studied since mid XX century (Heezen and Tharp, 1961, in Heezen, 1974; Ewing et al., 1964; Ewing, 1965; Ewing and Ewing, 1965; Ewing and Lonardi, 1971; Lonardi and Ewing, 1971; Le Pichon et al., 1971; Urien and Ewing, 1974; Mouzo, 1982; Emery and Uchupi, 1984; Pudsey et al., 1988; Lawver et al., 1994; Parker et al., 1996, 1997; Coren et al., 1997; King et al., 1997; Gilbert et al., 1998; Pudsey and Howe, 1998), an exhaustive analysis of the sedimentary processes involved in its evolution is a still pending issue. However, recent studies carried out since the beginning of the XXI century with the pioneering works by Pudsey and Howe (2002) and Cunningham et al. (2002) in the Scotia Sea, and Hernández Molina et al. (2009) in the passive sector of the margin, initiated the epoch of more specific investigations that led to revisit most of the concepts concerning the deep­sea sedimentation previously considered.

The objective of this contribution is to synthesize the present knowledge on deep sedimentary processes in the ACM, previously discussing the change from the “turbiditic” to the “contouritic” models that took place as a result of the studies performed in  the  region  during  the  last  30 years. This change followed the advance in the conception of deep­marine sedimentary processes that occurred worldwide, as expressed by Swallow and Worthington (1957), Stommel (1958), Heezen and Hollister (1964), Hollister (1967), Shanmugan (2000), Stow et al. (2002), Mc.Cave (2002), Rebesco and Camerlenghi (2008), Hsü (2008) and Rebesco et al. (2014), among others.

 

Argentine Continental Margin (ACM): state of the art

The first reference to the sedimentary processes acting in the slope and rise of the ACM was done by Ewing et al. (1964), who stressed the relevance of submarine canyons and nepheloid layers as the main ways of transport of fine sediments  to  the deep regions, being pelagic sedimentation of minor importance. Only in the abyssal plains those authors mentioned the possibility of bottom currents acting on the sea floor. Later contributions by Le Pichon et al. (1971), Lonardi and Ewing (1971) and Ewing and Lonardi (1971) reinforced those concepts and mentioned the bottom currents forming the drifts (contouritic bodies) in the Argentine Basin. Although some subhorizontal terraces were later described in the middle slope by Lonardi and Ewing (1971) and Ewing and Lonardi (1971), the consideration of the continental slope as a high­gradient feature mostly erosive and dominated by turbiditic processes still prevailed at those times (Heezen and Tharp, 1961, en Heezen, 1974; Emery and Uchupi, 1984) (Fig. 3), even if Wüst (1957, in Heezen 1973) had previously noticed that strong bottom currents swept the continental slope of eastern South America. Moreover, as shown for example by Ewing and Lonardi (1971) and Pudsey and Howe (2002), sea­ floor photographs taken in the decades of 1960­1970 in the Argentine margin (GeoMapApp, 2013) already illustrated unidirectional ripples in the slope (Fig. 4).

The advance in the knowledge and application of the new models proposed at those times in the world, led to the first mention to contouritic deposits in the ACM by Pudsey et al. (1988) in the Scotia Sea and surroundings, followed by new findings in the region by Lawver et al. (1994), Coren et al. (1997), King et al. (1997), Gilbert et al. (1998), Pudsey and Howe (1998, 2002), Cunningham et al. (2002), Maldonado et al. (2003, 2006) and Koenitz et al. (2008). Later contributions by Rovira et al. (2013), Esteban (2013), Pérez (2014) and Pérez et al. (2015) improved the knowledge in those areas. In the passive margin, Hernández Molina et al. (2009) described for the first time the very extensive and complex Contourite Depositional System (CDS) developed along 1600 km. Following this, the contributions by Hernández Molina et al. (2010, 2011), Violante et al. (2010b), Bozzano et al. (2011), Gruetzner et al. (2011, 2012, 2016), Lastras et al. (2011), Muñoz et al. (2012) and Preu et al. (2012, 2013) provided more detailed information about the CDS in some localized areas of the margin. The development of the concept of contouritic sedimentation in the ACM was necessarily related to the consideration that along­slope deep­ marine sedimentary processes  are  closely  linked to the activity of bottom currents interacting with the sea­floor. Taking into account the particularly energetic ocean dynamic in the region and the strong thermohaline stratification (Reid et al. 1977; Piola and Gordon, 1989; Bianchi et al., 1993; Saunders and King 1995; Boebel et al., 1999; Arhan et al. 1999, 2002a, 2002b, 2003; Piola and Matano 2001; Bianchi and Gersonde, 2002; Henrich et al. 2003; Carter et al. 2008), and considering that this oceanographic structure evolved since Eocene­Oligocene times (Hinz et al., 1999; Zachos et al., 2001; Lawver and Gahagan, 2003; Livermore et al., 2004; Cavallotto et al., 2011; García Chapori, 2015), it is easy to understand that the sedimentary architecture  and the morphosedimentary configuration of the margin strongly responded to the impact of bottom currents on the sea­floor acting along large periods of time, so shaping the continental margin (Pudsey and Howe, 2002; Cunningham et al., 2002; Hernández Molina et al., 2009, 2010, 2011; Violante et al., 2010 b; Lastras et al., 2011; Muñoz et al., 2012; Preu et al., 2012, 2013; Gruetzner et al., 2011, 2012, 2016; Pérez et al., 2015). However, the above mentioned processes varied regionally depending on the geotectonic fra­ mework of the margin, which is composed of four types of margins (Pelayo and Wiens, 1989; Ramos, 1996; Hinz et al., 1999; Mohriak et al., 2002; Franke et al. 2007, 2010; Cavallotto et al., 2011; Violante et al., 2017) (Fig. 1): passive, transcurrent, mixed and active.

