Paleosols and related soil-biota of the Early Miocene Santa Cruz Formation (Austral-Magallanes Basin, Argentina): a multidisciplinary approach to reconstructing ancient terrestrial landscapes

Autores/as

  • M. Sol Raigemborn CONICET - UNLP. Centro de Investigaciones Geológicas, Diagonal 113 Nº 275 (1900) La Plata, Argentina. Cátedra de Micromorfología de Suelos, Facultad de Ciencias Naturales y Museo, UNLP, Calle 122 y 60 s/n, (1900) La Plata, Argentina.
  • Alejandro F. Zucol Laboratorio de Paleobotánica, Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICYTTP-UADER Provincia de Entre Ríos - CONICET), Dr. Materi y España SN, E3105BWA, Diamante, Argentina.
  • Luciano Zapata Cátedra de Fundamentos de Geología, Facultad de Ciencias Naturales y Museo, UNLP, Calle 122 y 60 s/n (1900) La Plata, Argentina.
  • Elisa Beilinson CONICET - UNLP. Centro de Investigaciones Geológicas, Diagonal 113 Nº 275 (1900) La Plata, Argentina. Cátedra de Sedimentología Especial, Facultad de Ciencias Naturales y Museo, UNLP, Calle 122 y 60 s/n (1900) La Plata, Argentina.
  • Nestor Toledo División Paleontología Vertebrados, Unidades de Investigación, Anexo Museo, Facultad de Ciencias Naturales y Museo, Avenida 60 y 122, 1900, La Plata, Argentina. CONICET
  • Jonathan Perry Center for Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, USA.
  • Sabrina Lizzoli CONICET - UNLP. Centro de Investigaciones Geológicas, Diagonal 113 Nº 275 (1900) La Plata, Argentina.
  • Lucía Martegani Cátedra de Mineralogía, Facultad de Ciencias Naturales y Museo, UNLP, Calle 122 y 60 s/n (1900) La Plata, Argentina.
  • David E. Tineo CONICET - UNLP. Centro de Investigaciones Geológicas, Diagonal 113 Nº 275 (1900) La Plata, Argentina. Cátedra de Geología de Combustibles, Facultad de Ciencias Naturales y Museo, UNLP, Calle 122 y 60 s/n (1900) La Plata, Argentina.
  • Esteban Passeggi Laboratorio de Paleobotánica, Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICYTTP-UADER Provincia de Entre Ríos - CONICET), Dr. Materi y España SN, E3105BWA, Diamante, Argentina.

Palabras clave:

Pedotypes; Ichnofossils; Phytoliths; Vertebrates; Santa Cruz Province

Resumen

The middle and upper parts of the lower Miocene Santa Cruz Formation (~17–15.9 Ma) in the southeastern Austral-Magallanes Basin (southern Patagonia, Argentina) crop out as a fluvial succession that in parts is pedogenically modified. The study of the paleosols of this unit combined with the study of ichnofossils, microremains, and fossil vertebrates present in these allows us to reconstruct past environmental, ecological, and climatic conditions, as well as paleolandscape evolution of the Santa Cruz Formation during ~1 my. These reconstructions demonstrate three different stages during which very weak to moderate pedogenesis took place. The first one (middle part of the unit) is an epiclastic distal floodplain bearing Calcisols or paleo-calcic Inceptisols, which record a relatively dense vegetation integrating trees, shrubs, palms, and short grasses. Soil fauna is scarce and it is in association with a vertebrate fauna typical of coastal “Santacrucian assemblages”. The second landscape stage (the bottom of the lowermost upper part of the unit) is composed of epiclastic distal floodplain areas and minor pyroclastic proximal floodplain settings that contain mainly Vertisols. Vertisols record an ecosystem dominated by grasses and palms adapted to variable conditions in hydric availability (C4 plants) and by solitary bee larvae, and adult and nymph soil beetles. Finally, up-section, the third stage attests to the existence of an epiclastic and pyroclastic distal and proximal floodplain over which Protosols developed. Past ecosystems supported grass vegetation (C3 plants), oligochaete annelids and a moderately diverse insect soil fauna (interpreted by their trace fossils) composed of solitary bee larvae, soil beetles and their pupae, cicada nymphs, and myriapods. This combined abiotic (paleosols) and biotic (ichnofossils, microremains, and vertebrates) study indicates that several factors controlled the landscape evolution during the early Miocene of southeastern Patagonia. Highly aggrading fluvial conditions, variations in the position in the floodplain and in sedimentation/pedogenesis ratio, the input of pyroclastic materials, the length of landscape stability, changing hydrologic conditions, and fluctuations of wetter and drier phases in a context of relatively warm and humid climate, seem to be the main factors controlling the landscape.

