Hydromorphic soils of the Río de la Plata coastal plain, Argentina


  • Perla A. Imbellone Instituto de Geomorfología y Suelos. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata. Calle 3 Nº 584. B1902CIX La Plata. Argentina.
  • Beatriz A. Guichon Instituto de Geomorfología y Suelos. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata. Calle 3 Nº 584. B1902CIX La Plata. Argentina.
  • Jorge E Giménez Instituto de Geomorfología y Suelos. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata. Calle 3 Nº 584. B1902CIX La Plata. Argentina.

Palabras clave:

Hydromorphic soils; Iron; Manganese; Eh; Argentina


The Río de la Plata coastal plain is a 5 to 10-km wide strip, extending along nearly 200 km on the right bank of this estuary, in northeastern Buenos Aires Province, Argentina. The climate is temperate humid (mean annual temperature and rainfall: 16.2ºC and 1040 mm). The coastal plain is covered with materials derived from intense sedimentation and littoral transport. These factors have interacted with marine ingressions and regressions occurred after the Last Glaciation Maximum. A large part of the coastal plain is covered with hydromorphic soils whose geochemical properties and response to environmental factors are not totally understood. The objectives of this work are: a) to describe the redoximorphic features of the soils; b) to analyze the temporal evolution of the main hydromorphic variables; and c) to establish the relationships between genetic factors and the hydromorphic variables. The evolution of Eh, pH, Fe2+, Mn2+ and moisture was analyzed monthly during two years in two representative soils: a Fluvaquent formed in fluviatile sands of the alluvial plain of Río de la Plata and a Natraquert developed in estuarine clays of a mudflat. Both soils exhibit different stability regarding their hydromorphic dynamics. The Fluvaquent is a very unstable system due to its coarse texture, which allows a rapid water movement from diverse sources (rain, phreatic water and floods), showing a heterogenous distribution of the redoximorphic features in the soil. The lowest horizon (2Cg) is nearly permanently saturated and reduced by phreatic water; it exhibits homogenous low-chroma colors and has the lowest Eh mean value. The overlying horizon (2Cxg), where the anoxic conditions fluctuate, has mottles and localized hardening due to the precipitation of Fe and Mn oxides, indicating oxidizing conditions during some part of the year. These changes are reflected rapidly in Eh values, but not in Fe2+ and Mn2+ contents, which involve physico-chemical equilibria that are not instantaneous. Floods affect mainly the two upper horizons and there is little influence of evapotranspiration. The Natraquert exhibits more stable geochemical conditions due to its clayey texture, which prevents a rapid oxygen access, even during summer when a short deficit period occurs. It has homogenous reduced colors in the matrix. This soil is affected by waterlogging without influence of floods, whilst the phreatic water only affects the deepest horizons. High Eh values and Mn2+ segregation are observed. Evapotranspiration has an influence on the upper horizons.


Bartlett, R.J., 1999. Characterizing soil redox behavior. In D.L. Sparks (Ed.), Soil Physical Chemistry. 371-397. CRC Press Inc., Boca Raton.

Bohn, H.L., 1971. Redox potentials. Soil Science 112:39-45.

Bouza, P.J., C. Sain, A. Bortotus, I. Rios, Y. Idaszkin and R. Cortés, 2008. Geomorfología y características morfológicas y fisicoquímicas de suelos hidromórficos de marismas patagónicas.

XXI Congreso Argentino de la Ciencia del Suelo. In CD. San Luis.

Cavallotto, J.L., 1995. Evolución geomorfológica de la llanura costera ubicada en el margen sur del Río de la Plata. PhD. Thesis. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. 237 pp.

Clausnitzler, D., J. Herbert Huddleston, E. Horn, M. Keller and C. Leet, 2003. Hydric soils in a southeastern Oregon Vernal Pool. Soil Science Society of America Journal 67:951-960.

Cumba, A. and P.A. Imbellone, 1999. El color del suelo. Un análisis sobre la intensidad. Provincia de Buenos Aires, Argentina. Actas 14 Congreso Latinoamericano de la Ciencia del Suelo. In CD. Pucón, Chile.

Davis, J.C., 1986. Statistics and data analysis in geology. John Wiley and Sons, New York. 646 pp.

Duchaufour, P., 1977. Pédologie. 1.Pédogenèse et classification. Masson, Paris. 477 pp.

Fiedler, S. and M. Sommer, 2004. Water and redox conditions in wetland soils. Their influence on pedogenic oxides and morphology. Soil Science Society of America Journal 68:326-335.

Garrels, R.M. and C.L. Christ, 1965. Minerals, solutions, and equilibria. Harper and Row Publishers Inc., New York. 450 pp.

Glinski, J. and J. Lipiec, 1990. Soil physical conditions and plant roots. CRC Press Inc., Boca Raton. 250 pp.