Consequently, and according to the entire set of factors involved in different regions of the margin (geotectonic, morphological, sedimentary, oceano­ graphic, etc.) and their regional variations, six zones are identified from north to south (Fig. 5). Five of them correspond to the passive margin and one encompasses the transcurrent, mixed and active margins. Northeastern Buenos Aires (36-38°S). Large subma­ rine canyons and mass­transport deposits  shaping the slope, as well as an extensive rise, are the major features in this region. The largest canyons systems are Rio de la Plata and Mar del Plata, which were previously described by different authors (Lonardi and Ewing, 1971; Ewing and Lonardi, 1971; Violante et al. 2010 a; Bozzano et al., 2011; Krastel et al. 2011; Preu et al. 2012, 2013; Voigt et al. 2013, 2016). Dominant processes are gravitational, producing tur­ biditic and mass­transport deposits, with contouritic drifts in the terraces between canyons. Major terraces are La Plata (T1, at ~500–600 m depth), Ewing (T2, at 1200­1500 m), T3 (restricted to the northern flank of the Mar del Plata canyon at 2500 m) and Necochea (T4, at 3500 m) (Hernández Molina et al., 2009; Preu et al., 2013).

Drifts are plastered and mounded in the Ewing terrace and plastered to detached in the Necochea terrace. The rise is wide as a result of the highly sig­ nificant downslope processes. Contouritic drifts are 700 to 1000 m thick and are composed of gravelly, sandy­silty and muddy facies. This zone extends northwards towards the Uruguayan margin (Franco­ Fraguas et al., 2014, 2016; Hernández­Molina et al., 2015).

Southeastern Buenos Aires (38-40°30’S). Dominant morphological elements in the slope are contouritic terraces (the same that in the northern region), which are affected, and partially interrupted, by small submarine canyons.  The  rise  in  this  region is progressively reduced in size towards the south. Several contouritic drifts (plastered) have been described (Hernández­Molina et al., 2009; Violante et al., 2010 b; 2012; Bozzano et al., 2011; Preu et al., 2012, 2013; Gruetzner et al., 2016). La Plata and Ewing contouritic terraces show their largest development here, with drift’s thicknesses up to 1 km. Despite the small size of submarine canyons, they seem to play a significant role in transporting sediments offshore as evidenced by large turbiditic lobes and mass­transport deposits present at the base of the slope, although they show reoriented patterns to the northeast due to the strong activity of northward flowing deep contouritic currents, so constituting mixed features where detached  drifts are recognized (Hernández Molina et al., 2009).

 

Northern Patagonia (40°30’-42°30’S). Contouritic terraces dominate the landscape of the  slope  in this region, although they are highly dissected by a dense net of small submarine canyons; a narrow rise is present in this region. Contouritic drifts are plastered and mounded (Hernández Molina et al., 2010; Gruetzner et al., 2016), with thicknesses up to 1600 m and a sandy­muddy texture. However, gravitational processes are also important as eviden­ ced by the significance of slides and mass­transport deposits in the middle slope, rise and western flank of the Argentine Basin (Hernández Molina et al., 2009; Bozzano et al., 2014; Costa et al., 2014).

 

Central-northern Patagonia (42°30’-46°S). The most impressive features in this region are the large Sub­ marine Canyons Systems Ameghino and Almirante Brown, which are the largest canyons in the ACM. They are transverse to the slope in their upper and middle sections, but in the mid­lower slope they run parallel to the isobaths. Although tectonic processes have been considered for explaining the change in the canyon’s direction (Rosello et al., 2005), recent studies indicate the strong influence of alongslope currents able to deflect the canyons to the north (Hernández Molina et al., 2009; Lastras et al., 2011; Muñoz et al., 2012). Where contouritic drifts were recognized around the canyons, they are dominantly plastered with thickness up to 1600 m.

 

Central-southern Patagonia (46-49°S). Very large contouritic terraces develop here, shaping four major terraces (Nágera, at ~500 m depth, Perito Moreno, at ~1000 m, Piedra Buena, at ~2100–2500 m and Valentín Feilberg, at ~3500–4000 m) (Hernández­ Molina et al. 2009, 2010; Gruetzner et al., 2011). They are composed of thick (up to 2000 m) plastered drifts that became  mounded  towards  the  deeper  terrace. Contouritic processes are so important here that even the rise acquires a “contouritic” character rather than a typical base­of­slope gravitational feature.

 

Southern Patagonia, islands and Scotia Arc (south of 49°S). Comprises the entire region that corresponds to the transcurrent, mixed and active margins, where more detailed studies are still lacking for differentiating sectors with distinct morphological and genetic characteristics. The configuration of this zone favors the occurrence of very significant gravitational processes in the steeper sectors of the slope both in the northern (Escarpa de Malvinas –Malvinas Scarp­) and in the southern side (flank of the Dorsal Norte de Scotia ­North Scotia Ridge­). In the western side of the Arc, Lonardi and Ewing (1971) described at least seven submarine canyons. Contouritic drifts develop locally in the slope, and within depressions between structural heights and sea­floor elevations, where more energetic bottom currents are channeled. This is the case for the Fosa de Malvinas (Malvinas Trough) and for different passages  connecting the Scotia Sea with the southwestern sector of the Argentine Sea (Cunningham et al. 2002; Pudsey and Howe, 2002; Rebesco et al., 2002; Maldonado et al., 2003, 2006, 2010; Koenitz et al., 2008; Baristeas et al., 2013; Rovira et al., 2013; Esteban, 2013; Pérez, 2014; Pérez et al., 2015). Contouritic drifts in these regions are mainly plastered, although mounded, elongated, detached and sheeted types are also recognized depending on their location and local morphology.