Citas

Alonso-Zarza, A.M., and V.P. Wright, 2010. Calcretes. In: A.M. Alonso-Zarza and L.H. Tanner (Eds.), Carbonates in Continental Settings: Facies, Environments and Processes. Elsevier, Amsterdam, 225-267.

Alonso-Zarza, A.M., M.E., Sanz, J.P.,Calvo, and P. Estévez, 1998. Calcified root cells in Miocene pedogenic carbonates of the Madrid Basin: evidence for the origin of Microcodium b. Sedimentary Geology 16:81-97.

Ashley, G., and S. Driese , 2000. Paleopedology and paleohydrol¬ogy of a volcaniclastic paleosol interval: implications for Early Pleistocene stratigraphy and paleoclimate record, Olduvai Gorge, Tanzania. Journal of Sedimentary Research 70:1065- 1080.

Badawy, H.S., 2017. Termite nests, rhizoliths and pedotypes of the Oligocene fluviomarine rock sequence in northern Egypt: Proxies for Tethyan tropical palaeoclimates. Palaeogeography, Palaeoclimatology, Palaeoecology 492:161-176.

Barboni, D., and L. Bremond, 2009. Phytoliths of East African grasses: An assessment of their environmental and taxonomic significance based on floristic data. Review of Palaeobotany and Palynology 158:29-41.

Bargo, M.S., N., Toledo, and S.F. Vizcaíno , 2012. Paleobiology of the Santacrucian sloths and anteaters (Xenarthra, Pilosa). In: Vizcaíno, S.F., Kay, R.F. and M.S. Bargo (Eds.), Early Miocene Paleobiology in Patagonia: high-latitude paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, UK, 216-242.

Bellosi, E.S., and M.G. González, 2010. Paleosols of the middle Cenozoic Sarmiento Formation, central Patagonia. In: Madden, R.H., Carlini, A.A., Vucetich, M.G., and R.F. Kay (Eds.). The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, UK, 293-305.

Bertels, A., 1970. Sobre el “Piso Patagoniano” y la representación de la época del Oligoceno en Patagonia Austral, República Argentina. Revista de la Asociación Geológica Argentina 25: 496-501.

Biddle, K., M., Uliana R. Jr.,Mitchum, M., Fitzgerald, and R. Wright, 1986. The stratigraphic and structural evolution of central and eastern Magallanes Basin, Southern America. In: P. Allen and P. Homewood (Eds), Foreland basins. International Association of Sedimentologist, Special Publication 8:41-61.

Billings, E., 1862. New species of fossils from different parts of the Lower, Middle and Upper Silurian rocks of Canada. In: Palaeozoic Fossils (Vol. 1, 1861-1865). Geological Survey of Canada Advance Sheets. Canadá, 96-168.

Birkeland, P., 1999. Soils and geomorphology. Oxford University Press, New York, 430 pp.

Bradshaw, M.A., 1981. Palaeoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (Lower Beacon Supergroup), Antarctica. New Zealand Journal of Geology and Geophysics 24:615-652.

Brea, M., A.F., Zucol, and A. Iglesias, 2012. Fossil plant stud¬ies from late early Miocene of the Santa Cruz Formation: paleoecology and paleoclimatology at the passive margin of Patagonia, Argentina. In: Vizcaíno, S.F., Kay, R.F. and M.S. Bargo (Eds.), Early Miocene Paleobiology in Patagonia: high-latitude paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, UK, 104-128.

