Paleosoils and limnic levels in the late Pleistocene and Holocene alluvial successions of the Andean Piedmont of Mendoza (33°-34° LS), Argentina

Authors

  • Adriana Mehl :Instituto de Ciencias de la Tierra y Ambientales de La Pampa (CONICET - UNLPAM). Av. Uruguay 151, Santa Rosa (La Pampa, Argentina). a
  • Marcelo Zárate :Instituto de Ciencias de la Tierra y Ambientales de La Pampa (CONICET - UNLPAM). Av. Uruguay 151, Santa Rosa (La Pampa, Argentina). a

Keywords:

Alluvial Successions, Paleosoils, Limnic Levels, Late Pleistocene, Holocene, Eastern Andean Piedmont.

Abstract

The late Pleistocene and Holocene alluvial deposits of the Arroyo La Estacada basin, located in the Andean piedmont of Mendoza province between 33° and 34° SL (Fig. 1a-b), are arranged in three conspicuous geomorphological units, a regional aggradational plain (RAP, late Pleistocene - early Holocene), a fill terrace (FT, middle and late Holocene) and a present floodplain (developed ca. 400 yr BP) (A-A’, B-B’, Fig. 1c). The RAP (Figs. 2a, 3a)and the FT (Figs. 2b, 3b) record aggradational and pedologicalproccesses; the latter are more frequents in the Holocene deposits together with abundant sedimentary levels showing high organic matter content (limnic levels).High organic matter content deposits have been studied by the international scientific community, particularly in North America, where some authors discussed the paleoenvironmental and paleoclimaticimplicances of the ‘black mats’ (Haynes, 1968; 2008; Firestone et al., 2007, among others). Toledo (2008) reinforced the idea of a global climatic change by correlating the ‘black mat’ deposits developed in the widely described fluvial sequences of the Central Pampean region of Argentina with those studied in North America. In such a context, this work evalua- tes the paleosoil-limnic level record of the Arroyo La Estacada basin, in the eastern Andean piedmont, with the aim of infering their implicantions in the paleoenvironmental and paleoclimatic dynamics of the central-west Argentinean region during the late Pleistocene and the Holocene. Besides, it provides information to the paleoclimatic framework of southern South America.Alluvial deposits exhibiting paleosoils and limnic levels were sampled using color as a field indicator (Wills et al., 2007, and references therein), in four lithostratigraphic sections located in the banks of Arroyo La Estacada and its tributary the Arroyo Anchayuyo. Qualitative (grain size, color, consistency, type and grade of pedal structure,limit forms and types, cements, redoximorphic features, etc.) and quantitative (organic matter and calcium carbonate contents, table1) attributes were described; also micromorphological analyses were conducted on undisturbed samples (Fig. 4). Results are presented according to a chronological criterion, from the oldest to the youngest paleosoils and limnic levels, based on a chronological calibration of pedosedimentary sequences already reported (Zárate, 2002; Zárate and Páez, 2002; Toms et al., 2004; Zárate and Mehl, 2008) and two new radiocarbon ages (Table 1).The analyzed late Pleistocene and Holocene alluvial deposits record the development of four main pedological processes, affecting not only paleosoils but also limnic levels. They are, organic matter decomposition, calcium carbonate accumulation, redoximorphic features formation and bioturbation.Paleosoils are conspicuous and widely extended along the arroyos basin. They can be recognized in the alluvial deposits as dark bands showing lighter colors downward. Paleosoil top limits are dominantly clear and smooth, the bases are mostly diffuse to smooth and wavy to irregular (Fig. 3a,b). RAP paleosoils are poorly developed showing dearth of pedological features and exiguous horizonation. Calcium carbonate appears in the soil mass and also forming nodules and concretions. FT paleosoils exhibit a greater relative development when comparing with the RAP paleosoils and calcium carbonate is in general absent.Limnic levels are also dark levels, but they present a homogeneous appearance without gradual color variation downwards (Figs. 4a, 5a, h). Its lateral extension is restricted when compared with the one exhibited by paleosoils. Nonetheless some of them can be recognized by several metres throughout the outcrops. The morphology of limnic levels is characterized by the occurrence of lenses formed by organic matter immersed in a fine-grained clastic matrix (Fig. 5h). Its configuration is similar to that described for gyttias o sedimentary peats (Uggla et al., 1969 in Fox, 1985). Limnic levels form due to the precipitation of organic matter suspended in water or by direct action of aquatic organisms (Fox,1985). The Holocene limnic levels are fair indicators of a vegetation productivity increment in the floodplain, especially in waterlogged environments (Fig. 6a,b). Also, they likely record an increase in the amount of organic matter carried by water along the fluvial valley. The major concentration of carbonates in the RAP paleosoils would likely indicate more evaporation in the alluvial basin at the RAP formation time. In turn, the abundance of redoximorphic features in the FT would record waterlogged episodes occurring during the middle and late Holocene, probably in response to frequent water table fluctuations.Analyzed alluvial sequences of the late Pleisto- cene and Holocene record paleoenvironmental and paleoclimatic changes in the eastern Andean piedmont between 33° and 34° SL, in relation to late Pleistocene - Holocene climatic transition. Paleo- soils and limnic levels have resulted in useful tools to calibrate the alluvial sequences and to analyse them geochronologically.

