Influjo volcaniclástico de sedimentos y respuestas ambientales de sistemas fluviales: explorando un ejemplo Cretácico de Patagonia

Autores/as

  • Pablo Villegas INCITAP (CONICET-UNLPam)
  • Aldo Martín Umazano

Palabras clave:

respuestas fluviales, procesos eólicos, influjo volcaniclástico, actividad tectónica, cambio climático, Cretácico, Patagonia

Resumen

El aporte de grandes volúmenes de sedimentos volcaniclásticos provoca importantes cambios y desequilibrios en los sistemas naturales, con el consiguiente reajuste de los ambientes depositacionales. En los sistemas fluviales esto puede afectar la hidrogeomorfología, los procesos sedimentarios (e.g., el desarrollo de procesos eólicos), la composición de los detritos, las características del suelo y los ecosistemas. En consecuencia, algunos cambios detectados en el registro sedimentario pueden estar vinculados con el suministro de sedimentos volcaniclásticos, principalmente en posiciones cercanas a las fuentes de suministro. En este contexto, el intervalo estratigráfico Cretácico de la cuenca Somuncurá-Cañadón Asfalto (Argentina) analizado en el depocentro Gorro Frigio, ofrece la posibilidad de testear la evolución temporal de un sistema fluvial en relación con los cambios en el influjo de material volcaniclástico procedente de una fuente lejana. El objetivo de esta contribución es evaluar en detalle las respuestas paleoambientales registradas en los miembros Bardas Coloradas superior y Puesto La Paloma de las formaciones Los Adobes y Cerro Barcino, respectivamente, así como vincular estos cambios con todos los controles alocíclicos sobre la sedimentación. Se definieron siete asociaciones de facies que incluyen: canal fluvial de baja sinuosidad (FA1), canal de crevasse meandriforme (FA2), lóbulo de desbordamiento (FA3), planicie de inundación distal (FA4), sistema eólico (FA5), flujos mantiformes (FA6) y canal volcaniclástico (FA7). Estas asociaciones de facies son agrupadas en tres intervalos estratigráficos informales: el intervalo estratigráfico inferior A (Miembro Bardas Coloradas superior, 35 m de espesor) incluye canales fluviales de baja sinuosidad, permanentes, que transportaban una carga de fondo arenosa hacia el NO; junto con zonas de llanuras de inundación con vegetación, caracterizadas por la presencia de canales de crevasse meandriformes, lóbulos de desbordamiento y lagos someros o zonas de encharcamiento. El intervalo estratigráfico intermedio B (Miembro Puesto La Paloma inferior, 11-16 m de espesor) registra un sistema eólico volcaniclástico compuesto por dunas eólicas 2D que migraron hacia el SE y se relacionaron espacialmente con zonas de interduna húmeda y seca, donde la sedimentación ocurrió mayoritariamente a partir de la decantación subacuática y subaérea de sedimentos volcaniclásticos suspendidos, respectivamente. El intervalo estratigráfico suprayacente C (Miembro Puesto La Paloma superior, 6-18 m de espesor) registra una sedimentación fluvial, rica en sedimentos volcaniclásticos, caracterizada por flujos no confinados, altamente concentrados de sedimentos o diluidos, lateralmente relacionado con áreas de encharcamiento. Localmente existía un canal alimentador que transportaba gravas volcaniclásticas hacia el NO. La evaluación de los controles alocíclicos sugiere que la variación en el influjo de sedimentos volcaniclásticos fue el principal control que gobernó los cambios en los sistemas depositacionales. En consecuencia, la actividad tectónica, el eustatismo, la morfología del basamento y los cambios climáticos tampoco habrían ejercido un rol importante.

Citas

Allard, J.O., Paredes, J.M., and Giacosa, R.E. (2009). Fluvial dynamics, alluvial architecture and palaeohidrology of axial and transverse drainage systems in an extensional setting: Los Adobes Formation (Aptian), Cañadón Asfalto Basin, Argentina. IX International Conference on Fluvial Sedimentation: 12–13, Tucumán.

Allard, J.O., Paredes, J.M., and Giacosa, R.E. (2010a). Recognition of tectonic, climatic and geomorphic signals in a fluvial succession developed in an extensional setting: Los Adobes Formation (Aptian) in the Cañadón Asfalto Basin, Argentina. XVIII International Sedimentological Congress: 102, Mendoza.

Allard, J.O., Paredes, J.M., and Giacosa, R.E. (2010b). Spatial variability in the external geometry (W/t ratio) of fluvial channels and its implications for basin analysis and reservoir characterization: Los Adobes Formation (Aptian) of the Cañadón Asfalto Basin, Central Patagonia. XVIII International Sedimentological Congress: 103, Mendoza.