Brea, M., A.F., Zucol, M.S.,Bargo, J.C., Fernícola, and S.F. Vizcaíno, 2017. First Miocene record of Akaniaceae in Patagonia (Argentina): a fossil wood from the Early Miocene Santa Cruz Formation and its palaeobiogeographical implica¬tions. Botanical Journal of the Linnean Society 183:334-347.

Bromley, R.G., 1996. Trace Fossils: Biology, Taphonomy and Applications. 2nd Edition, Champman and Hall, London, United Kingdom, 361 pp.

Bullock, P., N., Fedoroff, A., Jongerius, G., Stoops, and T. Tursina, 1985. Handbook for soil thin section description. Waine Research Publications, 152 pp.

Buol, W.S., R.J., Southard, R.C., Graham, and P.A. McDanield, 2011. Soil genesis and classifications. 6th Edition, Wiley- Blackwell, Oxford, 543 pp.

Candela, A.M., and M.B.J. Picasso, 2008. Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): indica¬tors of locomotor behaviour in Miocene porcupines. Journal of Morphology 269:552-593.

Candela, A.M., L.L., Rasia, and M.E. Pérez, 2012. Paleobiology of Santacrucian Caviomorph rodents: a morpho-functional approach. In: Vizcaíno, S.F., Kay, R.F. and M.S. Bargo (Eds.), Early Miocene Paleobiology in Patagonia: high-latitude pa¬leocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, UK, 287-305.

Cassini, G.H., 2013. Skull geometric morphometrics and Paleoecology of Santacrucian (late Early Miocene; Patagonia) na¬tive ungulates (Astrapotheria, Litopterna, and Notoungulata). Ameghiniana 50:193-216.

Catena, A.M., D.I., Hembree, B.Z., Saylor, F., Anaya, and D.A. Croft, 2016. Paleoenvironmental analysis of the Neotropical fossil mammal site of Cerdas, Bolivia (middle Miocene) based on ichnofossils and paleopedology. Palaeogeography, Palaeoclimatology, Palaeoecology 459:423-439.

Catena, A.M., D.I., Hembree, B.Z., Saylor, F., Anaya, and D.A. Croft, 2017. Paleosol and ichnofossil evidence for signifi¬cant Neotropical hábitat variation during the late middle Miocene (Serravallian). Palaeogeography, Palaeoclimatology, Palaeoecology 487:381-398.

Cecil, C.B., and F.T. Dulong, 2003. Precipitation models for sediment supply in warm climates. In: Cecil, C.B., and N.T. Edgar (Eds.), Climate Controls on Stratigraphy, vol. 77. SEPM Special Publication, 21-27.

Collura, L.V., and K. Neumann, 2017. Wood and bark phytoliths of West African woody plants. Quaternary International 434 (Part B): 142-159.

Counts, J.W., and S. Hasiotis, 2009. Neoichnological experiments with masked chafer beetles (Coleoptera: Scarabaeidae): implica¬tions for backfilled continental trace fossils. Palaios 24:74-91.

Crifò C., M.S., Bargo, R.F., Kay, M.J., Kohn, S.F., Vicaíno, A.F., Zucol, and C.A.E. Strömberg, 2016. Using phytolith to track vegetation changes during the MMCO of the Santa Cruz Formation, Patagonia (Argentina). XIV International Palynological Congress -X International Organization of Palaeobotany Conference.

Crifò C., M.S., Bargo, J.I., Cuitiño, R.F., Kay, M.J., Kohn, R.B., Trayler, S.F., Vizcaíno, A.F., Zucol, and C.A.E. Strömberg, 2017. Fossil phytolith assemblages from southern Patagonia indicate changing habitats during the Middle Miocene climat¬ic optimum. GSA Annual Meeting, Seattle, Washington, USA. DOI: 10.1130/abs/2017AM-298212.

