High resolution facies and paleoenvironmental analysis of the Punta San Andrés (Plio-Pleistocene) aloformation, Buenos Aires province, Argentina

Authors

  • Elisa Beilinson Centro de Investigaciones Geológicas. UNLP-CONICET, calle 1 Nº 644, 1900 La Plata, Argentina

Keywords:

Facies analysis; Architectural analysis; Paleoenvironment; Plio-Pleistocene; Mar del Plata- Miramar.

Abstract

The continental deposits of the Punta San Andrés Alloformation (Plio-Pleistocene) crop out in the marine cliffs of south eastern Buenos Aires province (Fig. 1). The deposits of this unit have been assigned to different continental sub-environments such as floodplains, fluvial channels and temporary water bodies (Zárate, 1989). The aim of this work is to perform a high-resolution facies and facies association analysis as well as an architectural characterization of the sedimentary bodies cropping out in Baliza San Andrés and Complejo Turístico Chapadmalal (Fig. 1). This information will be used to elaborate a conceptual and dynamic model of the depositional environments present in the Punta San Andrés Alloformation and to define main controlling

factors over its accumulation. The study area is located in a typical passive margin controlled by transversal extensional systems that originated rift basins (aulacogens) with very little basaltic magmatism (Ramos, 1996; Parker et al. 2008). This area experienced block rotation due to isostatic equilibrium and sedimentary overload. Accumulation of post-Miocene deposits was favored by a high sedimentary dynamic associated with the rise of the Andean Cordillera (Turic et al. 1996; Parker et al. 2008). More specifically, the study area

is located in the southeastern part of the Tandilia Geological Province (Rolleri, 1975, Fig. 1). The pioneer papers on stratigraphy of the Mar del Plata and Miramar marine cliffs were carried out by Ameghino (1908), Frenguelli (1921) and Kraglievich (1952, 1953, 1959) (Figs. 2, 3). The sedimentological characterization of these deposits was made by Teruggi et al. (1956) and Zárate (1989). This last author also proposed an allostratigraphic framework which intended to unify and simplify the late Cenozoic stratigraphy (Fig. 2).

The rich vertebrate fauna present in the Punta San Andrés Alloformation and related units was studied since the first contributions by Ameghino (1908). These studies were the basis for the South American Late Cenozoic biostratigraphic scheme (Fig. 2; Marshall, 1985; Cione and Tonni, 1995, 1999). According to Zárate (1989), the Punta San Andrés Alloformation unconformably overlays the Pliocene continental deposits of the Punta Martínez de Hoz, Playa Los Lobos and Playa San Carlos alloformations. Its lateral extent is about 15 km from the Arroyo Lobería to Punta Vorohué (Fig. 1) and it also crops out between Arroyo Lobería and Playa San Carlos (Fig. 1). The mean thickness of the Punta San Andrés Alloformation is 15 meters. Internally, it is subdivided into three allomembers limited by discontinuity surfaces with a lateral extent that allows mapping them at 1:25.000 scale (Zárate, 1989; Fig. 2). Because of the high mineralogical and textural homogeneity (silty sand and reworked loessoid silt) of the Cenozoic deposits in the study area (Teruggi et al., 1956) the discrimination amongst the different units is based on the abundance of the channelized facies, the carbonatic precipitation and the degree of development and maturity of paleosoils (Zárate, 1989). During field work 10 detailed, 1:50 scaled sedimentological profiles were made at Baliza San Andrés and Complejo Turístico Chapadmalal (Fig. 1) from which the 4 more complete are shown in figure 4. All stratigraphic logs were described in detail and focus was made in grain size, lithology, primary sedimentary structures, bioturbation, fossil content, scale and geometry of the lithosomes; all of these useful features to define sedimentary facies (Reading and Levell, 1996). The abundance of post depositional features (mainly pedogenetic) in the Punta San Andrés Alloformation made necessary the subdivision of sedimentary facies into two groups: depositional and post-depositional. The depositional facies were classified and described according to Miall´s scheme (1978, 2006), which was modified to facilitate their description and interpretation (Table 1). The post-depositional carbonatic facies were described according to Zárate´s scheme (1989) in which the studied features are the geometry of the calcareous accumulation (development in one, two or three dimensions), internal structure, hardness, abundance and lateral extent. The analysis of the seven depositional facies (Table 1) led to interpret a continental environment where unidirectional streams allowed the migration of 3D and 2D dunes as well as the lateral migration of side bars (facies Cig, ACt, ACs, Ah and Ae). It also made clear the presence of paleosoils developed on sheet-flood or splay deposits (facies Alp) and