Allard, J.O., Giacosa, R.E., and Paredes, J.M. (2011). Relaciones estratigráficas entre la Formación Los Adobes (Cretácico Inferior) y su sustrato Jurásico: implicancias en la evolución tectónica de la Cuenca de Cañadón Asfalto, Chubut, Argentina. XVIII Congreso Geológico Argentino: 988-989, Neuquén.

Allard, J.O., Paredes, J.M., Foix, N., and Giacosa, R.E. (2012). Un test sedimentológico para establecer el límite entre las cuencas de Cañadón Asfalto y del Golfo San Jorge durante la depositación del Grupo Chubut (Cretácico): implicancias paleogeográficas de datos de paleoflujo. XIII Reunión Argentina de Sedimentología: 241-242, Salta.

Allard, J.O., Paredes, J.M., Foix, N., and Giacosa, R.E. (2014). Depósitos aluviales de la Formación Cerro Barcino en el borde nororiental de la Cuenca de Cañadón Asfalto: interpretación paleoambiental, evolución temporal y evidencias de actividad tectónica sinsedimentaria. XIX Congreso Geológico Argentino: 18-19, Córdoba.

Allard, J.O., Paredes, J.M., Giacosa, R.E., and Foix, N. (2015). Conexión cretácica entre las cuencas del Golfo San Jorge y Cañadón Asfalto (Patagonia): implicancias tectonoestratigráficas y su potencial en la exploración de hidrocarburos. Revista de la Asociación Geológica Argentina, 72: 21-37.

Allard, J.O., Paredes, J.M., Foix, N., Giacosa, R.E., Bueti, S., and Sánchez, F. (2022). Estratigrafía de la cuenca Cañadón Asfalto. In: Giacosa, R.E. (Ed.): Geología y Recursos Naturales de la Provincia del Chubut. Relatorio del XXI Congreso Geológico Argentino: 187-265.

Allen, J.R.L. (1983). Studies in fluviatile sedimentation: Bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the Brownstones (L. Devonian), Welsh Borders. Sedimentary Geology, 33(4): 237-293.

Best, J.L., and Bristow, C.S. (1993). Braided Rivers. Geological Society Special Publication 75, London, 419 pp.

Brea, M., Bellosi, E.S., Umazano, A.M., and Krause, J.M. (2016). Aptian-Albian Cupressaceae (sensu stricto) woods from Cañadón Asfalto Basin, Patagonia Argentina. Cretaceous Research, 58: 17-28.

Bridge, J.S. (1993). Description and interpretation of fluvial deposits: a critical perspective. Sedimentology, 40: 801-810.

Bridge, J.S. (2003). Rivers and Floodplains: Forms, Processes and Sedimentary Record. Blackwell Scientific Publications, Oxford, 491 pp.

Bridge, J.S. (2006). Fluvial facies models: recent developments. In: Posamentier, H.W., Walker, R.G. (Eds.), Facies Models Revisited. Society of Economic Paleontologists and Mineralogists, Special Publication 84: 85-170.

Bridge, J.S. and Mackey, S.D. (1993). A theoretical study of fluvial sandstone body dimensions. In: Flint, S. and Bryant, I.D. (Eds): The Geological Modeling of Hydrocarbon Reservoirs. International Association of Sedimentologists Special Publication, 15: 213–236.

Bridge, J.S., and Tye, R.S. (2000). Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs and cores. American Association of Petroleum Geologists Bulletin, 84: 1205-1228.

Bridge, J.S. and Lunt, I.A. (2006). Depositional models of braided rivers. In: Sambrook Smith, G.H., Best, J.L., Bristow, C.S., Petts, G. (Eds.), Braided Rivers II: 11–50.

Bridge, J.S., and Demicco, R. (2008). Earth Surface Processes, Landforms and Sediment Deposits. Cambridge University Press, 815 pp.

Bridge, J.S., Jalfin, G.A., and Georgieff, S.M. (2000). Geometry, lithofacies, and spatial distribution of Cretaceous fluvial sandstone bodies, San Jorge basin, Argentina: outcrop analog for the hydrocarbon-bearing Chubut Group. Journal of Sedimentary Research, 70: 341-359.

Bristow, C.S., Skelly, R.L., and Ethridge, F.G. (1999). Crevasse splays from the rapidly aggrading, sand-bed, braided Niobrara River, Nebraska: effect of base-level rise. Sedimentology, 46: 1029–1047.

Burns, C.E., Mountney, N.P., Hodgson, D.M., Colombera, L. (2017). Anatomy and dimensions of fluvial crevasse-splay deposits: Examples from the Cretaceous Castlegate Sandstone and Neslen Formation, Utah, U.S.A. Sedimentary Geology, 351: 21–35.

