Neogene to Quaternary continental sedimentary dynamics in the Claromecó creek basin, Argentina

Authors

  • Numa N. Sosa Centro de Investigaciones Geológicas (CONICET – Universidad Nacional de La Plata). Diag.113 # 275, La Plata (B1900TAC), Buenos Aires, Argentina
  • Marcelo A. Zárate Instituto de Ciencias de la Tierra y Ambientales de la Pampa (INCITAP – UNLPam – CONICET). Avenida Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina.
  • Elisa Beilinson Centro de Investigaciones Geológicas. UNLP-CONICET, calle 1 Nº 644, 1900 La Plata, Argentina

Keywords:

Facies analysis, Fluvial systems, Geomorphology, Neogene, Southern Pampas.

Abstract

The Neogene to Quaternary continental sedimentary record of the southern Buenos Aires province has been the object of numerous stratigraphic and biostratigraphic studies. However, much has to be done concerning the evolution and sedimentary dynamics of this area. To this end, the Claromecó creek basin (CCB) was chosen as a case study. The aim of this work is to analyze the Neogene to Quaternary sedimentary record to understand the geological evolution of the basin. To reach this objective, a preliminary geomorphological study was carried out. Then, facies and associations of facies were defined in order to identify the sedimentary environment and to establish the ratio between accommodation space and sediment supply. This information was subsequently used to interpret the main controls on the sedimentation of the CCB.

The CCB is located in the center of the southern Buenos Aires province. It covers an area of 3017.18 km2, from the northwestern flank of the Tandilia range to the Atlantic coastline (Fig. 1). The basin can be divided in three parts (upper, middle and lower) depending on slope, drainage and main geomorphologic characteristics (Fig. 2). Its infill is dominated by Neogene to Quaternary sediments lying over Palaeozoic shales and sandstones (Zárate and Rabassa, 2005; Ramos, 2005). The few sedimentological, stratigraphical and paleoenviromental studies are located close to the Atlantic coastline (Frenguelli, 1928; Isla et al., 1996; Isla et al., 2000; Prieto et al., 2014).

A three step methodology was adopted. Firstly, a preliminary geomorphological study was carried out to understand the main geomorphological units and their relations with the landscape. The geomorphological setting was established with field observations and supported by SRTM. Secondly, eight sedimentological logs were made (Fig. 3). Facies and facies associations were defined according to Miall’s scheme (1985, 2014) (Table 1). Postdepositional processes were analysed and relative facies defined based on Mack et al. (1993) (Table 1). Finally, the interpretation of the depositional environments was performed considering the facies associations within the geomorphological units (Table 2). Accommodation space, sediment supply and controls were then defined and considered in a regional context.

Two main geomorphological units were defined. The plain and elevations unit (U1) covers the upper and middle part of the basin. In the upper basin, the U1 is composed by an elevated plain in which the springs of the Claromecó creek are located. This plain evolves in a series of hills and elevations that cover discontinuously the middle part of the basin. U1 is characterized by reddish silty to conglomeratic calcretized fluvial sediments, which represent the substrate of the basin. In the middle and lower basin, this unit is eroded and forms large valleys, which represent the second geomorphological unit (U2). This unit is filled in by Late Pleistocene fluvial sediments that make up the present day floodplain.

A total of eleven sedimentary facies and two postdepositional facies were defined (Table 1). These facies were grouped into six facies associations (FA) according to the geometry of the bodies and the interpreted depositional environments. These were subsequently grouped in accordance to the geomorphological units (Table 2). In this sense, U1 is composed by sheet flows (AF-A) forming mantles of matrix-supported conglomerates and sands (Gm and Sm facies) (Fig. 4a). Sheet-flow deposits are capped by amalgamated channel deposits of AF-B, composed of laminated and trough cross-stratified poorly sorted sands (Gm, Sh and St) (Fig. 4b). Both facies associations are capped by calcisols (AFP-C) (Fig. 4c, d). U2 is composed of sandy sheets (AF-C), floodplain deposits (AF-D), vegetated silty dunes (loess, AF-E) and marshy deposits (AF-F) (Fig. 5a). The sheet-like deposits are interpreted as unconfined channels filled by bars and locally preserved ripples (Ss, St and Sh). Floodplain deposits are broadly distributed in the basin and comprise massive to laminated silty sands with heterolithic lenses associated to secondary courses (Hl, Fl, Fm and Fr). Large and flat patchy dunes are present in the lower basin, composed of massive coarse silts (Fme and Fl) associated to eolian processes (loess). Close to the Atlantic coastline, whitish and laminated clayey silts are present, and are characterized by the presence of fresh and salty water gastropods (Hl, Fl y Fcf). U2 sedimentary successions are generally capped by hydromorphic paleosols (AFP-H) which are characterized by Fe-Mn rich nodules and rhizoliths (Fig. 6).