Crifò C., M.S., Bargo, J.I., Cuitiño, R.F., Kay, M.J., Kohn, R.B., Trayler, S.F., Vizcaíno, A.F., Zucol, and C.A.E. Strömberg, 2018. Habitat shift during the Middle Miocene Climatic Optimum of Southern Patagonia recorded in phytolith as¬semblages. 5th International Paleontological Congress (https:// ipc5.sciencesconf.org/).

Cuitiño, J.I., V., Krapovickas, M.S., Raigemborn, L., Zapata, and J.C. Fernícola, 2016a. La Formación Monte León (Mioceno temprano) como ejemplo de sistemas sedimentarios transicionales-regresivos de Patagonia Austral. VII Congreso Latinoamericano de Sedimentología y XV Reunión Argentina de Sedimentología, 67.

Cuitiño, J.I., J.C., Fernicola, M.J., Kohn, R., Trayler, M.S., Bargo, R.F., Kay, and S.F. Vizcaíno, 2016b. U-Pb geochronology of the Santa Cruz Formation (early Miocene) at the Río Bote and Río Santa Cruz (southernmost Patagonia, Argentina): implica¬tions for the correlation of fossil vertebrate localities. Journal of South American Earth Sciences 70:198-210.

Daniels, J.M., 2003. Floodplain aggradation and pedogenesis in a semiarid environment. Geomorphology 56:225-242.

Fanning, D.S., and M.C.B. Fanning, 1989. Soil: Morphology, Genesis, and Classification. Wiley, 416 pp.

Fidalgo, F., and J.C. Riggi, 1970. Consideraciones geomórficas y sedimentológicas sobre los Rodados Patagónicos. Revista de la Asociación Geológica Argentina 25:430-443.

Frey, R.W., S.G., Pemberton, and J. Fagerstrom, 1984. Morphological, ethological, and environmental significance of the ich¬nogenera Scoyenia and Ancorichnus. Journal of Paleontolology 58:511-528.

Genise, J.F., 2000. The ichnofamily Celliformidae for Celliforma and allied ichnogenera. Ichnos 7:267-282.

Genise, J.F., and T.M. Bown, 1994. New Miocene scarabeid and hymenopterous nests and early Miocene (Santacrucian) pa¬leoenvironments, Patagonian Argentina. Ichnos 3:107-117.

Genise, J.F., R.N., Melchor, E.S., Bellosi, and M. Verde, 2010. Invertebrate and Vertebrate Trace Fossils from Continental Carbonates, In: Alonso-Zarza, A.M., and L.H. Tanner (Eds.), Developments in Sedimentology. Elsevier. doi:10.1016/S0070- 4571(09)06107-X.

Gile, L.H., F.F., Peterson, and J.B. Grossman , 1966. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Sciences 101:347-360.

Halls, J., 1847. Palaeontology of New York. Volume I. Containing descriptions of the organic remains of the Lower Division of the New York System (Equivalent to the Lower Silurian rocks of Europe). C. van Benthuysen, Albany, 338 pp.

Harris, E., C., Strömberg, N., Sheldon, S., Smith, and D. Vilhena, 2017. Vegetation response during the lead-up to themiddle¬Miocene warming event in the Northern Rocky Mountains, USA. Palaeogeogrraphy, Palaeoclimatology, Palaeoecology 485:401-415.

Hasiotis, S.T., and B.F. Platt, 2012. Exploring the sedimentary, pedogenic, and hydrologic factors that control the occur¬rence and role of bioturbation in soil formation and horizo¬nation in continental deposits: An integrative approach. The Sedimentary Record 4-9.

Hasiotis, S.T., B.F., Platt, D.I., Hembree, and M.J. Everhart, 2007. The trace-fossil record of vertebrates. In: Miller, W.I.I.I. (Ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, 196-216.

Hatcher, J.B., 1897. The cape fair weather beds: a new marine tertiary horizon in southern Patagonia. American Journal of Science 4 (IV): 246-256.