Butler, K.L., Horton, B.K., Echaurren, A., Folguera, A., and Fuentes, F. (2020). Cretaceous-Cenozoic growth of the Patagonian broken foreland basin, Argentina: Chronostratigraphic framework and provenance variations during transitions in Andean subduction dynamics. Journal of South American Earth Sciences, 97: doi.org/10.1016/j.jsames.2019.102242.

Carmona, R.P., Umazano, A.M., and Krause, J.M. (2016). Estudio estratigráfico y sedimentológico de las sedimentitas portadoras de los titanosaurios gigantes del Albiano Tardío de Patagonia central, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 23(2): 127-132.

Cas, R.A.F., and Wright, J.V. (1987). Volcanic Successions: Modern and Ancient. Allen and Unwin, London, 528 pp.

Catuneanu O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.St.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E., and Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92: 1-33.

Cladera, G., Limarino, C.O., Alonso, M.S., and Rauhut, O. (2004). Controles estratigráficos en la preservación de restos de vertebrados en la Formación Cerro Barcino (Cenomaniano), provincia de Chubut. Revista de la Asociación Argentina de Sedimentología, 11: 39-55.

Codignotto, J., Nullo, F., Panza, J., and Proserpio, C. (1978). Estratigrafía del Grupo Chubut, entre Paso de Indios y Las Plumas, Chubut. VII Congreso Geológico Argentino: 471-480, Neuquén.

Cortiñas, J.S. (1996). La cuenca de Somuncurá-Cañadón Asfalto: sus límites, ciclos evolutivos del relleno sedimentario y posibilidades exploratorias. XIII Congreso Geológico Argentino and III Congreso de Exploración de Hidrocarburos: 147-163, Buenos Aires.

Critelli, S., Criniti, S., Ingersoll, R.V., and Cavazza, W. (2023). Temporal and spatial significance of volcanic particles in sand (stone): implications for provenance and palaeotectonic reconstructions. In: Di Capua, A., De Rosa, R., Kereszturi, G., Le Pera, E., Rosi, M. and Watt, S. F. L. (Eds.), Volcanic Processes in the Sedimentary Record: When Volcanoes Meet the Environment. Geological Society, London, Special Publications, 520: 311 - 325.

Cuitiño, J.I., and Scasso, R.A. (2013). Reworked pyroclastic beds in the early Miocene of Patagonia: Reaction in response to high sediment supply during explosive volcanic events. Sedimentary Geology 289: 194–209.

Cúneo, R., Ramezani, J., Scasso, R.A., Pol, D., Escapa, I., Zavattieri, A.M., and Bowring, S. (2013). High-precision U-Pb geochronology and a new chronostratigraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: implications for terrestrial fauna. Gondwana Research, 24: 1267-1275.

de la Fuente, M.S., Umazano, A.M., Sterli, J., and Carballido, J.L. (2011). New chelid turtles of the lower section of the Cerro Barcino Formation (Aptian-Albian?), Patagonia, Argentina. Cretaceous Research, 32: 527-537.

De Sosa Tomas, A., Vallati, P., Martín-Closas C. (2017). Biostratigraphy and biogeography of charophytes from the Cerro Barcino Formation (upper Aptian-lower Albian), Cañadón Asfalto Basin, central Patagonia, Argentina. Cretaceous Research, 79: 1-11.

De Sosa Tomas, A., Martín-Closas, C., Vallati, P., Krause, J. (2021). Early Cretaceous Mesochara-rich assemblages from central Patagonia, Argentina, predate the origin of homogenous Charoidean floras by about 30 million years. Cretaceous Research, 129: doi: 105017. 10.1016/j.cretres.2021.105017.

De Sosa Tomas, A., Carignano, A., Vallati, P., and Martín-Closas, C. (2022). Nuevos aportes al conocimiento micropaleontológico de la Formación Los Adobes (Grupo Chubut), Cretácico inferior, cuenca de Cañadón Asfalto. XXI Congreso Geológico Argentino: poster, Puerto Madryn.

D’Elía, L., Bilmes, A., Varela, A.N., Bucher, J., López, M., García, M., Ventura Santos, R., Hauser, N., Naipauer, M., and Franzese, J.R., (2020). Geochronology, sedimentology and paleosol analysis of a Miocene, synorogenic, volcaniclastic succession (La Pava Formation) in the north Patagonian foreland: Tectonic, volcanic and paleoclimatic implications. Journal of South American Earth Sciences, 100: doi.org/10.1016/j.jsames.2020.102555.

Di Capua, A., and Scasso, R.A. (2020). Sedimentological and petrographic evolution of a fluvio-lacustrine environment during the onset of volcanism: Volcanically-induced forcing of sedimentation and environmental responses. Sedimentology, 67: 1879-1913.

