Diagenetic evolution of the Permian Tunas Formation, Claromecó Basin, Buenos Aires province, Argentina: its impact on porosity and reservoir characteristics

Autores/as

  • Maria Belen Febbo Universidad Nacional del Sur
  • Nora Cesaretti Departamento de Geología, Universidad Nacional del Sur (UNS)
  • Silvia Omodeo-Salé Department of Earth Sciences, University of Geneva
  • Andrea Moscariello Department of Earth Sciences, University of Geneva
  • Antoine de Haller Department of Earth Sciences, University of Geneva
  • Natalia Fortunatti Departamento de Geología, Universidad Nacional del Sur (UNS)
  • Giselle Choque Departamento de Geología, Universidad Nacional del Sur (UNS); CONICET, Argentina
  • Renata Tomezzoli Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Palabras clave:

diagénesis, reservorio, tight gas sandstones, QEMSCAN, Cuenca de Claromecó

Resumen

La Cuenca de antepais de Claromecó, localizada al suroeste de la provincia de Buenos Aires, Argentina, tiene un relevante interés económico y energético debido a la presencia de capas de carbón contenidas en la Formación Pérmica Tunas, la cual podría considerarse como una roca generadora efectiva para la generación de gas. Este estudio tiene como objetivo reconstruir la evolución diagenética de la Formación Tunas en la Cuenca Claromecó (pozos PANG 0001 y PANG 0003) y determinar cómo la diagénesis afectó la calidad del reservorio. Para ello, se analizaron muestras de testigos corona de la Formación Tunas mediante una combinación de análisis petrográficos (luz transmitida, QEMSCAN, catodoluminiscencia), estudios de inclusiones fluidas y métodos petrofísicos (análisis convencional de testigos corona). Las sucesiones sedimentarias analizadas se componen de areniscas intercaladas con fangolitas, fangolitas carbonosas, tobas y carbones. Las areniscas son de grano medio a fino, clasto-sostén y moderada a buena selección. Los minerales autígenicos reconocidos son calcita y laumontita, con proporciones menores de sobrecrecimientos de cuarzo y feldespato y arcillas (illita, muscovita y clorita). La porosidad es de tipo secundaria, generada por fracturación y disolución de feldespatos y cemento carbonático. La porosidad determinada por análisis ópticos, QEMSCAN y estudios petrofísicos oscila entre 0,1 y 4 %, con una permeabilidad que varía entre 10-3 and 10-6 millidarcies. Se realizaron estudios de inclusiones de fluidas en cementos de areniscas y venillas de calcita y cuarzo. Se reconocieron inclusiones fluidas acuosas y orgánicas primarias, pseudosecundarias y secundarias. Las inclusiones fluidas orgánicas muestran fluorescencia verde y celeste, lo que indica la presencia de hidrocarburos. Las temperaturas de homogeneización de las inclusiones fluidas obtenidas a partir de estudios de microtermometría oscilan entre 124 y 200 °C en los cementos y entre 110 y 230 °C en venillas. Estas temperaturas confirman una etapa de metagénesis para la Formación Tunas, dentro de la ventana de gas húmedo a seco. Dadas las características petrofísicas de los niveles analizados, las areniscas podrían considerarse como reservorios no convencionales de tipo areniscas gasíferas compactadas (tight gas sandstones). Los resultados obtenidos señalan que, durante la diagénesis temprana, la compactación física y la precipitación de cemento carbonático fueron los principales factores que redujeron significativamente la porosidad primaria. Además, en la etapa de mesogénesis, la compactación química, la precipitación de cementos de calcita y zeolita, y los sobrecrecimientos de cuarzo contribuyeron aún más a la pérdida de porosidad. Sin embargo, durante la mesogénesis se produjo porosidad secundaria debido a la disolución de granos inestables y cementos de calcita causada por la acción de fluidos ácidos generados durante la descomposición y maduración de la materia orgánica. Adicionalmente, la porosidad secundaria también se generó por fracturación debido al enterramiento y esfuerzos tectónicos y por el aumento de la presión de poros durante la generación y migración de hidrocarburos. Las propiedades del reservorio de la Cuenca de Claromecó han sido controladas principalmente por procesos diagenéticos y tectónicos que actuaron durante la historia de enterramiento de la cuenca. La composición de clastos y cementos también influyó en la diagénesis junto con la presencia de rocas ricas en materia orgánica, que pudieron generar hidrocarburos.