The sedimentological succession can be divided in two subcycles (sensu Zarate, 2005) (Fig. 7). The first subcycle was developed between the late Miocene and middle-late Pliocene and is associated to the U1; the second subcycle was deposited between the late Pleistocene and the present and is linked to the U2 (Fig. 8). Both subcycles are followed by a stabilization stage (paleosols) that is related to a decrease of the accommodation space. For the Mio-Pliocene subcycle, this period can also be characterized as an erosional, no-depositional stage. This behavior is probably associated to a tectonic reactivation that occurred at some time after the middle-late Pliocene and that resulted in the formation of terrace and hills (U1) and the partial capture of the drainage of the CCB and nearby drainage basins (e.g., Quequén Grande and Quequén Salado rivers). In this context, the upper basin represents an elevated plain not affected by erosion and constituting a no-depositional surface. A regional discontinuous dynamic subsidence occurred during the Neogene and probably controlled the sedimentation and accommodation space in this area (Folguera et al., 2015).

The late Pleistocene-Present subcycle responded to controls (changes in sea level and base level of continental systems) that did not significantly affect topography but rather resulted in facies variations. The development of eolian inland deposits (loess type), as well as marshy deposits restricted to the coastline, are probably related to the glacial/ interglacial stages that characterized the late Pleistocene-Holocene.

References

Beilinson, E, 2012. Evolución de la arquitectura fluvial en Centro- Este de Argentina (Aloformación Punta San Andrés). Revista de la Asociación Geológica Argentina 69:578-595.

Beilinson, E., G. Gasparini, R.L. Tomassini, M.A. Zárate, C.M. Deschamps, R.W. Barendregt y J. Rabassa, 2017. The Quequén Salado river basin: Geology and biochronostratigraphy of the Mio-Pliocene boundary in the southern Pampean plain, Argentina. Journal of South American Earth Sciences 76:362- 374.

Birkeland, P.W, 1999. Soils and Geomorphology. Oxford University Press Inc., New York, 430 pp.

Bridge, J.S, 2003. Rivers and floodplains: forms, processes and sedimentary record. Blackwell Science Ltd, Oxford, 504 pp.

Cain, S.A. y N.P. Mountney, 2009. Spatial and temporal evolution of a terminal fluvial fan system: The permian organ rock formation, South-east Utah, USA. Sedimentology 56:1774- 1800.

Carbone, M.E. y M.C. Píccolo, 2002. Morfometría de la cuenca del arroyo Claromecó, Provincia de Buenos Aires, Argentina. Revista Geofísica 56:51-64.

Catuneanu, O., W.E. Galloway, C.G.S.C. Kendall, A.D. Miall, H.W. Posamentier, A. Strasser y M.E. Tucker, 2011. Sequence Stratigraphy: Methodology and Nomenclature. Newsletters on Stratigraphy, 44:173-245.

Dalla Salda, L., R.E. de Barrio, H.J. Echeveste y R.R. Fernández, 2005. Basamento de las sierras de Tandilia. En R.E. de Barrio, R.O. Echeverri, M.F. Caballé, y E. Llambías (Eds.), Geología y Recursos Minerales de la provincia de Buenos Aires. Relatorio del 16° Congreso Geológico Argentino:31-50, La Plata.

Folguera, A., M.A. Zárate, A. Tedesco, F. Dávila y V.A. Ramos, 2015. Evolution of the Neogene Andean foreland basins of the Southern Pampas and Northern Patagonia (34°-41°S), Argentina. Journal of South American Earth Sciences 64:452- 466.

Frenguelli, J., 1928. Observaciones geológicas de la región costanera sur de la provincia de Buenos Aires. Anales de la Facultad de Ciencias de la Educación 2:1-145.

Friend, F., M.J. Slater y R.C. Williams, 1979. Vertical and lateral building of river sandstone bodies, Ebro Basin, Spain. Journal of the Geological Society of London 136:39-46.