Echaurren, A., Folguera, A., Gianni, G., Orts, D., Tassara, A., Encinas, A., Giménez, M., and Valencia, V. (2016). Tectonic evolution of the North Patagonian Andes (41° - 44° S) through recognition of syntectonic strata. Tectonophysics, 677-678: 99-114.

Edgett, K.S., and Lancaster, N. (1993). Volcaniclastic aeolian dunes: Terrestrial examples and application to martian sands. Journal of Arid Environments, 25: 271–297.

Figari, E.G., and Hechem, J.J. (2022). Cuencas volcano-sedimentarias del Mesozoico. In: Giacosa, R.E. (Ed.): Geología y Recursos Naturales de la Provincia del Chubut. Relatorio del XXI Congreso Geológico Argentino: 129-141, Puerto Madryn.

Figari, E.G., Scasso, R.A., Cúneo, R.N., and Escapa, I. (2015). Estratigrafía y evolución geológica de la Cuenca de Cañadón Asfalto, provincia del Chubut, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 22: 135-169.

Fisher, R.V. (1983). Flow transformations in sediment gravity flows. Geology, 11: 273-274.

Fisher, J.A., Nichols, G.J., and Walthman, D.A. (2007). Unconfined flow deposits in distal sectors of fluvial distributary systems: examples from the Miocene Luna and Huesca systems, northern Spain. Sedimentary Geology, 195: 55-73.

Foix, N., Allard, J.O., Paredes, J.M., and Giacosa, R.E. (2012). Fluvial styles, palaeohydrology and modern analogues of an exhumed, Cretaceous fluvial system: Cerro Barcino Formation, Cañadón Asfalto Basin, Argentina. Cretaceous Research, 34: 298-307.

Foix, N., Allard, J.O., Ferreira, M.L., Atencio, M. (2020). Spatio-temporal variations in the Mesozoic sedimentary record, Golfo San Jorge Basin (Patagonia, Argentina): Andean vs. cratonic sources. Journal of South American Earth Sciences, 98: doi.org/10.1016/j.jsames.2019.102464.

Galloway, W.E., and Hobday, D.K. (1996). Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources. Springer-Verlag, Nueva York, 491 pp.

Gawthorpe, R.L. and Leeder, M.R. (2000). Tectono-sedimentary evolution of active extensional basins. Basin Research, 12: 195-218.

Genise, J.F., Alonso-Zarza, A.M., Krause, J.M., Sánchez, M.V., Sarzetti, L., Farina, J.L., González, M.G., Cosarinsky, M., and Bellosi, E.S. (2010). Rhizolith balls from the Lower Cretaceous of Patagonia: just roots or the oldest evidence of insect agriculture? Palaeogeography, Palaeoclimatology, Palaeoecology, 287: 128-142.

Georgieff, S.M., and Gonzalez Bonorino, G. (2002). Facies y geometrías de los depósitos aluviales cuaternarios en la quebrada del Portezuelo, sierra de Mojotoro, provincia de Salta, Argentina. Revista de la Asociación Argentina de Sedimentología, 9: 31-42.

Giacosa, R.E. (2020). Basement control, sedimentary basin inception and early evolution of the Mesozoic basins in the Patagonian foreland. Journal of South American Earth Sciences, 97: doi.org/10.1016/j.jsames.2019.102407.

Gianni, G., Navarrete, C., Orts, D., Tobal, J., Folguera, A., and Giménez, M. (2015). Patagonian broken foreland and related synorogenic rifting: the origin of Chubut Group Basin. Tectonophysics, 649: 81-99.

Gianni, G.M., Likerman, J., Navarrete, C., Echaurren, A., Butler, K., and Folguera, A. (2022). Antepaís Fragmentado Patagónico: control estructural previo, mecanismos de deformación y sedimentación sintectónica. In: Giacosa, R.E. (Ed.): Geología y Recursos Naturales de la Provincia del Chubut. Relatorio del XXI Congreso Geológico Argentino: 1293-1314, Puerto Madryn.

Gibling, M.R. (2006). Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classification. Journal of Sedimentary Research, 76: 731-770.

Glennie, K.W. (1987). Desert sedimentary environments, present and past. A summary. Sedimentary Geology, 50: 135-165.

Hampton, B.A., and Horton, B.K. (2007). Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia. Sedimentology, 54: 1121-1147.

Hauser, N., Cabaleri, N.G., Gallego, O.F., Monferran, M.D., Silva Nieto, D., Armella, C., Matteini, M., Aparicio González, P.A., Pimentel, M.M., Volkheimer, W., and Reimold, W.U. (2017). U-Pb and Lu-Hf zircon geochronology of the Cañadón Asfalto Basin, Chubut, Argentina: Implications for the magmatic evolution in central Patagonia. Journal of South American Earth Sciences, 78: 190–212.