Citas

Alessandretti, L., Philipp, R.P., Chemale, F., Brückmann, M.P., Zvirtes, G., Metté, V. and Ramos, V.A. (2013). Provenance, volcanic record, and tectonic setting of the Paleozoic Ventania Fold Belt and the Claromecó Foreland Basin: Implications on sedimentation and volcanism along the southwestern Gondwana margin. Journal of South American Earth Sciences, 47: 12-31. http://dx.doi.org/10.1016/j.jsames.2013.05.006.

Andreis, R.R., Lluch, J.J. and Iñiguez Rodríguez, A.M. (1979). Paleocorrientes y paleoambientes de las Formaciones Bonete y Tunas, Sierras Australes de la Provincia de Buenos Aires, Argentina. VI Congreso Geológico Argentino Actas, 2: 207-224, Buenos Aires.

Andreis, R.R. and Japas, M.S. (1991). Cuenca de Sauce Grande y Colorado. 12° International Congress on Carboniferous and Permian Stratigraphy and Geology and Academia Nacional de Ciencias Actas, 45-64, Córdoba.

Aoyagi, K. and Kazama, T. (1980). Transformational changes of clay minerals, zeolites and silica minerals during diagenesis. Sedimentology, 27, (2): 179-188.

Archangelsky, S. and Cúneo, R. (1984). Zonación del Pérmico continental de Argentina sobre la base de sus plantas fósiles. III Congreso latinoamericano Paleontológico Actas, 143-153, Ciudad de México.

Archangelsky, S., Azcuy C.L., Césari, S.N.; González, C.R., Hünicken, M.A., Mazzoni, A. and Sabattini, N. (1996). Correlación y edad de las biozonas. In: S. Archangelsky (Eds.). El Sistema Pérmico en la República Argentina y en la República Oriental del Uruguay, Academia Nacional de Ciencias, 203-226.

Arzadún, G., Tomezzoli, R.N. and Cesaretti N.N. (2016). Tectonic insight based on anisotropy of magnetic susceptibility and compaction studies in the Sierras Australes thrust and fold belt (southwest Gondwana boundary, Argentina). Tectonics, 35: 1015-1031. https://doi.org/10.1002/2015TC003976.

Arzadún, G., Cisternas, M.E., Cesaretti, N.N. and Tomezzoli, R.N. (2017). Presence of charcoal as evidence of paleofires in the Claromecó Basin, Permian of Gondwana, Argentina: Diagenetic and paleoenvironment analysis based on coal petrography studies. GeoResJ, 14: 121-134. https://doi.org/10.1016/j.grj.2017.11.001.

Arzadún, G., Lovecchio, J.P., Becchio, R., Uriz, N.J., Cingolani, C., Febbo, M.B., Hernandez, R., Bolatti, N. and Kress, P. (2020). Thermochronology of the Ventana Ranges and Claromecó Basin, Argentina: Record of Gondwana breakup and South Atlantic passive margin dynamics. Journal of South American Earth Sciences, 105, 102965. https://doi.org/10.1016/j.jsames.2020.102965.

Arzadún, G., Tomezzoli, R.N., Fortunatti, N., Cesaretti, N.N., Febbo, M.B. and Calvagno, J.M. (2021). Deformation understanding in the Upper Paleozoic of Ventana ranges at southwest Gondwana boundary. Scientific Reports, 11, 20804. https://doi.org/10.1038/s41598-021-99087-1.