Concluding remarks

The progress in the scientific knowledge of the deep­sea sedimentation in the ACM has significantly advanced in recent years, through the change from a “gravity, density­dominated” model to an “along­ slope, current­dominated” model. However, it must be considered that the two models are not opposite, but they coexist and interact. Two major areas can be differentiated in terms of the prevalent sedimentary processes. The passive margin is dominated by an extensive Contouritic Depositional System, whose complex architecture is characterized by a variety of depositional, erosive and mixed features interacting with large systems of submarine canyons and mass­ transport processes, with different configurations according to the zone and local morphosedimentary characteristics. On the other hand, in the transcur­ rent, mixed and active margins, contouritic drifts are regionally limited and in general located in more energetic regions such as passages between structural heights and sea­floor elevations.

The advance in the knowledge and the under­ standing of the deep­sea processes in the ACM is not only relevant for the development of marine geological and sedimentological sciences but also in the field of Physical Oceanography. The study of contouritic bodies and their records is also useful for paleoenvironmental and paleoceanographic re­ constructions. Applied aspects such as resources exploration, sea­floor instabilities, deep currents and their interaction with sea bed, as well as other items related to marine geohazards, will benefit from the integration between Marine Geology and Oceanography.

References

Arhan, M., K.J. Heywood y B.A. King, 1999. The deep waters from the Southern Ocean at the entry to the Argentine Basin. Deep- Sea Research II 46:475­499.

Arhan, M., X. Carton, A. Piola y W. Zenk, 2002a. Deep lenses of circumpolar water in the Argentine Basin. Journal of Geo- physical Research 107: C1. DOI: 10.1029/2001JC000963.

Arhan, M., A.C. Naveira Garabato, K. Heywood y D.P. Stevens, 2002b. The Antarctic Circumpolar Current between the Falkland Islands and South Georgia. Journal of Physical Ocea- nography 32:1914­1931.

Arhan, M., H. Mercier e Y.H. Park, 2003. On the deep water circulation of the eastern South Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers 50:889­916.

Baristeas, N., Z. Anka, R. di Primio, J.F. Rodriguez, D. Marchal y F. Dominguez, 2013. New insights into the tectono­stratigraphic evolution of the Malvinas Basin, offshore of the southernmost Argentinean continental margin. Tectonophysics 604:280­295. Bearmon, G., 1989. Ocean chemistry and deep-sea sediments. The

Open University. Pergamon, Oxford, 134 pp.

Berger, W.H. y G. Wefer, 1996. Central themes of South Atlantic Circulation. En G. Wefer, W.H. Berger, G. Siedler y D.J. Webb (Eds.), The South Atlantic, Present and Past Circulation. Springer­Verlag:1­11.

Bianchi, A.A., C.F. Giulivi y A.R. Piola, 1993. Mixing in the Brazil­ Malvinas confluence. Deep Sea Research Part I: Oceano- graphic Research Papers 40:1345­1358.

Bianchi, C. y R. Gersonde, 2002. The Southern Ocean surface between Marine Isotope Stages 6 and 5d: Shape and timing of climate changes. Palaeogeography, Palaeoclimatology, Palaeo- ecology 187:151­177.

Biscaye, P.E. y S. Eittreim, 1977. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean. Marine Geology 23:155­172.

Boebel, O., R.E. Davis, M. Ollitrault, R.G. Peterson, P.L. Richardson, C. Schmid y W. Zenk, 1999. The intermediate depth circulation of the western South Atlantic. Geophysical Research Letter 26:21.

Bozzano, G., R.A. Violante y M.E. Cerredo, 2011. Middle slope contourite deposits and associated sedimentary facies off NE Argentina. Geo-Marine Letters 31:495­507.

Bozzano, G., J.L. Cavallotto y R.A. Violante, 2014. Los sedimentos arenosos de la Cuenca Argentina en su sector Occidental, entre Bahía Blanca y Mar del Plata. XIX Congreso Geológico Argentino, Resúmenes:S12­8, Córdoba.

Bozzano, G., J. Martín, D.V. Spoltore y R.A. Violante, este volumen. Los cañones submarinos del Margen Continental Argentino: génesis y dinámica sedimentaria. Latin American Journal of Sedimentology and Basin Analysis 24: este volumen.

Bryden, H.L. y S. Imawaki, 2001. Ocean heat transport. En G. Siedler, J. Church y J. Gould (Eds.), Ocean Circulation and Climate. Elsevier, New York:495­474.

Carter, L. y G. Cortese, 2009. Change in the Southern Ocean: responding to Antarctica. En J. Brigham­Grette, R. Powell, L. Newman y T. Kiefer (Eds.), PAGES News: change at the Poles, a paleoscience perspective. IGBP­PAGES (Past Global Changes), PAGES International Project Office 17:30­32.

Carter, L., I.N. McCave y M.J.M. Williams, 2008. Circulation and water masses of the Southern Ocean: a review. En F. Florindo y M. Siegert (Eds.), Antarctic climate evolution. Elsevier, Amsterdam:85­114.

Cavallotto, J.L., R.A. Violante y F.J. Hernández Molina, 2011. Geological aspects and evolution of the Patagonian continental margin. Biological Journal of the Linnean Society 103:346­362. Coren, F., G. Ceccone, E. Lodolo, C. Zanolla, N. Zitellini, C. Bonazzi y J. Centonze, 1997. Morphology, seismic structure and tectonic development of Powell Basin, Antarctica. Journal of the Geological Society 154:849­862.