of suspension-related sediments (facies Pm). The analysis of the three post-depositional facies (Table 1) led to the identification of carbonatization processes related to pedogenesis (facies Bc and Tm) and to diagenesis in a vadose environment (facies Tp). The sedimentary facies were grouped into four facies associations (FA; Table 2). Facies associations I and II are related to fluvial channels and FA III and IV are related to floodplains. In the first group, fixed, lowsinuosity channels were differentiated from mobile, high-sinuosity channels based on their symmetric, simple ribbon geometry (Friend et al. 1979; Gibling, 2006) and their constituent facies (Cig, ACt and Ae) as opposed to multiepisodic, complex ribbons (Friend et al., 1979) with participation of Cig, ACt, ACs, Ah and Ae facies. The floodplain associations were divided in crevasse-splay and calcic paleosoils associations. The first one is composed of Alp facies, has a wedge-like geometry, a coarsening-upward arrangement, laterally related to fixed, low-sinuosity channels and a lateral extension over 3 kilometers (Figs. 10a, b). The former is mainly composed of Tp and Tm facies, has a tabular geometry, also laterally related to fixed, low-sinuosity channel and a lateral extension of hundreds of meters. Even though these four facies associations can be found all over the Punta San Andrés Alloformation, it is possible to identify three different sections (A, B and C, Figs. 9 and 11) in which their arrangement and proportions vary. Each of these sections is associated with specific depositional conditions that determined a characteristic fluvial system. Section A involves the lower and middle allomembers (Fig. 2). It is represented by floodplain

deposits (both crevasse-splay and calcic paleosoils associations in a rhythmic arrangement) that are considered to represent a terminal fluvial system. The calcic paleosoils are interpreted to represent a dry and arid climate (Marriott and Wright, 1993; Balin, 2000) under a reduced rate of accommodation creation (Marriott and Wright, 1993; Cleveland et al., 2007). Because of the presence of iron nucleids and clay coatings, the crevasse-splay deposits are interpreted to represent wetter climatic conditions (Davies-Vollum and Kraus, 2001) and developed under a greater rate of accommodation creation (Cleveland et al., 2007).

Section B (upper allomember) is also made up of floodplain deposits, although coarser and much more dissected by a larger proportion of complex channels. Hence, they are interpreted as a proximal floodplain.

Finally, section C is represented by mobile, highsinuosity channel deposits in such a high proportion that in some parts of the outcrops there is no preservation of floodplain deposits. To summarize, for the Punta San Andrés Alloformation deposits cropping out in Baliza San Andrés and Complejo Turístico Chapadmalal, four

facies associations can be proposed based on the facies analysis of the sediments and its geometry. The analysis of these associations allowed definingdepositional environments whose interrelation reflected a progressive change in the paleoclimatic and accommodation conditions, probably related to base-level changes. For section A, climate is interpreted to have been dry and arid and related to low accommodation space. During deposition of section B, climate became wetter and accommodation space was increased. Section C is characterized by a lowering in the local base level that led to negative accommodation with fluvial incision. Deposition of channel fills and floodplain deposits indicate the return of positive accommodation space and wet climate.

References

Alonzo Zarza, A.M., 2003. Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Science Reviews 60:261-298.

Ameghino, F., 1908. Las formaciones sedimentarias de la región litoral de Mar del Plata y Chapadmalal. Anales Museo Nacional de Buenos Aires 3:343-428.

Balin, D.F., 2000. Calcrete morphology and karst development in the Upper Old Red Sandstone at Milton Ness, Scotland. En P.F. Friend y B.P.J. Williams (Eds.), New Perspectives on the Old Red Sandstone. Geological Society, London, Special Publications, 180:485-501.

Beilinson, E., 2008. Estimating aggradation rates from palaesol type: the Punta San Andrés Alloformation as a case study. 26th IAS Regional Meeting, Bochum, Germany.

Bown, T.M. y M.J. Kraus, 1987. Integration of channel and floodplain suites, I. Developmental sequence and lateral relations of alluvial paleosols. Journal of Sedimentary Petrology 57:587-601.

Bridge, J.S., 2006. Fluvial facies models: recent developments. En H.W. Posamentier y R.G. Walker (Eds.), Facies Models Revisited. SEPM Special Publication 84:85-170.

Cione, A.L. y E.P. Tonni, 1995. Chronostratigraphy and land mammal ages in the Cenozoic of southern South America: principles, practices and the Uquian problem. Journal of Palaeontology 69:135-159.

Cione, A.L. y E.P. Tonni, 1999. Biostratigraphy and chronological scale of uppermost Cenozoic in the Pampean Area, Argentina. En E.P. Tonni y A.L. Cione (Eds.), Quaternary Vertebrate Palaeontology in South America. Quaternary of South America and Antarctic Peninsula 12:23-51.

Clemente, P. y M. Pérez-Arlucea, 1993. Depositional architecture of the Cuerda del Pozo Formation, Lower Cretaceous of the extensional Cameros Basin, North-Central Spain. Journal of

Sedimentary Petrology 63:437-452.