Arzadún, G., Tomezzoli, R.N., Trindade, R., Gallo, L.C., Cesaretti, N.N. and Calvagno, J.M. (2018). Shrimp zircon geochronology constrains on Permian pyroclastic levels, Claromecó Basin, south-west margin of Gondwana, Argentina. Journal of South American Earth Sciences, 85: 191-208.

Azcuy, C.L. and Caminos, R. (1987). Diastrofismo. In: Archangelsky, S. (Ed.), El Sistema Carbonífero en la República Argentina, Academia Nacional de Ciencias, 239-251.

Bailey, E. H., and Stevens, R. E. (1960). Selective staining of K-feldspar and plagioclase on rock slabs and thin sections. The American Mineralogist, 45: 1020-1025.

Ballivián Justiniano, C.A., Comerio, M.A., Gerónimo, O., Sato, A.M., Coturel, E.P., Naipauer, M. and Basei, M.A.S. (2020). Geochemical, palaeontological, and sedimentological approaches of a syn-orogenic clastic wedge: Implications for the provenance of the Permian (Cisuralian) Tunas Formation, Ventania System (Argentina). Journal of South American Earth Sciences, 104, 102836. https://doi.org/10.1016/j.jsames.2020.102836.

Beard, D.C. and Weyl P.K. (1973). Influence of Texture on Porosity and Permeability of Unconsolidated Sand. American Association Petroleum Geologists Bulletin, 57 (2): 349-369. https://doi.org/10.1306/819A4272-16C5-11D7-8645000102C1865D

Berner, R. (1981). A New Geochemical Classification of Sedimentary Environments. Journal Sedimentary Petrology, 51: 359-365.

Bjørlykke, K. and Høeg, K. (1997). Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins. Marine and Petroleum Geology, 14 (3): 267-276. https://doi.org/10.1016/S0264-8172(96)00051-7.

Blatt, H. (1979). Diagenetic processes in sandstones. In: P.A. Scholle and Schluger (Eds.) Aspect of diagenesis. Society of Economic Paleontologists & Mineralogists, Special Publication, 26: 141-158.

Buggisch, W. (1987). Stratigraphy and very low grade metamorphism of the Sierras Australes of the province of Buenos Aires, Argentina and implications in Gondwana correlations. ZentralBlattt Mineralogie Geologie Paläontologie, 1: 819-837.

Burruss, R.C. (1981). Hydrocarbon fluid inclusions in studies of sedimentary diagenesis. Short Course in Fluid Inclusions: Applications to Petrology, (Eds.) Hollister L. S. y M. L. Crawford, Min. Ass. Canada Short Course Handbook, 6:138-156.

Cade, C., Evans, I. and Bryant, S. (1994). Analysis of permeability controls: A new approach. Clay Minerals, 29 (4): 491-501. doi:10.1180/claymin.1994.029.4.08

Catuneanu, O., Hancox, P.J. and Rubidge, B.S. (1998). Reciprocal flexural behaviour and contrasting stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa. Basin Research, 10: 417-439

Choque, G., Fortunatti, N.B, Febbo, M.B., Caruso, S., Tomezzoli, R.N. and Cesaretti, N.N. (2021). Fracturación estratigráfica en la Formación Tunas (pozo PANG 0003), Cuenca de Claromecó, Buenos aires, Argentina. Revista de la Asociación Geológica Argentina, 79 (2): 258-274.

Choque, G., Fortunatti, N. B, Febbo, M. B. and Tomezzoli, R.N. (2022). Fracture frequency and anisotropy of magnetic susceptibility: A case of study in the Claromecó Basin (PANG 0003 well), southwestern Gondwana boundary. Journal of South American Earth Sciences, 120. https://doi.org/10.1016/j.jsames.2022.104094

Choquette, P.W. and Pray, L. (1970). Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association Petroleum Geologists Bulletin, 54: 207-250.

Cobbold, P.R. and Massabie, A., Rossello, E.A. (1986). Hercynian wrenching and thrusting in the Sierras Australes foldbelt, Argentina. Hercynica, II, 2: 135–148.

Compton, R.R. (1962). Manual of Field Geology, Wiley, London, UK.