Costa, I.P., R.A. Violante, C.M. Paterlini, T. Schwenk y G. Bozzano, 2014. Deslizamientos submarinos en el talud conti­ nental adyacente al Sur bonaerense. XIX Congreso Geológico Argentino, Resúmenes:S18­4, Córdoba.

Cunningham, A.P., J.A. Howe y P.F. Barker, 2002. Contourite sedimentation in the Falkland Trough, western South Atlantic. En D.A.V. Stow, C.J. Pudsey, J.A. Howe, J.­C. Faugères y A.R. Viana (Eds.), Deep-Water Contourite Systems: modern drifts and ancient series, Seismic and Sedimentary characteristics. The Geological Society of London, Memoir 22:337­352.

Emery, K.O. y E. Uchupi, 1984. The geology of the Atlantic Ocean. Springer­Verlag, New York, Inc., 1050 pp.

Esteban, F., 2013. Estudio Geofísico-Geológico del subsuelo del segmento noroccidental de la Dorsal Norte de Scotia, Argentina. Tesis Doctoral Universidad de Buenos Aires, Departamento de Ciencias Geológicas, 303 pp (inédito).

Ewing, M., 1965. The sediments of the Argentine Basin. Quater- nary Journal Astronomical Society 6:10­27.

Ewing, M. y J.I. Ewing, 1965. The sediments of the Argentine Basin.

Symp. Oceanography Western South Atlantic. Ann. Academia Brasileira Ciencias 37, Suppl.:31­61.

Ewing, M. y A. Lonardi, 1971. Sediment transport and distribu­ tion in the Argentine Basin. 5: Sedimentary structure of the Argentine Margin, basin and related provinces. En L.H. Ahrens, F. Press, S.K. Runkorn y H.C. Urey (Eds.), Physics and Chemistry of the Earth. Pergamon Press, Londres 8:125­249.

Ewing, M., W.J. Ludwig y J. Ewing, 1964. Sediment distribution in the Oceans: the Argentine Basin. Journal of Geophysical Research 69:2003­2032.

Ewing, M., S.L. Eittreim,J.I., Ewing, J.I. y X. Le Pichon, 1971.Sediment transport and distribution in the Argentine Basin. 3: Nepheloid layer and processes of sedimentation. En L.H. Ahrens, F. Press, S.K. Runkorn y H.C. Urey (Eds.), Physics and Chemistry of the Earth. Pergamon Press, Londres 8:49­78.

Franco-Fraguas, P., L. Burone, M. Mahiques, L. Ortega, C. Urien, A. Muñoz, G. López, Y. Marin, A. Carranza, N. Lahuerta y C. de Mello, 2014. Hydrodynamic and geomorphological controls on surface sedimentation at the Subtropical Shelf Front / Brazil­Malvinas Confluence transition off Uruguay (Southwestern Atlantic Continental Margin). Marine Geology 349:24­36.

Franco-Fraguas, P., L. Burone, M. Mahiques, L. Ortega y A. Carranza, 2016. Modern sedimentary dynamics in the Southwestern Atlantic Contouritic Depositional System: New insights from the Uruguayan margin based on a geochemical approach. Marine Geology 376:15­25.

Franco-Fraguas, P., L. Burone, C. Goso, A. Carranza, F. Scarabino, L. Ortega, A. Muñoz y M. Mahiques, este volumen. Sedi­ mentary processes in the head of the Cabo Polonio mega slide canyon (Southwestern Atlantic Margin off Uruguay). Latin American Journal of Sedimentology and Basin Analysis 24: este volumen.

Franke, D., S. Neben, B. Ladage, B. Schreckenberge y K. Hinz, 2007. Margin segmentation and volcano­tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Marine Geology 244:46­67.

Franke, D., B. Ladage, M. Schnabel, B. Schreckenberger, C. Reichert, K. Hinz, C.M. Paterlini, J. de Abelleyra y M. Siciliano, 2010. Birth of a volcanic margin off Argentina, South Atlantic. Geochemistry, Geophysics, Geosystems 11:Q0AB04. DOI: 10.1029/2009GC002715.

Frenz, M., R. Höppner, J.-B.W Stuut, T. Wagner y R. Henrich, 2004. Surface sediment bulk geochemistry and grain­size composition related to the oceanic circulation along the South American Continental Margin in Southwest Atlantic. En G. Wefer, S. Mulitza y V. Ratmeyer (Eds.), The South Atlantic in the Late Quaternary. Springer­Verlag, New York:347­373.

García Chapori, N., 2015. Reconstrucción paleoceanográfica del talud bonaerense a partir de testigos cuaternarios. Tesis Doctoral, Universidad de Buenos Aires, 203 pp. (inédito).

GeoMapApp, 2013. Marine Geoscience Data System, Lamont­ Doherty Earth Observatory, Columbia University, USA. http:// www.geomapapp.org.

Gilbert, I.M., C.J. Pudsey y J.W. Murray, 1998. A sediment record of cyclic bottom current variability from the northwest Weddell Sea. Sedimentary Geology 115:185­214.

Gruetzner, J., G. Uenzelmann-Neben y D. Franke, 2011. Variations in bottom water activity at the southern Argentine margin: indications from a seismic analysis of a continental slope terrace. Geo-Marine Letters 31:405­417.

Gruetzner, J., G. Uenzelmann-Neben y D. Franke, 2012. Variations in sediment transport at the Argentina Continental Margin during the Cenozoic. Geochemistry, Geophysics, Geosystems, 13:1–15. Q10003, DOI: 10.1029/2012GC004266.

Gruetzner, J., G. Uenzelmann-Neben y D. Franke, 2016. Evolution of the northern Argentine margin during the Cenozoic controlled by bottom current dynamics and gravitational processes. Geochemistry, Geophysics, Geosystems. DOI: 10.1002/2015GC006232.

