Evolving controls on mineralization in Patagonian microbial mats as inferred by water chemistry, microscopy and DNA signatures

Autores/as

  • Inès Eymard Department of Earth Sciences, University of Geneva, Geneva, Switzerland
  • M. del Pilar Alvarez IPPEC-CONICET, Puerto Madryn, Chubut, Argentina
  • Andrés Bilmes IPGP-CONICET, Puerto Madryn, Chubut, Argentina
  • Crisogono Vasconcelos ETH, Geologisches Institut, Zürich, Switzerland ; CGA-SGB/CPRM, Rio de Janeiro, Brazil
  • Camille Thomas Department of Earth Sciences, University of Geneva, Geneva, Switzerland
  • Daniel Ariztegui University of Geneva

Resumen

In recent years resulting investigations in living microbialites have provided significant data that have been critical to disentangle the role of the various biotic and abiotic processes contributing to their development. Despite these efforts separating the impact and magnitude of these processes remain a difficult task. At present the Maquinchao Basin in northeastern Patagonia, Argentina, contains both fossil and living microbialites. Thus, the region provides a unique opportunity to investigate the impact of intrinsic and extrinsic parameters in carbonate precipitation. Early investigations (Austral summer 2011) in living microbialites concluded that organomineralization was related to both photosynthetic activity in the more surficial layer (green), and sulfate-reduction in the lower part (beige). Field investigations in the same area four years later showed that the pounds previously containing abundant active mats had dried out, and in general revealed the absence of globular structured clusters of minerals in the microbial mats. Here we present microscale investigations using optical microscopy and SEM along with the 16SrRNA gene sequence diversity, and the physico-chemical parameters of the hosting waters. They were carried out in successive seasonal samplings in November 2015, April-May 2016, August 2016, February 2017, and March 2018. All microbialite samples show regular occurrences of sulfate reducing bacteria (SRB) along with filaments of unknown origin. Carbonates are observed associated with erect filaments in shallow and active running water locations whereas the mineral phase is located below organic matter film in comparatively deeper and calmer water areas. Additionally, seasonal changes in the physico-chemical properties of the hosting waters indicate that extrinsic parameters, especially evaporation, might play a more substantial role in the precipitation of these carbonates than previously proposed. The environmental differences between 2011 and 2015 in meteorological conditions, regional volcanic activity and associated deposits in the basin are analyzed. We concluded that they are likely responsible of the decrease of the mineralization processes, and particularly those associated with photosynthetic activity.  These results call for caution when interpreting the degree of biological impact on the formation of microbialites in the geological record. Local extrinsic factors might have a changeable impact over time switching mineral precipitation from biotic to abiotic and vice-versa, which can be undistinguishable in fossilized microbialites.

Citas

Agosta, E., Compagnucci, R., and Ariztegui, D. (2015). Precipitation linked to Atlantic moisture transport: Clues to interpret Patagonian palaeoclimate. Climate Research, 62(3): 219–240. https://doi.org/10.3354/cr01272.

Alvarez, M.d.P., Carol, E., Eymard, I., Bilmes, A., and Ariztegui, D. (2021). Hydrochemistry, isotope studies and salt formation in saline lakes of arid regions: Extra Andean Patagonia, Argentina. Science of the Total Environment. (https://doi.org/10.1016/j.scitotenv.2021.151529).

Ariztegui, D., Anselmetti, F. S., Gilli, A., and Waldmann, N. (2008). Late Pleistocene Environmental Change in Eastern Patagonia and Tierra del Fuego – A Limnogeological Approach. In J. Rabassa (Ed.), Developments in Quaternary Sciences 11: 241–253). Elsevier. https://doi.org/10.1016/S1571-0866(07)10011-7

Ariztegui, D., Anselmetti, F. S., Kelts, K., Seltzer, G. O., and D’Agostino, K. (2001). Chapter 14—Identifying Paleoenvironmental Change Across South and North America Using High-Resolution Seismic Stratigraphy in Lakes. In V. Markgraf (Ed.), Interhemispheric Climate Linkages: 227–240. Academic Press. https://doi.org/10.1016/B978-012472670-3/50017-3

Arp, G., Reimer, A., and Reitner, J. (2003). Microbialite Formation in Seawater of Increased Alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research, 73(1): 105–127. https://doi.org/10.1306/071002730105

Awramik, S. M., and Riding, R. (1988). Role of algal eukaryotes in subtidal columnar stromatolite formation. Proceedings of the National Academy of Sciences, 85(5): 1327–1329. https://doi.org/10.1073/pnas.85.5.1327

Bilmes, A., D’Elia, L., Lopez, L., Richiano, S., Varela, A., Alvarez, M. del P., Bucher, J., Eymard, I., Muravchik, M., Franzese, J., and Ariztegui, D. (2019). Digital outcrop modelling using “structure-from- motion” photogrammetry: Acquisition strategies, validation and interpretations to different sedimentary environments. Journal of South American Earth Sciences, 96: 1-6. https://doi.org/10.1016/j.jsames.2019.102325