Hembree, D.I., and S.T. Hasiotis, 2007. Paleosols and Ichnofossils of the White River Formation of Colorado: Insight Into Soil Ecosystems of the North American Midcontinent During the Eocene-Oligocene Transition. Palaios 22:123-142.

Hembree, D.I., and J.J. Bowen, 2017. Paleosols and ichnofossils of the upper Pennsylvanian lower Permian Monongahela and Dunkard groups (Ohio, USA): a multi-proxy approach to un-raveling complex variability in ancient terrestrial landscapes. Palaios 32:295-320.

Johnston, P.A., D.A., Eberth, and P.K. Anderson, 1996. Alleged vertebrate eggs from upper Cretaceous redbeds, Gobi Desert, are fossil insect (Coleoptera) pupal chambers: Fictovichnus new ichnogenus. Can. J. Earth Sci. 33:511-525.

Kay, R.F., S.F., Vizcaíno, M.S., Bargo, J.M.G., Perry, F.J., Prevosti, and J.C. Fernicola, 2008. Two new fossil vertebrate localities in the Santa Cruz Formation (late Early-early Middle Miocene, Argentina), 51° South latitude. Journal of South American Earth Sciences 25:187-195.

Kay, R.F., S.F., Vizcaíno, and M.S. Bargo, 2012. A review of the paleoenvironment and paleoecology of the Miocene Santa Cruz Formation. In: Vizcaíno, S.F., R.F., Kay and M.S. Bargo (Eds.), Early Miocene Paleobiology in Patagonia: high-latitude paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, UK, 331-365.

Klappa, C.F., 1980. Rhizoliths in terrestrial carbonates: classifi¬cation, recognition, genesis and significance. Sedimentology 27:613-629.

Kohn, M.J., C.A.E., Strömberg, R.H., Madden, R.E., Dunn, S., Evans, A., Palacios, and A.A. Carlini, 2015. Quasi-static Eocene–Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 435:24-37.

Krapovickas, V., 2012. Ichnology of distal overbank deposits of the Santa Cruz Formation (late Early Miocene): paleohydrologic and paleodimatic significance. In: Vizcaíno, S.F., Kay, R.F. and M.S. Bargo (Eds.), Early Miocene Paleobiology in Patagonia: high-latitude paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, UK, 91-103.

Krapovickas, V., M.G., Mángano, A., Mancuso, C.A., Marsicano, and W. Volkheimer, 2008. Icnofaunas triásicas en abanicos aluviales distales: evidencias de la Formación Cerro Puntudo, Cuenca Cuyana, Argentina. Argentina. Ameghiniana 45 (2): 463-472.

Krapovickas, V., P.L., Ciccioli, M.G.,Mángano, C.A., Marsicano, and C.O. Limarino, 2009. Paleobiological and paleoecologi¬cal significance of a Miocene Southa merican ichnofauna in anastomosed fluvial deposits. Países Bajos. Palaeogeography, Palaeoclimatology, Palaeoecology 284:129-152.

Krapovickas V., M.S, Bargo S.F., Vizcaíno M.S., Raigemborn and J.C. Fernicola, 2013. Huellas fósiles de mamíferos de la Formación Santa Cruz (Mioceno Inferior; provincia de Santa Cruz): aspectos tafonómicos. XXVII Jornadas Argentinas de Paleontología de Vertebrados, Libro de resúmenes 55.

Kraus, M., 1999. Paleosols in clastic sedimentary rocks. Earth Sciences Reviews 47:41-70.

Kraus, M.J., and S.T. Hasiotis, 2006. Significance of different modes of rhizolith preservation to interpreting paleoenvi¬ronmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn basin, Wyoming, USA. Journal of Sedimentary Research 76:633-646.

Kraus, M.J., D.T, Woody, J.J., Smith, and V. Dukic, 2015. Alluvial response to the Paleocene-Eocene thermal maximum climatic event, Polecat Bench, Wyoming (USA). Palaeogeography, Palaeoclimatology, Palaeoecology 435:177-192.