Hooper, D.M., McGinnis, R.N., and Necsoiu, M. (2012). Volcaniclastic aeolian deposits at Sunset Crater, Arizona: terrestrial analogs for Martian dune forms. Earth Surface Processes and Landforms, 37(10): 1090-1105.

Houghton, B.F., Wilson, C.J.N., and Pyle, D.M. (2000). Pyroclastic fall deposits. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes. Elsevier Academic Press: 555-570.

Kataoka, K. (2023). From ‘source to sink’ to ‘sink to source’: a review of volcanic fluvial and lacustrine successions in Japan. In: Di Capua, A., De Rosa, R., Kereszturi, G., Le Pera, E., Rosi, M. and Watt, S. F. L. (Eds.), Volcanic Processes in the Sedimentary Record: When Volcanoes Meet the Environment. Geological Society, Special Publications, 520: 393 – 416.

Kataoka, K., and Nakajo, T. (2002). Volcaniclastic resedimentation in distal fluvial basins induced by large-volume explosive volcanism: the Ebisutoge-Fukuda tephra, Plio-Pleistocene boundary, central Japan. Sedimentology, 49: 319-334.

Kocurek, G. (1996). Desert eolian systems. In: Reading, H.G. (Ed.), Sedimentary Environments, Processes, Facies and Stratigraphy. Blackwell Science, Oxford: 125-153.

Krause, J.M., Umazano, A.M., Bellosi, E.S., and White, T.S. (2014). Hydromorphic paleosols in the upper Puesto La paloma Member, Cerro Barcino Formation, mid cretaceous, Patagonia Argentina: environmental and stratigraphic significance. In: XIV Reunión Argentina de Sedimentología, 146–147. Puerto Madryn.

Krause, J.M., Ramenazi, J., Umazano, A.M., Pol, D., Carballido, J.L., Sterli, J., Puerta, P., Cúneo, N.R., and Bellosi, E.S. (2020). High-resolution chronostratigraphy of the Cerro Barcino Formation (Patagonia): Paleobiologic implications for the mid-cretaceous dinosaur-rich fauna of South America. Gondwana Research, 80: 33-49.

Lagorio, S., Busteros, A., Silva Nieto, D., Zaffarana, C., Giacosa, R., and González, P. (2022). El magmatismo Pérmico y Triásico de la región de Gastre y Sierra del Medio, suroeste del Macizo Norpatagónico. In: Giacosa, R.E. (Ed.): Geología y Recursos Naturales de la Provincia del Chubut. Relatorio del XXI Congreso Geológico Argentino: 291-329, Puerto Madryn.

Langford, R.P. and Chan, M.A. (1989). Fluvial-eolian interactions: part II, ancient systems. Sedimentology, 36: 1037–1051.

Lesta, P., and Ferello, R. (1972). Región extraandina de Chubut y norte de Santa Cruz. In: Leanza, A.F. (Ed.), Geología Regional Argentina. Academia Nacional de Ciencias Córdoba, Córdoba: 601-653.

Manassero, M., Zalba, P.E., Andreis, R., and Morosi, M. (2000). Petrology of continental pyroclastic and epiclastic sequences in the Chubut Group (Cretaceous): Los Altares-Las Plumas area, Chubut, Patagonia Argentina. Revista Geológica de Chile, 27: 13-26.

Manville, V., Németh, K., and Kano, K. (2009). Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits and hazards. Sedimentary Geology, 220: 136-161.

Martina, F., Dávila, F.M., and Astini, R.A. (2006). Mio-Pliocene volcaniclastic deposits in the Famatina Ranges, southern Central Andes: a case of volcanic controls on sedimentation in broken foreland basins. Sedimentary Geology, 186: 51-65.

Melchor, R.N., Genise, J.F., Buatois, L., and Umazano, A.M. (2012). Fluvial environments. In: Knaust, D., Bromley, R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, 64: 329-378.

Melchor, R., Pérez, M., Villegas, P., Espinoza, N., Umazano, A., Cardonatto, M. (2023). Early Cretaceous lepidosaur (Sphenodontian?) burrows. Scientific Reports, 13, doi: 10.1038/s41598-023-37385-6.

Miall, A.D. (1978). Facies types and vertical profile models in braided river deposits: a summary. In: Miall, A.D. (Ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists Memoir, 5: 597-604.

Miall, A.D. (1996). The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag, Berlin, 582 pp.

Miall, A.D. (2000). Principles of Sedimentary Basin Analysis. Springer-Verlag, Berlin, 616 pp.

Miall, A.D. (2014). Fluvial Depositional Systems. Springer, Berlin, 316 pp.