Fryklund, B., A. Marshall y J. Stevens, 1996. Cuenca del Colorado. En V.A. Ramos y M.A. Turic (Eds.), Geología y Recursos Naturales de la Plataforma Continental Argentina. 13° Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos Relatorio 8:135-158, Buenos Aires.

Furque, G, 1965. Nuevos afloramientos del Paleozoico en la provincia de Buenos Aires. Revista del Museo de La Plata, Sección Geología:239-243.

García Martínez, B., M.E. Carbone, C. Piccolo y G.M.E. Perillo, 2008. Incidencia de la variabilidad hidrológica en la morfología de cauces del Arroyo Claromecó (Buenos Aires, Argentina). Geographicalia 54:61-83.

Gibling, M.R, 2006. Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classification. Journal of Sedimentary Research 76:731-770.

González, M.A, 1995. Diagnóstico ambiental de la Provincia de Buenos Aires. Banco de la Provincia de Buenos Aires, Tomo 1, 254 pp.

Goudie, A.S, 1973. Duricrusts in tropical and subtropical landscapes. Clarendon Press, Oxford, 174 pp.

Harrington, H.J, 1970. Las Sierras Australes de Buenos Aires, República Argentina: Cadena Aulacogénica. Revista de la Asociación Geológica Argentina 25:151-181.

Isla, F, 2012. Highstands of the sea level and the speciation of the coastal communities: opportunities for the new territories in southern South America. Boletín de Biodiversidad de Chile 62:48-62.

Isla, F.I., L.C. Cortizo y E.J. Schnack, 1996. Pleistocene and Holocene beaches and estuaries along the Southern Barrier of Buenos Aires, Argentina. Quaternary Science Reviews 15:833- 841.

Isla, F.I., N.W. Rutter y M.A. Zárate, 2000. La transgresión belgranense en Buenos Aires. Una revisión a cien años de su definición. Revista Cuaternario y Ciencias Ambientales, Publicación Especial 4:3-14.

Kraus, M.J. y A. Aslan, 1993. Eocene hydromorphic paleosols: significance for interpreting ancient floodplain processes. Journal of Sedimentary Petrology 63:453-463.

Llambías, E. y C.R. Prozzi, 1975. Ventania. En: Geología de la provincia de Buenos Aires. 6° Congreso Geológico Argentino Relatorio: 79-102, Bahía Blanca.

Machette, M.N, 1985. Calcic soils of the southwestern United States. Geological Society of America Special Paper 203:1-21.

Mack, G.H., W.C. James y H.C. Monger, 1993. Classification of paleosols. Geological Society of American Bulletin 105:129- 136.

Martínez, G.A., O.M. Quiroz Londoño, D.E. Martínez, H.E. Massone, M. Farenga y S. Grondona, 2011. Control tectónico en la evolución del relieve de la llanura Interserrana bonaerense. 18° Congreso Geológico Argentino Actas en CD, Nequén.

Miall, A.D, 1985. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Science Reviews 22:261-308.

Miall, A.D, 2014. Fluvial Depositional Systems. Springer-Verlag, Berlin, 316 pp.

Monteverde, A, 1938. Nuevos yacimientos de material pétreo en Gonzalez Chávez. Revista Minera 8, 111 pp.

Mount, J.F. y A.S. Cohen, 1984. Petrology and Geochemistry of rhizoliths from Plio-Pleistocene fluvial and marginal lacustrine deposits, east lake Terkana, Kenya. Journal of Sedimentary Petrology 54:0263-0275.

Pardiñas, U.F.J. y M. Gonzáles, 1986. Vertebrados de edad mamífero Montehermosense en el Partido de Gral. La Madrid, provincia de Buenos Aires, República Argentina. 3° Jornadas Argentinas de Paleontología de Vertebrados Resúmenes:13, Buenos Aires.

Pascual, R, E.J. Ortega Hinojosa, D. Gondar y E. Tonni, 1965. Las edades del Cenozoico mamalífero de la Argentina, con especial atención a aquellas del territorio bonaerense. Anales Comisión de Investigación Científica de la provincia de Buenos Aires 6:465-490.

Politis, G.G., M.A. Gutiérrez, D.J. Rafuse y A. Blasi, 2016. The arrival of Homo sapiens into the Southern Cone at 14,000 years ago. PLoS One 11:1-27.