Krause, J.M., T.M., Bown, E.S., Bellosi, and J.F. Genise, 2008. Trace fossils of cicadas in the Cenozoic of Central Patagonia, Argentina. Palaeontology 51:405-418.

Machette, M.N., 1985. Calcic soils of the southwestern United States. Geological Society of America, Special Paper 203:1-21.

Mack, G.H., W.C., James, and H.C. Monger, 1993. Classification of paleosols. Geological Society of America Bulletin 105:129–136.

Malumián, N., 1999. La sedimentación y el volcanismo ter¬ciarios en la Patagonia Extraandina, 1. La sedimentación en la Patagonia Extraandina. In: R. Caminos (Ed.), Geología Argentina. Anales 29 del Instituto de Geología y Recursos Minerales, 557-578.

Matheos, S.D., and M.S. Raigemborn, 2012. Sedimentology and paleoenvironment of the Santa Cruz Formation. In: Vizcaíno, S.F., Kay, R.F. and M.S. Bargo (Eds.), Early Miocene Paleobiology in Patagonia: high-latitude paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, UK, 59-82.

Mercader, J., T., Bennett, C., Esselmont, S., Simpson, and D. Walde, 2009. Phytoliths in woody plants from the Miombo woodlands of Mozambique. Annals of Botany 104:91-113.

Mercader, J., F., Astudillo, M., Barkworth, T., Bennett, C., Esselmont, R., Kinyanjui, D.L., Grossman, S., Simpson, and D. Walde , 2010. Poaceae phytoliths from the Niassa Rift, Mozambique. Journal of Archaeological Science 37:1953-1967.

Munsell Soil Color Book, 2013. Grand Rapids: Munsell Color: X-Rite, 2013, USA.

Neumann, K., A.G., Fahmy, N., Müller-Scheeßel, and M. Schmidt, 2017. Taxonomic, ecological and palaeoecological signifi¬cance of leaf phytoliths in West African grasses. Quaternary International 434 (B): 15-32.

Parras, A. and J.I., Cuitiño, (in press). The stratigraphic and paleoenvironmental significance of the regressive Monte Observación Member, Early Miocene of the Austral Basin, Patagonia. Latin American Journal of Sedimentology and Basin Analysis.

Pemberton, S.G., and R.W. Frey, 1982. Trace fossil nomencla¬ture and the Planolites Palaeophycus dilemma. Journal of Paleontology 56:843-881.

Perkins, M.E., J.G., Fleagle, M.T., Heizler, B., Nash, T.M., Bown, A.A., Tauber, and M.T., Dozo, 2012. Tephrochronology of the Miocene Santa Cruz and Pinturas Formations, Argentina. In: Vizcaíno, S.F., R.F., Kay, and M.S. Bargo (Eds.), Early Miocene Paleobiology in Patagonia: high-latitude paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, UK, 23-40.

Perry, J.M.G., R.F., Kay, S.F., Vizcaíno, and M.S. Bargo, 2014. Oldest known cranium of a juvenile New World monkey (Early Miocene, Patagonia, Argentina): implications for the taxonomy and the molar eruption pattern of early platyr¬rhines. Journal of Human Evolution 74:67-81.

PiPujol, M.D., and P. Buurman, 1994. The distinction between ground-water gley and surface-water gley phenomena in Tertiary paleosols of the Ebro basin, NE Spain: Palaeogeography, Palaeoclimatology, Palaeoecology 110:103-113.

Raigemborn, M.S., L., Gómez-Peral, J.M., Krause, and S.D. Matheos, 2014. Controls on clay mineral assemblages in an Early Paleogene nonmarine succession: Implications for the volcanic and paleoclimatic record of extra-Andean Patagonia, Argentina. Journal of South American Earth Sciences 52:1-23.