Monti, M., Franzese, J.R. (2016). Análisis tectonoestratigráfico del Grupo Puesto Viejo (San Rafael, Argentina): evolución de un rift continental triásico. Latin American Journal of Sedimentology and Basin Analysis, 23: 1-33.

Moore, J.G., Peck, D.L. (1962). Accretionary lapilli in volcanic rocks of the western continental United States. Journal of Geology, 70: 182-193.

Mountney, N.G. (2006). Eolian facies models. In: Posamentier, H.W., Walker, R.G. (Eds.), Facies Models Revisited. Society of Economic Paleontologists and Mineralogists Special Publication, 84: 19-83.

Nakayama, C. (1973). Sedimentitas prebayocianas en el extremo austral de la sierra de Taquetrén, Chubut, Argentina. V Congreso Geológico Argentino: 269-278, Buenos Aires.

Nakayama, K., and Yoshikawa, S. (1997). Depositional processes of primary to reworked volcaniclastics on an alluvial plain; an example from the Lower Pliocene Ohta tephra bed of the Tokai Group, central Japan. Sedimentary Geology, 107: 211-229.

Nanson, G.C., and Croke, J.C. (1992). A genetic classification of floodplains. Geomorphology, 4: 459-486.

Nichols, G.J., and Fisher, J.A. (2007). Processes, facies and architecture of fluvial distributary systems deposits. Sedimentary Geology, 195: 75-90.

Paredes, J.M. (2022). Sistemas Fluviales: Organización, Evolución e Importancia Económica. Asociación Geológica Argentina, 602 pp.

Paredes, J.M. (2023). Analogs in the study of fluvial successions: Conceptual framework and examples from the Chubut Group (Cretaceous) of Argentina. Journal of South American Earth Sciences 123: doi.org/10.1016/j.jsames.2023.104202.

Paredes, J.M., Foix, N., Colombo Piñol, F., Nillni, A., Allard, J.O., and Marquillas, R.A. (2007). Volcanic and climatic control on fluvial style in a high-energy system: the Lower Cretaceous Matasiente Formation, Golfo San Jorge Basin, Argentina. Sedimentary Geology, 202: 96-123.

Paredes, J.M., Foix, N., Allard, J.O., Colombo, F., and Tunik, M.A. (2015). Alluvial architecture of reworked pyroclastic deposits in peri-volcanic basins: Castillo Formation (Albian) of the Golfo San Jorge Basin, Argentina. Revista de la Asociación Geológica Argentina, 72: 38-58.

Paredes, J.M., Foix, N., Allard, J.O., Valle, M.N., and Giordano, S.R. (2018). Complex alluvial architecture, paleohydraulics and controls of a multichannel fluvial system: Bajo Barreal Formation (Upper Cretaceous) in the Cerro Ballena anticline, Golfo San Jorge Basin, Patagonia. Journal of South American Earth Sciences, 85: 168-190.

Paredes, J.M., Giordano, S.R., Olazábal, S.X., Valle, M.N., Allard, J.O., Foix, N., and Tunik, M.A. (2020). Climatic control on stacking and connectivity of fluvial successions: Upper Cretaceous Bajo Barreal Formation of the Golfo San Jorge Basin, Patagonia. Marine and Petroleum Geology, 113: doi.org/10.1016/j.marpetgeo.2019.104116.

Parrish, J.T. (1998). Interpreting Pre-quaternary Climate from the Geologic Record. Columbia University Press, New York, 338 pp.

Pérez, M., Umazano, A.M., and Visconti, G. (2013a). Análisis paleoambiental del Miembro Superior de la Formación Río Negro (Mioceno-Plioceno de Patagonia septentrional): un ejemplo de interacción fluvio-eólica compleja. Revista de la Sociedad Geológica de España, 26: 25-39.

Pérez, M., Umazano, A.M., and Melchor, R.N. (2013b). Cretaceous burrows of probable vertebrate origin from volcaniclastic interdune deposits of the Cerro Barcino Formation, Patagonia, Argentina. II Latin American Symposium on Ichnology: 57, Santa Rosa.

Pérez, M., Umazano, A.M., and Melchor, R.N. (2015). Aeolian trace fossil associations from Cretaceous formations of Patagonia, Argentina: stratigraphic and ichnofacies implications. III Latin American Symposium on Ichnology: 62, Colonia del Sacramento.

Petrinovic, I.A., and D’Elía, L. (2018). Rocas Volcaniclásticas. Depósitos, Procesos y Modelos de Facies. Asociación Argentina de Sedimentología, La Plata, 172 pp.

Pierson, T.C., and Major, J.J. (2014). Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins. Annual Review of Earth and Planetary Sciences, 42: 469-507.