Bradbury, J. P., Grosjean, M., Stine, S., and Sylvestre, F. (2001). Chapter 16 - Full and Late Glacial Lake Records Along the PEP 1 Transect: Their Role in Developing Interhemispheric Paleoclimate Interactions. In V. Markgraf (Ed.), Interhemispheric Climate Linkages: 265–291. Academic Press. https://doi.org/10.1016/B978-012472670-3/50019-7

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7): 581–583. https://doi.org/10.1038/nmeth.3869

Cartwright, A., Quade, J., Stine, S., Adams, K. D., Broecker, W., and Cheng, H. (2011). Chronostratigraphy and lake-level changes of Laguna Cari-Laufquén, Río Negro, Argentina. Quaternary Research, 76(3); 430–440. https://doi.org/10.1016/j.yqres.2011.07.002

Casaburi, G., Duscher, A. A., Reid, R. P., and Foster, J. S. (2015). Characterization of the stromatolite microbiome from Little Darby Island, The Bahamas using predictive and whole shotgun metagenomic analysis. Environmental Microbiology, n/a-n/a. https://doi.org/10.1111/1462-2920.13094

Dodds, W. K., Gudder, D. A., and Mollenhauer, D. (1995). The Ecology of Nostoc. Journal of Phycology, 31(1): 2–18. https://doi.org/10.1111/j.0022-3646.1995.00002.x

Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., and Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005

Dupraz, C., Visscher, P. T., Baumgartner, L. K., and Reid, R. P. (2004). Microbe–mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51(4): 745–765. https://doi.org/10.1111/j.1365-3091.2004.00649.x

Eymard, I., Alvarez, M. del P., Bilmes, A., Vasconcelos, C., and Ariztegui D (2020). Tracking organomineralization processes from living microbial mats to fossil microbialites. Minerals 10: 605 (doi:10.3390/ min10070605).

Eymard, I., Bilmes, A., Alvarez, M. del P., Feo, R., Hunger, G., Vasconcelos, C., and Arizteguí, D. (2019). Growth morphologies and plausible stressors ruling the formation of Late Pleistocene lacustrine carbonate buildups in the Maquinchao Basin (Argentina). The Depositional Record, 5(3): 498–514. https://doi.org/10.1002/dep2.81

Farías, M. E., Rascovan, N., Toneatti, D. M., Albarracín, V. H., Flores, M. R., Poiré, D. G., Collavino, M. M., Aguilar, O. M., Vazquez, M. P., and Polerecky, L. (2013). The Discovery of Stromatolites Developing at 3570 m above Sea Level in a High-Altitude Volcanic Lake Socompa, Argentinean Andes. PLoS ONE, 8(1): e53497. https://doi.org/10.1371/journal.pone.0053497

Freytet, P., and Verrecchia, E. P. (1998). Freshwater organisms that build stromatolites: A synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology, 45(3): 535–563. https://doi.org/10.1046/j.1365-3091.1998.00155.x

Galloway, R. W., Markgraf, V., and Bradbury, J. P. (1988). Dating shorelines of lakes in Patagonia, Argentina. Journal of South American Earth Sciences, 1(2): 195–198. USGS Publications Warehouse. http://pubs.er.usgs.gov/publication/70014176

Gong, J., Myers, K. D., Munoz-Saez, C., Homann, M., Rouillard, J., Wirth, R., Schreiber, A., and van Zuilen, M. A. (2019). Formation and Preservation of Microbial Palisade Fabric in Silica Deposits from El Tatio, Chile. Astrobiology, 20(4): 500–524. https://doi.org/10.1089/ast.2019.2025

Lyons, W. B., Long, D. T., Hines, M. E., Gaudette, H. E., and Armstrong, P. B. (1984). Calcification of cyanobacterial mats in Solar Lake, Sinai. Geology, 12(10): 623–626. https://doi.org/10.1130/0091-7613(1984)12<623:COCMIS>2.0.CO;2

McMurdie, P. J., and Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8(4): e61217. https://doi.org/10.1371/journal.pone.0061217

Merz-Preiß, M. (2000). Calcification in Cyanobacteria. In R. E. Riding and S. M. Awramik (Eds.), Microbial Sediments: 50–56. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04036-2_7

Merz-Preiß, M., and Riding, R. (1999). Cyanobacterial tufa calcification in two freshwater streams: Ambient environment, chemical thresholds and biological processes. Sedimentary Geology, 126: 103–124. https://doi.org/10.1016/S0037-0738(99)00035-4