Raigemborn, M.S., S.D., Matheos, V., Krapovickas, S.F., Vizcaíno, M.S., Bargo, R.F., Kay, J.C., Fernicola, and L. Z.apata, 2015. Paleoenvironmental reconstruction of the coastal Monte Léon and Santa Cruz formations (early Miocene) at Rincón del Buque, southem Patagonia: a revisited locality. Journal of South American Earth Sciences 60:31-55.

Raigemborn, M.S., V., Krapovickas, E., Beilinson, L.E., Gómez Peral, A.F., Zucol, L. F., Zapata, M.R., Kay., M.S., Bargo, S.F., Vizcaíno, and A.N. Sial, 2018a. Multiproxy studies of Early Miocene pedogenic calcretes in the Santa Cruz Formation of southern Patagonia, Argentina indicate the existence of a tem¬perate warm vegetation adapted to a fluctuating water table. Palaeogeography, Palaeoclimatology, Palaeoecology 500:1-23.

Raigemborn, M.S., E., Beilinson, J.M., Krause, A.N., Varela, E., Bellosi, S., Matheos, and N. Sosa 2018b. Paleolandscape reconstruction and interplay of controlling factors of an Eocene pedogenically-modified distal volcaniclastic succes¬sion in Patagonia. Journal of South American Earth Sciences 86:475-496.

Ratcliffe, B.C., and J. Fagerstrom, 1980. Invertebrate lebensspuren of Holocene floodplains: their morphology, origin and paleo¬ecological significance. Journal of Paleontology 54:614-630.

Retallack, G.J., 2001. Soils of the past, 2nd Ed. Blackwell Science Ltd., Oxford, 404 pp.

Retallack, G., E., Bestland, and T. Fremd, 2000. Eocene and Oligocene paleosols of Central Oregon. Geological Society of America, Special Paper 344:1-192.

Sacristán-Horcajada, S., M.E., Arribas, and R. Mas, 2016. Pedogenetic calcretes in early Synrift alluvial systems (Upper Jurassic, West Cameros Basin), northern Spain. Journal of Sedimentary Research 86:268-286.

Schoeneberger, P.J., D.A., Wysocki, and E.C. Benham (Soil Survey Staff), 2012. Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE. 300 pp.

Schwertmann, U., and R.M. Taylor, 1977. Iron oxides. In J. B. Dixon and S. B Weed (Eds.), Minerals in Soil Environments, Madison, Wisconsin: American Society of Agronomy and Soil Science, 145-180.

Sheldon, N.D., and N.J. Tabor, 2009. Quantitative paleoenviron¬mental and paleoclimatic reconstruction using paleosols. Earth-Science Review 95:1-52.

Soil Survey Staff, 1999. Soil Taxonomy, a basic system for mak¬ing and interpreting soil surveys. United States Department of Agriculture, Handbook, Washington, 436 pp.

Stoops, G., 2003. Guidelines for analysis and description of soil and regolith thin sections: Madison, Wisconsin, Soil Science Society of America, 184 pp.

Stoops, G., V., Marcelino, and F. Mees, 2010. Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, 720 pp.

Strömberg, C.A.E., R.E., Dunn, R.H., Madden, M.J., Kohn, and A.A. Carlini, 2013. Decoupling the spread of grasslands from the evolution of grazer–type herbivores in South America. Nature Communications 4: 1478.

Tauber, A.A., 1994. Estratigrafía y vertebrados fósiles de la Formación Santa Cruz (Mioceno Inferior) de la costa atlántica entre las rías del Coyle y de Río Gallegos, Provincia de Santa Cruz. [Ph.D. thesis] Universidad Nacional de Córdoba, República Argentina, 422 pp.

Tauber, A.A., 1997a. Bioestratigrafía de la Formación Santa Cruz (Mioceno inferior) en el extremo sudeste de la Patagonia. Ameghiniana 34:413-426.

Tauber, A.A., 1997b. Paleoecología de la Formación Santa Cruz (Mioceno inferior) en el extremo sudeste de la Patagonia. Ameghiniana 34:517-529.