Cúneo, N.R. (1996). Permian phytogeography in Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 125: 75--104.

di Pasquo, M., Di Nardo, J., Martínez, M., Arzadún, G. and Silvestri, L. (2018). Análisis palinoestratigráfico de muestras de subsuelo de la Formación Tunas (Pérmico), Cuenca de Claromecó, Provincia de Buenos Aires, Argentina. XVII Simposio Argentino de Palinología y Paleobotánica, Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología Actas, 77-78, Paraná.

Du Toit, A.L. (1927). A geological comparison of South America with South Africa. Carnegie Institution of Washington Publication, 381: 1-157.

Du Toit, A.L. (1937). Our Wandering Continents. Oliver and Boyd, London, 366 pp.

Fall, A., Eichhubl, P., Bodnar, R.J, Laubach, S.E. and Davis, J.S (2015). Natural hydraulic fracturing of tight-gas sandstone reservoirs, Piceance Basin, Colorado. GSA Bulletin, 127 (1-2): 61-75. https://doi.org/10.1130/B31021.1

Febbo, (2023). Análisis diagenético y de anisotropía de susceptibilidad magnética en registros de subsuelo pérmicos de la Formación Tunas: pozos PANG 0001 y PANG 0003, Cuenca de Claromecó, Buenos Aires, Argentina. Tesis doctoral, Universidad Nacional del Sur, Argentina, 353 pp. (inédito).

Febbo, M.B., Omodeo-Salé, S. and Moscariello, A. (2023). Thermal evolution of the Permian Claromecó foreland Basin (southern Gondwana, Argentina) based on organic petrology and basin modelling. 36th IAS International Meeting of Sedimentology Actas, 285, Dubrovnik, Croatia.

Febbo, M.B., Arzadún, G., Cesaretti, N.N., Tomezzoli, R.N. and Fortunatti, N. (2022a). The Claromecó Frontier Basin: Hydrocarbon source rock potential of the Tunas Formation, southwestern Gondwana margin, Argentina. Marine and Petroleum Geology, 137, 105491. https://doi.org/10.1016/j.marpetgeo.2021.105491.

Febbo, M. B., Tomezzoli, R.N., Cesaretti, N.N., Choque, G., Fortunatti, N. and Arzadún G. (2022b). Paleotectonic setting during Permian sedimentation in the Claromecó Foreland Basin, southwestern Gondwana margin (Buenos Aires, Argentina). Journal of Paleogeography, 11 (3): 427-447. https://doi.org/10.1016/j.jop.2022.06.001.

Febbo, M.B., Tomezzoli, R.N., Calvagno, J.M., Arzadún, G., Gallo, L. and Cesaretti, N.N. (2021). Anisotropy of magnetic susceptibility analysis in Tunas Formation cores (Permian), Claromecó Basin, Buenos Aires, Argentina: Its relation to depositional and post-depositional conditions. Journal of South American Earth Sciences, 107, 103144. https://doi.org/10.1016/j.jsames.2020.103144.

Febbo, M.B., Fortunatti, N., Cesaretti, N.N., Arzadún, G. and Tomezzoli, R.N. (2018). Evolución diagenética de la Formación Tunas para el pozo PANG 0001, Cuenca de Claromecó, provincia de Buenos Aires, Argentina: Su potencial como reservorio de hidrocarburos. X Congreso de Exploración y Desarrollo de Hidrocarburos Actas, 763-779, Mendoza.

Folk, R.L., Andrews, P.B. and Lewis, D.W. (1970). Detrital sedimentary rock classification and nomenclature for use in New Zeland. New Zeland Journal of Geology and Geophysics, 13: 937-968.

Furque, G. (1973). Descripción geológica de la Hoja 34n, Sierra de Pillahuincó, Provincia de Buenos Aires. Boletín del Servicio Nacional de Minería y Geología 141, 70, Buenos Aires.