Pace, A., Bourillot, R., Bouton, A., Vennin, E., Braissant, O., Dupraz, C., Duteil, T., Bundeleva, I., Patrier, P., Galaup, S., Yokoyama, Y., Franceschi, M., Virgone, A., and Visscher, P. T. (2018). Formation of stromatolite lamina at the interface of oxygenic-anoxygenic photosynthesis. Geobiology, 16(4): 378–398. https://doi.org/10.1111/gbi.12281

Pacton, M., Hunger, G., Martinuzzi, V., Cusminsky, G., Burdin, B., Barmettler, K., Vasconcelos, C., and Ariztegui, D. (2015). Organomineralization processes in freshwater stromatolites: A living example from eastern Patagonia. The Depositional Record, 1(2): 130–146. https://doi.org/10.1002/dep2.7

Pentecost, A. (2005). Travertine. Springer Netherlands. //www.springer.com/la/book/9781402035234

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1): D590–D596. https://doi.org/10.1093/nar/gks1219

Reid, R. P., Macintyre, I. G., Browne, K. M., Steneck, R. S., and Miller, T. (1995). Modern marine stromatolites in the Exuma Cays, Bahamas: Uncommonly common. Facies, 33(1): 1–17. https://doi.org/10.1007/BF02537442

Riding, R. (2011a). Microbialites, Stromatolites, and Thrombolites. In J. Reitner and V. Thiel (Eds.), Encyclopedia of Geobiology. Springer Netherlands, 635–654.

Riding, R. (2011b). Calcified Cyanobacteria. In J. Reitner and V. Thiel (Eds.), Encyclopedia of Geobiology. Springer Netherlands, 211–223.

Roche, A., Vennin, E., Bundeleva, I., Bouton, A., Payandi-Rolland, D., Amiotte-Suchet, P., Gaucher, E. C., Courvoisier, H., and Visscher, P. T. (2019). The Role of the Substrate on the Mineralization Potential of Microbial Mats in A Modern Freshwater River (Paris Basin, France). Minerals, 9(6): 359. https://doi.org/10.3390/min9060359.

Schwalb, A., Burns, S. J., Cusminsky, G., Kelts, K., and Markgraf, V. (2002). Assemblage diversity and isotopic signals of modern ostracodes and host waters from Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 187(3): 323–339. http://www.sciencedirect.com/science/article/pii/S0031018202004844

Souza-Egipsy, V., Wierzchos, J., Ascaso, C., and Nealson, K. H. (2005). Mg–silica precipitation in fossilization mechanisms of sand tufa endolithic microbial community, Mono Lake (California). Chemical Geology, 217(1): 77–87. https://doi.org/10.1016/j.chemgeo.2004.12.004

Takahashi, S., Tomita, J., Nishioka, K., Hisada, T., and Nishijima, M. (2014). Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing. PLoS ONE, 9(8): e105592. https://doi.org/10.1371/journal.pone.0105592

Tatur, A., del Valle, R., Bianchi, M.-M., Outes, V., Villarosa, G., Niegodzisz, J., and Debaene, G. (2002). Late Pleistocene palaeolakes in the Andean and Extra-Andean Patagonia at mid-latitudes of South America. Quaternary International, 89(1): 135–150. https://doi.org/10.1016/S1040-6182(01)00085-4

Visscher, P. T., and Stolz, J. F. (2005). Microbial mats as bioreactors: Populations, processes, and products. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1–2): 87–100. https://doi.org/10.1016/j.palaeo.2004.10.016

Wacey, D., Urosevic, L., Saunders, M., and George, A. D. (2018). Mineralisation of filamentous cyanobacteria in Lake Thetis stromatolites, Western Australia. Geobiology, 16(2): 203–215. https://doi.org/10.1111/gbi.12272

Waite, D. W., Chuvochina, M., Pelikan, C., Parks, D. H., Yilmaz, P., Wagner, M., Loy, A., Naganuma, T., Nakai, R., Whitman, W. B., Hahn, M. W., Kuever, J., and Hugenholtz, P. (2020). Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. International Journal of Systematic and Evolutionary Microbiology, 70(11): 5972–6016. https://doi.org/10.1099/ijsem.0.004213

Whatley, R. C., and Cusminsky, G. C. (1999). Lacustrine Ostracoda and late Quaternary palaeoenvironments from the Lake Cari-Laufquen region, Rio Negro province, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 151(1–3): 229–239. https://doi.org/10.1016/S0031-0182(99)00022-X

##submission.downloads##

Publicado

2021-12-27 — Actualizado el 2022-01-04

Cómo citar

Eymard, I., Alvarez, M. del P., Bilmes, A., Vasconcelos, C. ., Thomas, C., & Ariztegui, D. (2022). Evolving controls on mineralization in Patagonian microbial mats as inferred by water chemistry, microscopy and DNA signatures. Latin American Journal of Sedimentology and Basin Analysis, 28(2), 133-151. Recuperado a partir de https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/28-2-4

Número

Sección

Volumen especial