Cleveland, D.M., S. Catchley y L.C. Nordt, 2007. Continental sequence stratigraphy of the Upper Triassic (Norian-Rhaetian) Chinle Strata, northen New Mexico, USA: allocyclic and autocyclic origins of paleosol-bearing successions. Journal of Sedimentary Research 77:909-924.

Código Argentino de Estratigrafía, 1992. Asociación Geológica Argentina, Serie B (Didáctica y complementaria) 20, 64 pp.

Collinson, J.D., 1996. Alluvial sediments. En H.G. Reading (Ed.), Sedimentary environments: processes, facies and stratigraphy. Blackwell Science: 37-82.

Crowley, K.D., 1983. Large-scale bed configurations (macroforms), Platte River basin, Colorado and Nebraska: primary structures and formative processes. Geological Society of America Buletin

:117-133.

Davies-Vollum, K.S. y M.J. Kraus, 2001. A relationship between alluvial backswamps and avulsion cycles: an example from the Willwood Formation of the Bighorn Basin, Wyoming. Sedimentary Geology 140:235-249.

Frenguelli, J., 1921. Los terrenos de la costa atlántica en los alrededores de Miramar (provincia de Buenos Aires) y sus correlaciones. Boletín de la Academia Nacional de Ciencias de Córdoba XXIV:325-485.

Frenguelli, J., 1957. Neozoico. Sociedad Argentina de estudios geográficos GAEA, Buenos Aires. Tomo 2, tercera parte, 218 pp.

Friend, P.F., 1983. Towards the field classification of alluvial architecture or sequence. En J.D. Collinson y J. Lewin (Eds.), Modern and Ancient Fluvial Systems. International Association of Sedimentologists, Special Publication 6:345-354.

Friend, P.F., M.J. Slater y R.C. Williams, 1979. Vertical and lateral building of river sandstone bodies, Ebro Basin, Spain. Journal of the Geological Society 136:39-46.

Gibling, M.R., 2006. Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classification. Journal of Sedimentary

Research 76:731-770.

Gile, L.H., F.F. Peterson y R.B. Grossman, 1966. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Science 101:347-360.

Heusser, J.C. y G. Claraz, 1865. Neue Denk. (Nov. Mems.) der Allegemeine Scweiz. Gessell. XXI 27. Zurich.

Klappa, C.F., 1980. Rhizolites in terrestrial carbonates: classification, recognition, génesis and significance. Sedimentology 27:613-630.

Kraglievich, J.L., 1952. El perfil geológico de Chapadmalal y Miramar, provincia de Buenos Aires. Revista del Museo de Mar del Plata, Vol. 1, Entr.1:8-37.

Kraglievich, J.L., 1953. La llanura bonaerense a través de un perfil geológico. Revista Mundo Atómico 14:88-99.

Kraglievich, J.L., 1959. Contribuciones al conocimiento de la geología cuaternaria en la Argentina. Nota acerca de la geología costera en la desembocadura del Arroyo Malacara (Provincia

de Buenos Aires). Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia. Ciencias geológicas, I (17):3-9.

Kraus, M.J., 1987. Integration of channel and floodplain suites, II. Vertical relations of alluvial paleosols. Journal of Sedimentary Petrology 57:602-612.

Machette, M.N., 1985. Calcic soils of sothwestern United States. En: Weide, D.J. (Ed.), Soil and Quaternary geology of the southwestern United States. Special Paper, Geological Scociety

of America 203:1-21.

Marriott, S. y V.P. Wright, 1993. Palaeosols as indicators of geomorphic stability in two Old Red Sandstone alluvial suites, South Wales. Journal of the Geological Society of London 150:1109-1120.

Marshall, L.G., 1985. Geochronology and land-mammal biochronology of the Transamerican Faunal Interchange. En F.G. Stehil y S.D. Webb (Eds.), The great merican biotic interchange. Plenum Press, New York and London.

Miall, A.D., 1978. Lithofacies types and vertical profile models in braided river deposits: a summary. En A.D. Miall (Ed.), Fluvial Sedimentology. Canadian Society Petroleum Geologists

Memoir 5:597-604.

Miall, A.D., 2006. The geology of fluvial deposits. Sedimentary facies, basin analysis and petroleum geology. Springer, 4º edición, 582 pp.

NACSN (North American Commission on Stratigraphic Nomenclature), 1983. North American Stratigraphic Code; American Association of Petroleum Geologists Bulletin, 67:841-875.

Orgeira, M.J., 1988. Estudio paleomagnético de los sedimentos del Cenozoico tardío en la costa atlántica bonaerense. Revista de la Asociación Geológica Argentina, 42:362-376.