Tauber, A.A., R.F., Kay, and C. Luna, 2004. Killik Aike Norte, una localidad clásica de la Formación Santa Cruz (Mioceno tem¬prano-medio), Patagonia, Argentina. Ameghiniana 41:63-64R.

Tejedor M.F., A.A., Tauber A.L., Rosenberg C.C., Wisher and M.E. Palacios, 2006. New primate genus from the Miocene of Argentina. Proceedings of the National Academy of Sciences of the United States of America, 103:5437-5441.

Toledo, N., 2016. Conceptual and methodological approaches for a paleobiological integration: the Santacrucian sloths (early Miocene of Patagonia) as a study case. Ameghiniana 53:100- 141.

Vizcaíno, S.F., M.S., Bargo, R.F., Kay, R.A., Fariña, M., Di Giacomo, M.G., Perry, F.J., Prevosti, N., Toledo, G.H., Cassini, and J.C. Fernicola, 2010. A baseline paleoecological study for the Santa Cruz Formation (late-Early Miocene) at the Atlantic coast of Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeocology 292:507-519.

Vizcaíno, S.F., R.F., Kay, and M.S. Bargo, 2012. Early Miocene Paleobiology in Patagonia: Highlatitude Paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, 370 pp.

Zamanian, K., K., Pustovoytov, and Y. Kuzyakov, 2016. Pedogenic carbonates: forms and formation processes. Earth Science Review 157:1-17.

Zapata, L., 2018. Estudio paleoambiental de la Formación Santa Cruz (Mioceno inferior-medio) entre los ríos Coyle y Gallegos, Patagonia Austral, Argentina. [Ph.D. thesis]. Universidad Nacional de La Plata, La Plata, Argentina, 299 pp.

Zapata, L., V., Krapovickas, M.S., Raigemborn, and S.D. Matheos, 2016. Bee cell trace fossils associations on paleosols from the Santa Cruz formation: Palaeoenvironmental and palaeo-biological implications. Palaeogeography Palaeoclimatology Palaeoecology 459:153-169.

Zucol, A.F., E., Passeggi, M., Brea, N.I., Patterer, M.G., Fernández Pepi, and M.M. Colobig, 2010. Phytolith analysis for the Potrok Aike Lake Drilling Project: Sample treatment pro¬tocols for the PASADO Microfossil Manual. In: H. Corbella and N.I. Maidana (Eds.), 1ª Reunión Internodos del Proyecto Interdisciplinario Patagonia Austral and 1er Workshop Argentino del Proyecto Potrok Aike Maar Lake Sediment Archive Drilling Project. Proyecto Editorial PIPA. Buenos Aires, Argentina, 81-84.

Zucol, A.F.; M.S., Raigemborn, C.A.E., Strömberg, C., Crifò, E., Passeggi, M.S., Bargo, and S.F. Vizcaíno, 2015. Phytolith analysis from Santa Cruz Formation in Rincón del Buque locality (Santa Cruz province, Argentina), Argentina. XVI Simposio Argentino de Paleobotánica y Palinología, Libro de Resúmenes: 24-25.

Zucol, A.F., J.M., Krause, M., Brea, M.S., Raigemborn, and S.D. Matheos, 2018. Emergence of grassy habitats during the greenhouse–icehouse systems transition in the middle Eocene of central Patagonia. Ameghiniana 55:451-482.

Descargas

Publicado

2021-03-31

Cómo citar

Raigemborn, M. S. ., Zucol, A. F. ., Zapata, L. ., Beilinson, E. ., Toledo, N. ., Perry, J. ., Lizzoli, S. ., Martegani, L. ., Tineo, D. E. ., & Passeggi, E. . (2021). Paleosols and related soil-biota of the Early Miocene Santa Cruz Formation (Austral-Magallanes Basin, Argentina): a multidisciplinary approach to reconstructing ancient terrestrial landscapes. Latin American Journal of Sedimentology and Basin Analysis, 25(2), 117-148. Recuperado a partir de https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/65

Número

Sección

Volumen especial