Gale, J., Laubach, S., Olson, J., Eichhuble, P. and Fall, A. (2014). Natural Fractures in shale: a review and new observations. American Association of Petroleum Geologist Bulletin, 98 (11): 165-2216.https://doi.org/10.1306/08121413151.

Geel, C., De Wit, M., Booth, P., Schulz, H.M. and Horsfield, B. (2015). Palaeo-environment, diagenesis and characteristics of Permian black shales in the Lower Karoo Supergroup flanking the Cape Fold Belt near Janesville, Eastern Cape, South Africa: implications for the shale gas potential of the Karoo Basin. South African Journal of Geology, 118 (3): 249-274. doi:10.2113/gssajg.118.3.249.

Goldstein, R.H. and Reynolds, T.J. (1994). Systematics of fluid inclusions in diagenetic minerals. Tulsa, Oklahoma, EUA, SEPM Short Course, 31, 199 pp.

Gottlieb, P., Wilkie, G., Sutherland, D., Ho-Tun, E., Suthers, S., Perera, K., Jenkins, B., Spencer, S., Butcher, A. and Rayner, J. (2000). Using quantitative electron microscopy for process mineralogy applications. JOM, 52: 24-25. https://doi.org/10.1007/s11837-000-0126-9.

Grasetti, C.G., Piqué, T., Noya, M., Vila, G.S., Manoni, R., Brisson, I., De Leo D., Dzelalija, D, Canale, N., Zalazar, M, Cabana, C., Tunik, M., Fortunatti, N., Lebinson, F., Bahía, M. and Grill, S. (2022). Atlas AR-CO 2. An Argentinian atlas for underground CO 2 storage potential. 16th International Conference on Greenhouse Gas Control Technologies Actas, Lyon, France.

Harrington, H.J. (1947). Explicación de las Hojas Geológicas 33m y 34m, Sierras de Curamalal y de la Ventana, Provincia de Buenos Aires. Servicio Nacional de Minería y Geología, Buenos Aires, 61, 43 pp.

Harrington, H.J. (1970). Las Sierras Australes de Buenos Aires, República Argentina: Cadena aulocogénica. Revista de la Asociación Geológica Argentina, 25 (2): 151-181.

Hay, R.L. (1966). Zeolites and zeolitic reactions in sedimentary rocks. Geological Sociaety of America Special paper, 85: 1-130.

Holditch, S.A. (2006). Tight gas sands. Journal of petroleum Technology, 58 (06): 86-93.

Holz, M., França, A.B., Souza, P.A., Iannuzzi, R. and Rohn, R.A. (2010). Stratigraphic chart of the Late Carboniferous/Permian succession of the eastern border of the Paraná Basin, Brazil, South America. Journal of South American Earth Sciences, 29: 382-399.

Introcaso, A. (1982). Características de la corteza en el positivo bonaerense: Tandilia-Cuenca Interserrana-Ventania a través de datos de gravedad. Observatorio Astronómico Municipalidad de Rosario, Publicación del Instituto de Física de Rosario, 8: 1-6, Rosario.

Kalkreuth, W., Levandowski, J., Weniger, P., Krooss, B., Prissang, R. and Lima da Rosa, A. (2020). Coal characterization and coalbed methane (CBM) potential of the chico - lomã coalfield, Paraná Basin, Brazil - results from exploration borehole CBM001- CL - RS. Energy Exploration & Exploitation, 1-42. https://doi.org/10.1177%2F0144598720931167.

Keidel, J. (1916). La geología de las Sierras de la provincia de Buenos Aires y sus relaciones con las montañas del Cabo y los Andes. Ministerio de agricultura de la Nación. Seccio?n Geologi?a, Mineralogi?a y Mineri?a Anales, 9 (3): 5-57, Buenos Aires.

Keidel, J. (1921). Sobre la distribución de los depósitos glaciares del Pérmico conocidos en la Argentina y su significación para la estratigrafía de la serie del Gondwana y la paleogeografía del Hemisferio Austral. Academia Nacional de Ciencias, 25: 239-368

Kostadinoff, J. (2007). Evidencia geofísica del umbral de Trenque Lauquen en la extensión norte de la cuenca de Claromecó, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina, 62 (1): 69-75.