Orgeira, M.J. y D.A. Valencio, 1984. Estudio paleomagnético de sedimentos asignados al Cenozoico tardío aflorantes en Barranca de los Lobos, Provincia de Buenos Aires. Noveno

Congreso Geológico Argentino, San Carlos de Bariloche. Actas IV:162-173.

Parker, G., R. Violante, M. Paterlini, I. Costa, S. Marcolini y J. Cavallotto, 2008. Las secuencias depositacionales del Plioceno-Cuaternario de la plataforma submarina adyacente al litoral del este bonaerense. Latin American Journal of Sedimentology and Basin Analysis 15:105-124.

Posamentier, H.W. y G.P. Allen, 1999. Siliciclastic sequence stratigraphy: concepts and applications. SEPM Concepts in Sedimentology and Paleontology 7. Tulsa. 210 pp.

Ramos, A. y A. Sopeña, 1983. Gravel bars in low sinuosity streams (Permian and Triassic, central Spain). En J.D. Collinson y J. Lewin (Eds.), Modern and ancient fluvial systems. IAS Special Publication 6:301-312.

Ramos, A., A. Sopeña y M. Pérez-Arlucea, 1986. Evolution of Buntsandstein fluvial sedimentation in the northwest Iberian Ranges (central Spain). Journal of Sedimentary Petrology 56:862-875.

Ramos, V.A., 1996. Evolución tectónica de la Plataforma Continental. En V.A. Ramos y M.A. Turic (Eds.), Geología y Recursos Naturales de la plataforma Continental Argentina, Relatorio XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Buenos Aires: 385-404.

Reading, H.G. y B.K. Levell, 1996. Controls on the sedimentary rock record. En H.G. Reading (Ed.), Sedimentary environments: processes, facies and stratigraphy. Blackwell Science: 5-36.

Rolleri, E.O., 1975. Provincias geológicas bonaerenses. Relatorio VI Congreso Geológico Argentino, Actas: 29-54. Buenos Aires.

Ruocco, M., 1989. A 3 Ma palaeomagnetic record of coastal continental deposits in Argentina. Palaeoecology, palaeogeography, palaeoclimatology 72:105-113.

Schultz, P.H., M. Zárate, W. Hames, C. Camilión y J. King, 1998. A 3.3 Ma impact in Argentina and posible consequences. Science 282:2061-2063.

Shanley, K.W., P.J. MacCabe y R.D. Hettinger, 1992. Tidal influence in cretaceous fluvial strata from Utah, USA: a key to sequence stratigraphic interpretation. Sedimentology 39:905-930.

Smith, N.D., T.A. Cross, J.P. Dufficy y S.R. Clough, 1989. Anatomy of an avulsion. Sedimentology 36:1-23.

Spalletti, L.A., 1994. Evolución de los ambientes fluviales en el Triásico de la Sierra Pintada (Mendoza, Argentina): análisis sobre la influencia de controles intrínsecos y extrínsecos al sistema depositacional. Revista de la Asociación Argentina de Sedimentología 1:125-142.

Teruggi, M.E., M.C. Etchichury y J.R. Remiro, 1956. Estudio sedimentológico de los terrenos de las barrancas de la zona Mar del Plata – Miramar. Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Ciencias Geológicas, tomo IV, nº 2.

Teruggi, M.E., R.H. Andreis, M.M. Mazzoni y L.H. Dalla Salda, 1974. Nuevos criterios para la estratigrafía del Cuaternario de las barrancas de Mar del Plata – Miramar. LEMIT, Serie II, N°

Turic, M.A., A.V. Nevistic y G. Rebay, 1996. Geología y Recursos Naturales de la Plataforma Continental. En V.A. Ramos y M.A. Turic (Eds.), Geología y Recursos Naturales de la plataforma

Continental Argentina, Relatorio XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Buenos Aires: 405-423.

Zárate, M.A., 1989. Estratigrafía y geología de los acantilados marinos comprendidos entre Playa San Carlos y Arroyo Chapadmalal. Tesis Doctoral 556, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 220 pp. (inédito).

Zárate, M.A., 2003. Loess of southern South America. Quaternary Science Reviews 22:1987-2006.

Zárate, M.A., 2005. El Cenozoico tardío continental de la provincia de Buenos Aires. Relatorio del XVI Congreso Geológico Argentino. Cap. IX.

Zárate, M.A. y J.L. Fasano, 1989. The Plio-Pleitocene record of central eastern pampas, Buenos Aires province, Argentina. The Chapadmalal case study. Palaeogeography, palaeoclimatology,

palaeoeology 72:27-52.

Published

2021-03-31

How to Cite

Beilinson, E. . (2021). High resolution facies and paleoenvironmental analysis of the Punta San Andrés (Plio-Pleistocene) aloformation, Buenos Aires province, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 16(1), 57-74. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/105

Issue

Section

Research Papers