Hastenrath, S., 1982. On meridional heat transport in the World Ocean. Journal of Physical Oceanography 12:922­927.

Heezen, B., 1973. Turbidity currents. En M.N. Hill (Ed.), The Sea, vol 3: The Earth beneath the Sea, History. Interscience Publi­ cation:742­775.

Heezen, B., 1974. Atlantic­Type continental margins. En C.A. Burk y C.L. Drake (Eds.), The Geology of Continental Margins. Springer Verlag, New York:13­24.

Heezen, B.C. y C.D. Hollister, 1964. Deep sea current evidence from abyssal sediments. Marine Geology 1:141­174.

Heezen, B.C. y M. Tharp, 1961. Physiographic diagram of the South Atlantic Ocean, the Caribbean Sea, the Scotia Sea, and the eastern margin of the South Pacific Ocean. Geological Society of America, New York, Lamont­Doherty Earth Observatory, Columbia University, Contrib. 515.

Henrich, R., K.-H. Baumann, M. Gerhardt, M. Gröger y A. Volvers, 2003. Carbonate preservation in deep and interme­ diate water masses in the South Atlantic: Evaluation and geological record (A review). En G. Wefer, S. Mulitza y V. Ratmeyer (Eds.), The South Atlantic in the Late Quaternary: Reconstruction of material budgets and currents systems. Springer­Verlag, Berlin:645­670.

Hernández Molina, F.J., C.M. Paterlini, R.A. Violante, P. Marshall, M. de Isasi, L. Somoza y M. Rebesco, 2009. Contourite depositional system on the Argentine slope: An exceptional record of the influence of Antarctic water masses. Geology 37:507­510.

Hernández Molina, F.J., C.M. Paterlini, L. Somoza, R.A. Violante, Arecco, M. de Isasi, M. Rebesco, G. Uenzelmann- Neben, S. Neben y P. Marshall, 2010. Giant mounded drifts in the Argentina Continental Margin: Origins, and global implications for the history of thermohaline circulation. Marine and Petroleum Geology 27:1508­1530.

Hernández Molina, F.J., B. Preu, R.A. Violante, A.R. Piola y C.M. Paterlini, 2011. Las terrazas contorníticas en el margen continental Argentino: implicaciones morfosedimentarias y oceanográficas. Geogaceta 50:145­148.

Hernández Molina, F.J., M. Soto, A.R. Piola, J. Tomasini, B. Preu, P. Thompson, G. Badalini, A. Creaser, R.A. Violante, E. Morales, C.M. Paterlini y H. De Santa Ana, 2015. A contourite depositional system along the Uruguayan continental margin: Sedimentary, oceanographic and paleoceanographic implica­ tions. Marine Geology 378:333­349.

Hinz, K., S. Neben, B. Schreckenberger, H.A. Roeser, M. Block, K. Gonzalvez de Souza y H. Meyer, 1999. The Argentina Continental Margin north of 48°S: sedimentary successions, volcanic activity during breakup. Marine and Petroleum Geo- logy 16:1­25.

Hollister, C.D., 1967. Sediment distribution and deep circulation in the western North Atlantic. PhD Thesis, Columbia University, New York.

Hsü, K.J., 2008. Personal Reminiscences on the History of Contourites. En M. Rebesco y A. Camerlenghi (Eds.), Contou- rites. Elsevier, Amsterdam, Developments in Sedimentology 60:11­18.

Isola, J.I., A.A. Tassone, F.D. Esteban, R.A. Violante, M.J.F. Haller y G. St-Onge, este volumen. Sismoestratigrafía y evolución cenozoica de un sector de las Terrazas Nágera y Perito More­ no, Margen Continental Argentino Patagónico. Latin American Journal of Sedimentology and Basin Analysis 24: este volumen.

King, E.C., G. Leitchenkov, J. Galindo-Zaldivar, A. Maldonado y E. Lodolo, 1997. Crustal structure and sedimentation in Powell Basin. AGU, Antarctic Research Series 71:75­93.

Koenitz, D., N. White, I.N. McCave y R. Hobbs, 2008. Internal structure of a contourite drift generated by the Antarctic Circumpolar Current. Geochemistry, Geophysics, Geosystems 9:Q06012. DOI: 10.1029/2007GC001799.

Krastel, S.,G. Wefer, T.J.J. Hanebuth, A.A. Antobreh, T. Freudenthal, B. Preu, T. Schwenk, M. Strasser, R.A. Violante,

D. Winkelmann y M78-3 shipboard scientific party, 2011. Sediment Dynamics and Geohazards offshore Uruguay and Northern Argentina: First Results from the multi­disciplinary Meteor­Cruise M78­3. GeoMarine Letters 31:271­283.

Lastras, G., J. Acosta, A. Muñoz y M. Canals, 2011. Submarine canyon formation and evolution in the Argentina Continental Margin between 44°30’S and 48°S. Geomorphology 128:116­ 136.

Lawver, L.A. y L.M. Gahagan, 2003. Evolution of Cenozoic seaways in the circum­Antarctic region. Palaeogeography, Pa- laeoclimatology, Palaeoecology 198:11­37.

Lawver, L.A., T. Williams y B. Sloan, 1994. Seismic stratigraphy and heat flow of Powell Basin. Terra Antartica 1:309­310.

Le Pichon, X., M. Ewing y M. Truchan, 1971. Sediment transport and distribution in the Argentine Basin: 2. Antarctic Bottom Current passage into the Brazil Basin. En L.H. Ahrens, F. Press, S.K. Runkorn y H.C. Urey (Eds.), Physics and Chemistry of the Earth. Pergamon Press, Londres 8:29­48.