Kostadinoff, J. and Prozzi, C. (1998). Cuenca de Claromecó. Revista de la Asociación Geológica Argentina, 53 (4): 461-468

Langford R.P. (1992). Permian coal and paleogeography of Gondwana. Paleogeography, 39: 165.

Kollenz, S., Glasmacher, U.A., Rossello, E.A., Stockli, D.F., Schad, S. and Pereyra, R.E. (2017). Thermochronological constrains in the Cambrian to recent geological evolution of the Argentine passive continental margin. Tectonophysics, 716: 182-203.

Lesta, P. and Sylwan, C. (2005). Cuenca de Claromecó. VI Congreso de Exploración y Desarrollo de Hidrocarburos, Simposio Frontera Exploratoria de la Argentina Actas, 217-231, Mar del Plata.

López-Gamundi, O.R. (1996). Modas detríticas del Grupo Pillahuincó (Carbonífero tardío-Pérmico), Sierras Australes de la Provincia de Buenos Aires: su significado geotectónico. Revista de la Asociación Argentina de Sedimentología, 3 (1):1-10.

López-Gamundi, O.R. (2006). Permian plate margin volcanism and tuffs in adjacent basins of west Gondwana: Age constraints and common characteristics. Journal of South American Earth Sciences, 22: 227-238.

López-Gamundi, O.R. and Rossello, E.A. (2021). The Permian Tunas Formation (Claromecó Basin, Argentina): Potential naturally fractured reservoir and/or coal bed methane (CBM) play?. Marine and Petroleum Geology, 128: 1-14. https://doi.org/10.1016/j.marpetgeo.2021.104998.

López-Gamundi, O.R., Fildani, A., Weislogel, A. and Rossello, E. (2013). The age of the Tunas Formation in the Sauce Grande basin-Ventana foldbelt (Argentina): Implications for the Permian evolution of the southwestern margin of Gondwana. Journal of South American Earth Sciences, 45: 250-258.

López-Gamundi, O.R., Conaghan, P.J., Rossello, E.A. and Cobbold, P.R. (1995). The Tunas Formation (Permian) in the Sierras Australes Foldbelt, east central Argentina: Evidence for syntectonic sedimentation in a foreland basin. Journal of South American Earth Sciences, 8 (2): 129-142. https://doi.org/10.1016/0895-9811 (95)00001-V.

Lovecchio, J.P., Rohais, S., Joseph, P., Bolatti, N.D., Kress, P.R., Gerster, R. and Ramos, V.A. (2018). Multistage rifting evolution of the Colorado basin (offshore Argentina): Evidence for extensional settings prior to the South Atlantic opening. Terra Nova, 30: 359-368. https://doi.org/10.1111/ter.12351.

Magoon, L.B. (1988). Petroleum system of the United States. U.S. Geological Survey, Bulletin 1870. Denver, Co. 68 pp.

Meckel, L.D. and Thomasson, M.R. (2008). Pervasive tight-gas sandstone reservoirs: An overview. In: S.P. Cumella, K.W. Shanley, and W. K. Camp, (Eds.), Understanding, exploring, and developing tight-gas sands. Vail Hedberg Conference: AAPG Hedberg Series, 3, 13-27.

Mendonça Filho, J.G., Sommer, M.G., Klepzig, M.C., Mendonça, J.O., Silva, T.F. and Kern, M.L. (2013). Permian carbonaceous rocks from the Bonito Coalfield, Santa Catarina, Brazil: organic facies approach. International Journal of Coal Geology, 111: 23-36.

Milani, E.J. and De Wit, M.J. (2008). Correlations between the classic Paraná and Cape Karoo sequences of South America and southern Africa and their basin infills flanking the Gondwanides: Du Toit revisited. Geological Society, London, Special Publications, 294: 319-342.