Prieto, A.R., M.V. Romero, I. Vilanova, E.A. Bettis, M.A. Espinosa, A.E. Haj, L. Gómez y L.I. Bruno, 2014. A multi-proxy study of Holocene environmental change recorded in alluvial deposits along the southern coast of the Pampa region, Argentina. Journal of Quaternary Sciences 29:329-342.

Ramos, V.A. y J. Kostadinoff, 2005. La Cuenca de Claromecó. En R.E. de Barrio, R.O. Echeverri, M.F. Caballé, y E. Llambías (Eds.), Geología y Recursos Minerales de la provincia de Buenos Aires. Relatorio del 16° Congreso Geológico Argentino:473-480, La Plata.

Rust, B.R. y B.G. Jones, 1986. The Hawkesbury Sandstone South of Sydney, Australia: Triassic Analogue for the Deposit of a Large, Braided River. Journal of Sedimentary Petrology 57:222- 233.

Schnack, E.J., F.I. Isla, F.O. De Francesco y E. Fucks, 2005. Estratigrafía del Cuaternario marino tardío en la provincia de Buenos Aires. En R.E. de Barrio, R.O. Echeverri, M. F. Caballé, y E. Llambías (Eds.), Geología y Recursos Minerales de la provincia de Buenos Aires. Relatorio del 16° Congreso Geológico Argentino:159-182, La Plata.

Sosa N.N., E. Beilinson, R.L. Tomassini, C.M. Deschamps, M.A. Zárate y D. Funes, 2016. Nuevos aportes a la interpretación sedimentológica y paleontológica de la Formación Monte Hermoso (Plioceno temprano) en su localidad tipo (Provincia de Buenos Aires, Argentina). Ameghiniana 53 (1) Suplemento: 32.

Svendsen, J., H. Stollhofen, C.B.E. Krapf y I.G. Stanistreet, 2003. Mass and hyperconcentrated flow deposits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast Erg, Namibia. Sedimentary Geology 160:7-31.

Tonello, M.S., M.A. Zárate y M.V. Mancini, 2002. Trazas radicales ferrosas en una secuencia aluvial del río Quequén Grande (Buenos Aires): implicancias estratigráficas y ambientales. Ameghiniana 39 2:163-174.

Wright, W.P., 1990. A micromorphological classification of fossil and recent calcic and petrocalcic structures. En L.A. Douglas (Ed.), Soil Micromorphology: a basic and applied science. Elsiever, Amsterdam:401-407.

Yrigoyen, M., 1975. Geología del subsuelo y plataforma continental. 6° Congreso Geológico Argentino Relatorio:139-169.

Zárate, M.A., 2003. Loess of southern South America. Quaternary Science Reviews 22:1987-2006.

Zárate, M.A., 2005. El Cenozoico tardío continental de la provincia de Buenos Aires. En R.E. de Barrio, R.O. Echeverri, M.F. Caballé, y E. Llambías (Eds.), Geología y Recursos Minerales de la provincia de Buenos Aires. Relatorio del 16° Congreso Geológico Argentino:139-158, La Plata.

Zárate, M.A. y A. Blasi, 1991. Late Pleistocene and Holocene loess deposits of the Southeastern Buenos Aires province, Argentina. GeoJournal 24:211-220.

Zárate, M.A. y A. Blasi, 1993. Late Pleistocene-Holocene eolian deposits of the southern Buenos Aires province, Argentina: A preliminary model. Quaternary International 17:15-20.

Zárate, M.A. y J. Rabassa, 2005. Geomorfología de la provincia de Buenos Aires. En: R. E. de Barrio, R. O. Echeverri, M. F. Caballé, y E. Llambias (Eds.), Geología y Recursos Minerales de la provincia de Buenos Aires, Relatorio del 16° Congreso Geológico Argentino:119-138, La Plata.

Zárate, M.A., R.A. Kemp, M. Espinosa y L. Ferrero, 2000. Pedosedimentary and paleoenvironmental significance of a Holocene alluvial sequence in the southern Pampas, Argentina. The Holocene 10:481-488.

Zavala, C. y M. Quatrocchio, 2001. Estratigrafía y evolución geológica del río Sauce Grande (Cuaternario), provincia de Buenos Aires, Argentina. Revista de la Asociación Geológica Argentina 56 (1):25-37.

Published

2021-03-31

How to Cite

Sosa, N. N. ., Zárate, M. A. ., & Beilinson, E. . (2021). Neogene to Quaternary continental sedimentary dynamics in the Claromecó creek basin, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 24(2), 1-19. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/113

Issue

Section

Research Papers