Leat, P.T., J.L. Smellie, I.L. Millar y R.D. Larter, 2003. Magmatism in the South Sandwich Arc. En R.D. Larter y P.T. Leat (Eds.). Intra-oceanic subduction systems: tectonic and magmatic processes. Geological Society of London, Special Publication 219:285­313.

Livermore, R., G. Eagles, P. Morris y A. Maldonado, 2004. Shack­ leton Fracture Zone: No barrier to early circumpolar ocean circulation. Geology 32:797­800.

Lonardi, A. y M. Ewing, 1971. Sediment transport and distribu­ tion in the Argentine Basin. En L.H. Ahrens, F. Press, S.K. Runkorn y H.C. Urey (Eds.), Physics and Chemistry of the Earth. Pergamon Press, Londres 8:253­264.

Maldonado, A., A. Barnolas, F. Bohoyo, J. Galindo-Zaldívar, F.J. Hernández-Molina, F. Lobo, J. Rodríguez-Fernández, L. Somoza y J.T. Vázquez, 2003. Contourite deposits in the cen­ tral Scotia Sea: the importance of the Antarctic Circumpolar Current and the Weddell Gyre flows. Palaeogeography, Palaeo- climatology, Palaeoecology 198:187­221.

Maldonado, A., A. Barnolas, F. Bohoyo, C. Escutia, J. Galindo- Zaldívar, F.J. Hernández Molina, A. Jabaloy, F.J. Lobo, C.H. Nelson, J. Rodríguez-Fernández, L. Somoza, E. Suriñach y J.T. Vázquez, 2006. Seismic stratigraphy of Miocene to Recent sedimentary deposits in the Central Scotia Sea and Northern Wedell Sea: Influence of bottom flows (Antarctica). Contribution to Global Earth Sciences. Springer­Verlag, New York:441­446.

Maldonado, A., F. Bohoyo, J. Galindo-Zaldívar, F.J. Hernández Molina, F.J. Lobo, Y. Martos-Martin y A.A. Schreider, 2010. Cenozoic growth patterns and paleoceanography of the ocean basins near the Scotia­Antarctic plate boundary. Bollettino di Geofisica teorica ed applicata 51 (Supplement):227­231.

Maldonado, A., A. Costa, M. García, F.J. Lobo, Y. Martos-Martin, L.F. Pérez, E. Puga, F. Bohoyo, D. Casas, F.J. González, R. Leon, T. Medialdea, L. Somoza, J. Galindo-Zaldívar, M. Larrad Revuelto, J. Rey Díaz de Rada, G. Bozzano, M.E. Elizondo, F.D. Esteban y M. Pelzmajer, 2013. Dredged rock samples from the southwestern Scotia Sea (SCAN 2013): remnants from the South America­Antarctic continental bridge. Bollettino di Geofisica teorica ed applicata 54 (Supplement 2):330­333.

Mata, J.L., M. Campos, E. Basso, R.H. Compagnucci, P. Fearnside, G. Magrin, J. Marengo, A.S.R. Moreno, A. Suárez, S. Solman, A. Villamizar, L. Villers, F. Argenal, C. Artigas, M. Cabildo, J.O. Codignotto, U. Confalonieri, V. Magaña, B. Morales- Arnao, O. Oropeza, J. Pabón, J. Paz, O. Paz, F. Picado, G. Poveda, J. Tarazona y W. Vargas, 2001. “Latin America”. En J.J. Mc.Carthy, O.F. Canziani, N.A. Leary, D.J. Dokken y K.S. White (Eds.), Climate Change 2001. Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the 3rd Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge:693­734.

Matano, R.P., E.D. Palma y A.R. Piola, 2010. The influence of the Brazil and Malvinas Currents on the southwestern Atlantic shelf circulation. Ocean Sciences Discussion 7:1­35.

Mc.Cave, I.N., 2002. Charles David Hollister, 1936­1999: a personal scientific appreciation of the father of “contourites”. En D.A.V. Stow, C.J. Pudsey, J.A. Howe, J.­C. Faugères y A.R. Viana, (Eds.). Deep-Water Contourite Systems: modern drifts and ancient series, Seismic and Sedimentary characteristics. The Geological Society of London, Memoir 22:1­5.

Mohriak, W.U., B.R. Rosendahl, J.P. Turner y S.C. Valente, 2002. Crustal Architecture of South Atlantic volcanic margins. En M.A. Menzies, S.L. Klemperer, C.J. Ebinger y J. Baker (Eds.), Volcanic Rifted Margins. Geological Society of America, Boulder Colorado, Special Paper 362:159­202.

Mouzo, F., 1982. Geologia Martima y Fluvial. En L.H. Destefani (Ed.), Historia Marítima Argentina. Cuántica Editora, Buenos Aires 1:44­117.

Munk, W.H. y C. Wunsch, 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Research 45:1977­2010. Muñoz, A., J. Cristobo, P. Rios, M. Druet, V. Polonio, E. Uchupi, J.

Acosta y Atlantis Group, 2012. Sediment drifts and cold­water coral reefs in the Patagonian upper and middle continental slope. Marine and Petroleum Geology 36:70­82.

Parker, G., R.A. Violante y C.M. Paterlini, 1996. Fisiografía de la Plataforma Continental. En V.A. Ramos y M.A. Turic, (Eds.). Geología y Recursos Naturales de la Plataforma Continental Argentina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Buenos Aires. Asociación Geológica Argentina­Instituto Argentino del Petróleo, Relato­ rio:1­16.

Parker, G., C.M. Paterlini y R.A. Violante, 1997. El fondo marino. En E. Boschi (Ed.), El Mar argentino y sus Recursos Pesqueros. INIDEP, Mar del Plata 1:65­87.