Platt, N.H. and Keller B. (1992). Distal alluvial deposits in a foreland basin setting—the Lower Freshwater Molasse (Lower Miocene), Switzerland: sedimentology, architecture and palaeosols. Sedimentology, 39: 545–565.

Pol, D., Garrido, A., and Cerda, I.A. (2011). A New Sauropodomorph Dinosaur from the Early Jurassic of Patagonia and the Origin and Evolution of the Sauropod-type Sacrum. PLos ONE, 6: doi.org/10.1371/journal.pone.0014572.

Proserpio, C.A. (1987). Hoja Geológica 44 e, Valle General Racedo, Provincia de Chubut. Dirección Nacional de Minería y Geología, Secretaría de Minería, scale 1:200000.

Pye, K., and Tsoar, H. (2009). Aeolian Sand and Sand Dunes. Springer, Berlin, 458 pp.

Raigemborn, M.S., Matheos, S.D., Krapovickas, V., Vizcaíno, S.F, Bargo, M.S., Kay, R.F., Fernicola, J.C., and Zapata, L. (2015). Paleoenvironmental reconstruction of the coastal Monte León and Santa Cruz formations (Early Miocene) at Rincón del Buque, Southern Patagonia: A revisited locality. Journal of South American Earth Sciences 60: 31-55.

Raigemborn, M.S., Beilinson, E., Krause, J.M., Varela, A.N., Bellosi, E.S., Matheos, S.D., and Sosa, N. (2018). Paleolandscape reconstruction and interplay of controlling factors of an Eocene pedogenically-modified distal volcaniclastic succession in Patagonia. Journal of South American Earth Sciences, 86: 475–496.

Schumacher, R., Schmincke, H.U. (1995). Model for the origin of accretionary lapilli. Bulletin of Volcanology, 56: 626-639.

Sierra, S., Moreno, C., and Pascual, E. (2009). Stratigraphy, petrography and dispersion of the Lower Permian syn-eruptive deposits in the Viar Basin, Spain. Sedimentary Geology, 217: 1-29.

Smith, G.A. (1991). Facies sequences and geometries in continental volcaniclastic sediments. In: Fisher, R.V., Smith, G.A. (Eds.), Sedimentation in Volcanic Settings. Society of Economic Paleontologists and Mineralogists, Special Publication, 45: 109-121.

Smith, G. A. and Katzman, D. (1991). Discrimination of eolian and pyroclastic surge processes in the generation of crossbedded tuffs, Jemez Mountains volcanic field, New Mexico. Geology, 19(5): 465–468.

Smith, G.A. and Lowe, D.R. (1991). Lahars: volcano-hydrologic events and deposition in the debris flow-hyperconcentrated flow continuum. In: Fisher, R.V., Smith, G.A. (Eds.), Sedimentation in Volcanic Settings. Society of Economic Paleontologists and Mineralogists, Special Publication, 45: 59–70.

Smith, A.G., Hurler, A.M. y Briden, J.C. (1981). Phanerozoic Paleocontinental World Maps. Cambridge University Press, Cambridge, 102 pp.

Smoot, J.P. and Lowenstein, T.K. (1991). Depositional environments of non-marine evaporites. In: Melvin, J.L. (Ed.), Evaporites, Petroleum and Mineral Resources. Developments in Sedimentology, 50: 189-347.

Sohn, Y.K., Ki, J.S., Jung, S., Kim, M., Cho, H., and Son, M. (2013). Synvolcanic and syntectonic sedimentation of the mixed volcaniclastic–epiclastic succession in the Miocene Janggi Basin, SE Korea. Sedimentary Geology, 288: 40-59.

Spalletti, L.A., and Colombo Piñol, F. (2019). Architecture of intereruptive and syneruptive facies in an Andean quaternary palaeovalley: The huarenchenque formation, western Argentina. Andean Geology 46: 471-489.

Sterli, J., de la Fuente, M.S., and Umazano, A.M. (2015). New remains and new insights on the Gondwanan meiolaniform turtle Chubutemys copelloi from the Lower Cretaceous of Patagonia, Argentina. Gondwana Research, 27: 978-994.

Stipanicic, P.N., Rodrigo, F., Baulies, O., and Martínez, C. (1968). Las formaciones presenonianas en el denominado Macizo Norpatagónico y regiones adyacentes. Revista de la Asociación Geológica Argentina, 23: 67-98.

Talbot, M.R., and Allen, P.A. (1996). Lakes. In: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Science, Cambridge: 83-124.

Uliana, M.A., and Biddle, K.T. (1987). Permian to late Cenozoic evolution of northern Patagonia: main tectonic events, magmatic activity, and depositional trends. American Geophysical Union Memoir, 40: 271-286.