Molina, A., Choque, G., Fortunatti, N. and Rainoldi, A. (2023). Potencial en el subsuelo de la provincia de Buenos Aires para la inyección de CO2: estudio preliminar en la Cuenca de Claromecó. 1° Conferencia Argentina de Captura, Utilización y Almacenamiento de CO2, 41, La Plata.

Monteverde, A. (1937). Nuevo yacimiento de material pétreo en González Chaves. Revista Minera, 8, 116-124.

Morad, S. (1998). Carbonate cementation in sandstones: distribution patterns and geochemical evolution. Carbonate cementation in sandstones: distribution patterns and geochemical evolution, 1-26.

Morad, S., Al-Ramadan, K., Ketzer, M. and De Ros, L. (2010). The impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy. American Association Petroleum Geologists Bulletin, 94 (8): 1267-1309.

Pángaro, F., Ramos V.A. and Pazos, P.J., 2015. The Hesperides basin: A continental-scale Upper Paleozoic to Triassic basin in southern Gondwana. Basin Research, 28: 685-711. https://doi.org/10.1111/bre.12126.

Pángaro, F. and Ramos, V.A. (2012). Paleozoic crustal blocks of onshore and offshore central Argentina: New pieces of the southwestern Gondwana collage and their role in the accretion of Patagonia and the evolution of Mesozoic South Atlantic sedimentary basins. Marine and Petroleum Geology, 37 (1): 162-183. http://dx.doi.org/10.1016/j.marpetgeo.2012.05.010.

Passey, Q.R., Bohacs, K.M., Esch, W.L., Klimentidis, R. and Sinha, S. (2012). My source rock is now my reservoir-Geologic and petrophysical characterization of shale-gas reservoirs. American Association Petroleum Geologists Search and Discovery Article, 90124.

Ramos, V.A. (1984). Patagonia: Un nuevo continente paleozoico a la deriva?.IX Congreso Geológico Argentino Actas, 311-325, Bariloche.

Ramos, V.A. (2008). Patagonia: A Paleozoic continental drift?. Journal of South American Earth Sciences, 26: 235-251. https://doi.org/10.1016/j.jsames.2008.06.002.

Ramos, V.A., and Kostadinoff, J. (2005). La cuenca de Claromecó. In: de Barrio, R.E., Echeverri, R.O., Caballé, M.F., Llambías, E., (Eds.). Geología y recursos minerales de la provincia de Buenos Aires. XVI Congreso Geológico Argentino Relatorio, 473-480, La Plata.

Ramos, V.A. and Naipauer, M. (2014). Patagonia: Where does it come from?. Journal of Iberian Geology, 40: 367-379. https://doi.org/10.5209/rev_JIGE.2014.v40.n2.45304.

Ramos, V.A., Chemale, F., Naipauer, M. and Pazos, P.J. (2014). A provenance study of the Paleozoic Ventania System (Argentina): Transient complex sources from western and eastern Gondwana. Gondwana Research, 26:719-740. https://doi.org/10.1016/j.gr.2013.07.008.

Shanmugam, G. (1984). Secondary porosity in sandstones: basic contributions of Chepikov and Savkevich. American Association Petroleum Geologists Bulletin, 68 (1): 106-107.

Shanmugam, G. (1990). Porosity prediction in sandstones using erosional unconformities. American Association of Petroleum Geologist Memoir, 49: 1-23.

Schmidt, V. and McDonald, D.A. (1979). The role of secondary porosity in the course of sandstone diagenesis. In: P.A. Scholle and Schluger (Eds.) Aspect of diagenesis. Society of Economic Paleontologists & Mineralogists, Special Publication, 26: 159-173.

Suero, T. (1972). Compilación geológica de las Sierras Australes de la provincia de Buenos Aires. LEMIT, 3: 135-147, La Plata.

Surdam, R.C., Crossey, L.J., Hagen, E.S. and Heasler, H.P. (1989). Organic-inorganic interactions and sandstone diagenesis. American Association of Petroleum Geologist Bulletin, 73: 1-23.