Pelayo, A.M. y D.A. Wiens, 1989. Seismotectonics and relative plate motion in the Scotia Sea region. Journal of Geophysical Research 94:7293­7320.

Pérez, L.F., 2014. Onset and evolution of the Scotia Sea basins, Antarctica: tectonic, sedimentary and palaeoceanographic implications. PhD Thesis, Universidad de Granada, España, 389 pp.

Pérez, L.F., F.J. Hernández Molina, F.D. Esteban, A. Tassone, A.R. Piola, A. Maldonado, B. Preu, R.A. Violante y E. Lodolo, 2015. Erosional and depositional contourite features at the transition between the western Scotia Sea and southern South Atlantic Ocean: links with regional water­mass circulation since the Middle Miocene. Geo-Marine Letters DOI: 10.1007/ s00367­015­0406­6.

Piola, A.R. y A.L. Gordon, 1989. Intermediate waters in the southwest South Atlantic. Deep Sea Research Part A. Oceano­ graphic Research Papers 36:1­16.

Piola, A.R. y R.P. Matano, 2001. Brazil and Falklands (Malvinas) currents. Ocean Currents: A Derivative of the Encyclopedia of Ocean Sciences:35­43.

Preu, B., T. Schwenk, F.J. Hernández Molina, R.A. Violante, C.M. Paterlini, S. Krastel, J. Tomasini y V. Spieß, 2012. Sedimentary growth pattern on the northern Argentine slope: The impact of North Atlantic Deep Water on southern hemisphere slope architecture. Marine Geology 329­331:113­125.

Preu, B., F.J. Hernández Molina, R.A. Violante, A.R. Piola, C.M. Paterlini, T. Schwenk, I. Voigt, S. Krastel y V. Spieß, 2013. Morphosedimentary and hydrographic features of the northern Argentine margin: the interplay between erosive, depositional and gravitational processes and its conceptual implications. Deep-Sea Research 75:157­174.

Pudsey, C.J. y J.A. Howe, 1998. Quaternary history of the Antarctic Circumpolar current: evidence from the Scotia Sea. Marine Geology 148:83­112.

Pudsey, C.J. y J.A. Howe, 2002. Mixed biosiliceous­terrigenous sedimentation under Antarctic Circumpolar Current, Scotia Sea. En D.A.V. Stow, C.L. Pudsey, J.A. Howe, J.­C. Faugères y

A.R. Viana (Eds.), Deep-Water Contourite Systems: modern drifts and ancient series, Seismic and Sedimentary characteristics. The Geological Society of London, Memoir 22:325­336.

Pudsey, C.J., P.F. Barker y N. Hamilton, 1988. Weddell Sea abyssal sediments: a record of Antarctic Bottom Water flow. Marine Geology 81:289­314.

Ramos, V.A., 1996. Evolución tectónica de la plataforma continen­ tal. En V.A. Ramos y M.A. Turic, (Eds.). Geología y Recursos Naturales de la Plataforma Continental Argentina. XIII Con- greso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Buenos Aires. Asociación Geológica Argentina­Instituto Argentino del Petróleo, Relatorio:405­422.

Rebesco, M. y A. Camerlenghi, 2008. Contourites. Elsevier, Amsterdam, Developments in Sedimentology 60, 770 pp. Rebesco, M., C. Pudsey, M. Canals, A. Camerlenghi, P. Barker, F. Estrada y A. Giorgetti, 2002. Sediment drift and deep­sea channel systems, Antarctic Peninsula Pacific Margin. En D.A.V. Stow, C.L. Pudsey, J.A. Howe, J.­C. Faugères y A.R. Viana (Eds.), Deep-Water Contourite Systems: modern drifts and ancient series, Seismic and Sedimentary characteristics. The Geological Society of London, Memoir 22:353­371.

Rebesco, M., F.J. Hernández Molina, D. Van Rooij y A. Wåhlin, 2014. Contourites and associated sediments controlled by deep­water circulation processes: State­of­the­art and future considerations. Marine Geology 352:111­154.

Reid, J.L., W.D. Nowlin Jr y W.C. Patzert, 1977. On the charac­ teristics and circulation of the southwestern Atlantic Ocean. Journal of Physical Oceanography 7:62­91.

Reineck, H.E. y I.B. Singh, 1980. Depositional Sedimentary En- vironments. Springer­Verlag, Dordretch:549 pp.

Rossello, E.A., Y. Lagabrielle, P.R. Cobbold y P. Marshall, 2005. Los cañones submarinos oblicuos del talud continental argen­ tino (40° a 45° S): evidencias de inversión tectónica andina sobre el margen pasivo atlántico?. X Simposio Nacional de Estudos Tectónicos-IV International Symposium on Tectonics Actas:90­93, Curitiba.

Rovira, I., A. Tassone y F. Esteban, 2013. Morpho­sedimentary features of the south­western Scotia Sea. Bollettino di Geofisica teorica ed applicata 54 (Suppl. 2):343­344.

Saunders, P.M. y B.A. King, 1995. Oceanic fluxes on the WOCE A11 section. Journal of Physical Oceanography 25:1942­1958. Schmittner, A., J.C.H. Chiang y S.R. Hemming, 2007. Intro­ duction: The Ocean’s Meridional Overturning Circulation. En: Ocean Circulation: Mechanisms and Impacts. American Geophysical Union, Geophysical Monograph Series 173. DOI 10.1029/173GM02.

Scholle, P.A. (Ed.), 1996. Oceanography 1: Origins, History, Structure and Plate Tectonics, Margins, Basins, and Sediments. Tulsa, SEPM Photo CD­3, 678 pp.