Umazano, A.M., Bellosi, E.S., Visconti, G., and Melchor, R.N. (2008). Mechanisms of aggradation in fluvial systems influenced by explosive volcanism: an example from the Upper Cretaceous Bajo Barreal Formation, San Jorge Basin, Argentina. Sedimentary Geology, 203: 213-228.

Umazano, A.M., Bellosi, E.S., Visconti, G., and Melchor, R.N. (2012). Detecting allocyclic signals in volcaniclastic fluvial successions: facies, architecture and stacking pattern from the Cretaceous of central Patagonia, Argentina. Journal of South American Earth Sciences, 40: 94-115.

Umazano, A.M., Melchor, R.N., Bedatou, E., Bellosi, E.S., and Krause, J.M. (2014). Fluvial response to sudden input of pyroclastic sediments during the 2008-2009 eruption of the Chaitén volcano (Chile): the role of logjams. Journal of South American Earth Sciences, 54: 140-157.

Umazano, A.M., Krause, J.M., Bellosi, E.S., Pérez, M., Visconti, M., and Melchor, R.N. (2017). Changing fluvial styles in volcaniclastic successions: a cretaceous example from the Cerro Barcino Formation, Patagonia. Journal of South American Earth Sciences, 77: 185–205.

Umazano, A.M., and Melchor, R.N. (2020). Volcaniclastic sedimentation influenced by logjam breakups? An example from the Blanco River, Chile. Journal of South American Earth Sciences, 98: doi.org/10.1016/j.jsames.2019.102477.

Umazano, A.M., Melchor, R.N., Bedatou, E., and Krause, J.M. (2021). Improving the facies models for syn-eruptive fluvial successions: lessons from the Chaitén volcano and Blanco river, Chile. XVII Reunión Argentina de Sedimentología and VIII Congreso Latinoamericano de Sedimentología: Actas, Paraná.

Umazano, A.M., Bedatou, E., Krause, J.M., Bellosi, E.S., and Villegas, P. M. (2022). Improving the facies model for syn-eruptive fluvial successions: lessons from the Chaitén volcano and Blanco river, Chile. Latin American Journal of Sedimentology and Basin Analysis 29: 61 – 65.

Villegas, P.M. (2022). Rol de los Factores Alocíclicos en la Sedimentación de Sucesiones Fluviales Volcaniclásticas: el Caso de la Formación Cerro Barcino, Cretácico de Patagonia. Tesis Doctoral, Facultad de Ciencias Físico-Matemáticas y Naturales, Universidad Nacional de San Luis, 285 pp. (inédito).

Villegas, P.M., Visconti, G., and Umazano, A.M. (2014). Respuestas sedimentarias de un sistema fluvial al influjo de sedimentos piroclásticos: el caso de los miembros Bardas Coloradas y Puesto La Paloma durante el Cretácico de Patagonia. XIV Reunión Argentina de Sedimentología: 295-296, Puerto Madryn.

Villegas, P.M., Umazano, A.M., Melchor, R.N., and Kataoka, K. (2019). Soft-sediment deformation structures in gravelly fluvial deposits: A record of Cretaceous seismic activity in Patagonia? Journal of South American Earth Sciences, 90: 325-337.

Volkheimer, W., Gallego, O.F., Cabaleri, N.G., Armella, C., Narváez, P.L., Silva Nieto, D.G., and Páez, M.A. (2009). Stratigraphy, palynology and conchostracans of a Lower Cretaceous sequence at the Cañadón Calcáreo locality, extra-andean central Patagonia: age and paleoenvironmental significance. Cretaceous Research, 30: 270-282.

Walker, G.P.L. (1973). Explosive volcanic eruptions: a new classification scheme. Geologische Rundschau, 62: 431-446.

Westoby, M., Brasington, J., Glasser, N., Hambrey, M. and Reynolds, J. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179: 300-314.

White, J. D. L. (1989). Basic elements of maar-crater deposits in the Hopi Buttes volcanic field, northeastern Arizona, U.S.A. Journal of Geology, 97(1): 117–125.

White, J. D. L. (1990). Depositional architecture of a maar-pitted playa: Sedimentation in the Hopi Buttes volcanic field, northeastern Arizona, U.S.A. Sedimentary Geology, 67: 55–84.

Descargas

Publicado

2023-10-02 — Actualizado el 2024-07-10

Cómo citar

Villegas, P. M., & Umazano, A. M. (2024). Influjo volcaniclástico de sedimentos y respuestas ambientales de sistemas fluviales: explorando un ejemplo Cretácico de Patagonia. Latin American Journal of Sedimentology and Basin Analysis, 31(1), 13-42. Recuperado a partir de https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/240

Número

Sección

Trabajos de investigación