Guichon, B.E., P.A. Imbellone and J.E. Giménez, 2000. Propiedades geoquímicas en suelos ligeramente hidromórficos. Edafología 7:85-95.

Ignatieff, V., 1941. Determination and behavior of ferrous iron in soils. Soil Science 51:249-263.

Imbellone, P.A., B.E. Guichon and J.E. Giménez, 2001. Dynamics of physical-chemical properties in soils with anthropic flooding, Buenos Aires province, Argentina. Soil Science 166:930-939.

Kalesnik F. and A. Malvárez, 2003. Las especies invasoras exóticas en los sistemas de humedales. El caso del Delta Inferior del Río Paraná. I. Miscelánea 12:5-12.

Lévy, G. and F. Toutain, 1979. Aération et phénomènes d’oxydoréduction dans le sol. In M. Bonneau and B. Souchier (Eds.), Pédologie, 2 Constituants et propriétés du sol. Masson, Paris.


Megonigal, J.P., W.H. Patrick Jr. and S.P. Faulkner, 1993. Wetland identification in seasonally flooded forest soils: soil morphology and redox dynamics. Soil Science Society of America Journal 57:140-149.

Merodio, J.C., 1985. Métodos estadísticos en Geología. Asociación Geológica Argentina. Serie B Didáctica Complementaria Nº 3. 230 pp.

Otero, X.L., T.O. Ferreira, M.A. Huerta-Díaz, C.S. Partiti, V. Souza Jr., P. Vidal-Torrado and F. Macías, 2009. Geochemistry of iron and “manganese” in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia-SP,Brazil). Geoderma 148:318-335.

Pascale, A.J. and E.A. Damario, 1977. El balance hidrológico seriado y su utilización en estudios agroclimáticos. Revista de la Facultad de Agronomía (Universidad Nacional de La Plata) 53:15-34.

Patrick, W.H. Jr. and A. Jugsujinda, 1992. Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Science Society of America Journal 56: 1071-1073.

Ponnnamperuma, F., 1972. The chemistry of submerged soils. Advances in Agronomy 24:29-96.

Richardson, J.L. and M.J. Vepraskas (Eds.), 2000. Wetland soils. Lewis Publishers. Boca Raton. 417 pp.

Riggi, J.C., F. Fidalgo, O.R. Martínez and N.E. Porro, 1986. Geología de los “Sedimentos Pampeanos” en el partido de La Plata. Revista de la Asociación Geológica Argentina 41:316-333.

Schlichting E., 1973. Pseudgleye und Gleye. Genese und Nutzung, hydromorpher Böden. In Pseudogley und Gleye. E. Schlichting and U. Schwertmann (Eds.). Transactions of Com. V and VI, International Society of Soil Science. 1-6. Stuttgart- Hohenheim. Verlag Chemie. Weinheim.

Soil Survey Staff, 1999. Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys. Agricultural Handbook No. 436. Washington, DC. 869 pp.

Soil Survey Staff, 2006. Keys to Soil Taxonomy. 10th edition. United States Department of Agriculture. On-line version.

Soil Survey Division Staff, 1993. Soil survey manual. United States Department of Agriculture Handbook No. 18. 437 pp. Washington, DC.

Taboada, M.A. and R.S. Lavado, 1986. Características del régimen ácuico de un Natracuol de la Pampa Deprimida. Ciencia del Suelo 4:66-71.

Thornthwaite, C.W., 1948. An approach towards a rational classification of climate. Geographical Review 38:55-94.

Thornthwaite, C.W. and J.M. Mather, 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Institute of Techonology. Climatology 10:185-311.

USDA, 1996. Soil survey laboratory methods manual. Soil Survey Investigations Report No. 42. Version 3.0. United States Department of Agriculture. Washington DC, USA. 693 pp.

Vervoost, F.B., 1967, La vegetación de la República Argentina. VII. Las comunidades vegetales de la Depresión del Salado (Provincia de Buenos Aires). Serie Fitogeográfica, No. 7. Instituto de Botánica Agrícola, Instituto Nacional de Tecnología Agropecuaria. Buenos Aires.

Vilanova I., A.R. Prieto and S. Stutz, 2006. Historia de la vegetación en relación con la evolución geomorfológica de las llanuras costeras del este de la provincia de Buenos Aires durante el Holoceno. Ameghiniana 43:147-159.

Vizier, J.F., 1970. Étude des phénomènes d’hydromorphie et de leur déterminisme dans quelques types de sols du Tchad. Cahiers de l’ORSTOM, Pédologie 8:33-47.

Zobell, C.E., 1946. Oxidation-reduction potential of marine sediments. Bulletin of the American Association of Petroleum Geologists 30:477-511.




Cómo citar

Imbellone, P. A. ., Guichon, B. A. ., & Giménez, J. E. . (2021). Hydromorphic soils of the Río de la Plata coastal plain, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 16(1), 3-18. Recuperado a partir de https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/100



Trabajos de investigación