Shanmugam, G., 2000. 50 years of the turbidite paradigm (1950s­ 1990s): deep­water processes and facies models­a critical perspective. Marine and Petroleum Geology 17:285­342.

Shepard, F.P., 1963. Submarine Geology, 2nd Ed. Harper & Row Publications, New York, 557 pp.

Speich, S, B. Blanke y W. Cai, 2007. Atlantic Meridional Overturning Circulation and the Southern Hemisphere supergyre. Geophysical Research Letters 34:L23614. DOI 10.1029/2007GL031583.

Stommel, H., 1958. The abyssal circulation. Deep-sea Research 5:80­82.

Stow, D.A.V., J.-C. Faugères, J.A. Howe, C.J. Pudsey y A.R. Viana, 2002. Bottom currents, contourites and deep­sea sediment drifts: current state­of­the­art. En D.A.V. Stow, C.J. Pudsey,

J.A. Howe, J.­C. Faugères y A.R. Viana, (Eds.), Deep-Water Contourite Systems: modern drifts and ancient series, Seismic and Sedimentary characteristics. The Geological Society of London, Memoir 22:7­20.

Swallow, J.C. y L.V. Worthington, 1957. Measurements of deep currents in the Western North Atlantic. Nature 179:1183.

Talley, L. D., 2003. Shallow, intermediate and deep overturning components of the global heat budget. Journal of Physical Oceanography 33:530­560.

Toggweiler J.R. y B.L. Samuels, 1995. Effect of Drake Passage on the global thermohaline circulation. Deep Sea Research Part I: Oceanographic Research Papers 42:477­500.

Urien, C.M. y M. Ewing, 1974. Recent sediments and environments of Southern Brazil, Uruguay, Buenos Aires and Río Negro Continental Shelf. En C. Burk y Ch. Drake (Eds.). The Geology of Continental Margins. Springer­Verlag, New York:157­177.

Violante R.A., C.M. Paterlini, G. Bozzano, T.J.J. Hanebuth, M. Strasser y S. Krastel, 2010a. Morphosedimentary characte­ ristics and evolution of the Mar del Plata Submarine Canyon, Northern Argentina Continental Margin. 18° International Sedimentological Congress Abstracts:907, Mendoza.

Violante, R.A., C.M. Paterlini, I.P. Costa, F.J. Hernández Molina, L.M. Segovia, J.L. Cavallotto, S. Marcolini, G. Bozzano, C. Laprida, N. García Chapori, T. Bickert y V. Spieß, 2010b. Sismoestratigrafía y evolución geomorfológica del talud conti­ nental adyacente al litoral del este bonaerense, Argentina. Latin American Journal of Sedimentology and Basin Analysis 17:33­62.

Violante, R.A., G. Bozzano, J.L. Cavallotto, F.J. Hernández Molina, B. Preu, C.M. Paterlini e I.P. Costa, 2012. Significado de los procesos contorníticos en la evolución del Margen Continental Argentino durante el Cuaternario Significado de los procesos contorníticos en la evolución del sector pasivo del Margen Continental Argentino durante el Cuaternario. Geotemas 13:547­550.

Violante, R.A., I.P. Costa, J.L. Cavallotto, C.M. Paterlini, S. Marcolini y G. Bozzano, 2014. Rasgos Morfosedimentarios, Procesos y Evolución de la Plataforma Continental Argentina desde el Último Máximo Glacial. Revista de la Asociación Geológica Argentina 71:292­310.

Violante, R.A., C. Laprida y N. García Chapori, 2017. The Argentina Continental Margin: a potential Paleoclimatic- Paleoceanographic archive for the Southern Ocean. Springer Briefs in Earth System Sciences. Springer, Dordretch, 177 pp. Voigt, I., R. Henrich, B. Preu, A.R. Piola, T.J.J. Hanebuth, T. Schwenk y C.M. Chiessi, 2013. A submarine canyon as a climate archive ­ Interaction of the Antarctic Intermediate Water with the Mar del Plata Canyon (Southwest Atlantic). Marine Geology 341:46­57.

Voigt, I., C.M. Chiessi, A.R. Piola y R. Henrich, 2016. Holocene changes in Antarctic intermediate water flow strength in the Southwest Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology DOI:10.1016/j.palaeo.2016.09.018.

Wefer, G., W.H. Berger, G. Siedler y D.J. Webb, 1996. The South Atlantic, Present and Past Circulation. Springer, Dordretch, 644 pp.

Wefer, G., S. Mulitza y V. Ratmeyer, 2004. The South Atlantic in the Late Quaternary. Springer­Verlag, New York:722 pp.

Wüst, G., 1935. Die Stratosphäre. Deutschen Atlantischen Expedition Meteor 1925-1927, Wiss, Erg. vol. 6 (1 ­2), 288 pp.

Wüst, G., 1957. Quantitative Untersuchungen zur Statik und Dynamik des Atlantischen Ozeans; Stromgeschwindigkeiten und Strommengen in den Tiefen des Atlantischen Ozeans. Wiss. Ergebn. Deutschen Atlantischen Expedition Meteor 1925-1927. Wiss, Erg. vol. 6, 420 pp.

Zachos, J., M. Pagani, L. Sloan, E. Thomas y K. Billups, 2001.Trends, rhythms and aberrations in global climate 65 Myr to Present. Science 292:686­693.

Published

2021-03-31

How to Cite

Violante, R. A. ., Cavallotto, J. L. ., Bozzano, G. ., & Spoltore, D. V. . (2021). Deep marine sedimentation in the Argentine Continental Margin: Revision and state-of-the-art. Latin American Journal of Sedimentology and Basin Analysis, 24(1), 7-29. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/119

Issue

Section

Special Issue