Taylor, J.M. (1950). Pore-space reduction in sandstones. American Association of Petroleum Geologist Bulletin, 34 (4): 701-716.

Tissot, B. and Welte, D.H. (1984). Petroleum Formation and Occurrence. Second edition Springer- Verlag, Heidelberg. 669 pp.

Tohver, E., Weil, A.B., Solum, J.G. and Hall, C.M. (2008). Direct dating of chemical remagnetizations in sedimentary rocks, insights from clay mineralogy and 40Ar/39Ar age analysis. Earth and Planetary Science Letters, 274: 524-530.

Tomezzoli, R.N. (1999). La Formación Tunas en las Sierras Australes de la Provincia de Buenos Aires. Relaciones entre sedimentación y deformación a través de su estudio paleomagnético. Revista de la Asociación Geológica Argentina, 54 (3): 220-228.

Tomezzoli, R.N. (2001). Further palaeomagnetic results from the Sierras Australes fold and thrust belt, Argentina. Geophysical Journal International, 147: 356-366. https://doi.org/10.1046/j.0956-540x.2001.01536.x.

Tomezzoli, R.N. (2012). Chilenia y Patagonia: ¿un mismo continente a la deriva?. Revista de la Asociación Geológica Argentina, 69 (2): 222-239.

Tucker, M.E. (1981). Sedimentary petrology: an introduction to the origin of sedimentary rocks. Blackwell Scientific Publications, Oxford, 253 pp.

Vazquez Lucero, S.E., Prezzi, C., Scheck-Wenderoth, M., Bott, J., Gomez Dacal, M.L., Balestrini, F.I. and Vizán, H. (2020). 3D gravity modelling of Colorado and Claromecó basins: New evidences for the evolution of the southwestern margin of Gondwana. International Journal of Earth Sciences, 110: 2295-2313. https://doi.org/10.1007/s00531-020-01944-3.

Riecker, R.E. (1962). Hydrocarbon fluorescence and migration of petroleum. American Association Petroleum Geologists Bulletin, 46 (1): 60-75.

Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy, 12, Mineralogical Society of America, 644 p.

von Gosen, W., Buggisch, W. and Krumm, S. (1991). Metamorphism and deformation mechanisms in the Sierras Australes fold and thrust belt (Buenos Aires province, Argentina). Tectonophysics, 185: 335-356. https://doi.org/10.1016/0040-1951(91)90453-Y

Worden, R.H., and Burley, S.D. (2003). Sandstone diagenesis: the evolution of sand to stone. Sandstone diagenesis: Recent and ancient, 4, 3-44.

Zambrano, J.J. (1969). Cuencas sedimentarias en el subsuelo de la provincia de Buenos Aires y zonas adyacentes. Revista de la Asociación Geológica Argentina, 29: 443-469.

Zavala, C.A., Santiago, M.F. and Amaolo, G.E. (1993). Depósitos fluviales en la Formación Tunas (Pérmico). Cuenca Paleozoica de Ventania, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina, 48: 307-316.

Zavala, C., Torresi, A., Zorzano A., Arcuri, M. and Di Meglio, M. (2019). Análisis sedimentológico y estratigráfico de la Formación Tunas (Pérmico, Cuenca de Claromecó). Estudio de subsuelo de los pozos PANG0001 y PANG0003. Revista de la Asociación Geológica Argentina, 76 (3), 296-314.

Descargas

Publicado

2023-12-30 — Actualizado el 2024-04-17

Cómo citar

Febbo, M. B., Cesaretti , N. ., Omodeo-Salé , S., Moscariello, A., de Haller , A., Fortunatti, N., Choque, G., & Tomezzoli, R. (2024). Diagenetic evolution of the Permian Tunas Formation, Claromecó Basin, Buenos Aires province, Argentina: its impact on porosity and reservoir characteristics. Latin American Journal of Sedimentology and Basin Analysis, 31(1). Recuperado a partir de https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/252

Número

Sección

Trabajos de investigación