References

Allison, L., 1965. Organic soil carbon by reduction of chromic acid. Soil Science 40:311-320.

Amit, R., J. Lekachb, A. Ayalona, N. Porata y T. Grodek, 2007.New insight into pedogenic processes in extremely arid environments and their paleoclimatic implications -the Negev Desert, Israel. Quaternary International 162/163:61-75.

Boutton, T.W., S.R. Archer, A.J. Midwood, S.F. Zitzer y R. Bol, 1998. ?13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savannaecosystem. Geoderma 82:5-41.

Bruniard, E., 1982. La diagonal árida Argentina: un límite climático real. RevistaGeográfica 95:5-20.

Bullock, P., N. Fedoroff, A. Jongerius, G. Stoops y T. Yursina, 1985. Handbook for Soil Thin Section Description. Waine Research Publications, 152 pp. Wolverhampton.

Burgos, J.J. y A.L. Vidal, 1951. Los climas de la República Argentina según la nueva clasificación de Thornwaite. Meteoros 1:1-32.

Cabrera, A.L., 1976. Regiones Fitogeográficas Argentinas, Fascículo 1. Buenos Aires. En: Kugler, W.F. (Ed.), Enciclopedia Argentina de Agricultura y Jardinería 2:1-85.

Catt, J.A., 1990. Paleopedology Manual, Quaternary International6. PergamonPress Oxford, 95 pp.

Cavagnaro, J.B., 1988. Distribution of C3and C4grasses atdifferent altitudes in a temperate arid region of Argentina.Oecología 76:273-277.

Chapin, F.S., P. Matson y P.M. Vitousek, 2011. Principles of terrestrial ecosystem ecology. Springer, New York, 2nd edition, 529 pp.

Daniels, M.J., 2003. Floodplain aggradation and pedogenesis in a semiarid environment. Geomorphology 56:25-242.

Diersing, N., 2009. Phytoplankton blooms: the basics. Florida Keys National Marine Sanctuary. On-line: http://www. floridakeys.noaa.gov/pdfs/wqpb.pdf.

Duchaufour, P., 1975. Manual de edafología. Editorial Toray-Masson, 480 pp. Barcelona, España.

Firestone, R.B., A. Westc, J.P. Kennettd, L. Beckere, T.E. Bunchf,Z.S. Revayg, P.H. Schultzh, T. Belgyag, D.J. Kennetti,J.M. Erlandsoni, O.J. Dickensonj, A.C. Goodyeark, R.S. Harrish, G.A.Howardl, J.B. Kloostermanm, P. Lechlern, P.A. Mayewskio, J. Montgomeryj, R.Poredap, T. Darrahp, S.S. Que Heeq, A.R. Smith, A. Stichr, W. Toppings, J.H. Wittkef y W.S. Wolbachr, 2007. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. PNAS 104, 41:16016-16021.

FitzPatrick, E.A., 1993. Soil microscopy and micromorphology.John Wiley & Sons Ltd., New York, 304 pp.

Fox, C.A., 1985. Micromorphological characterization of histosols. En: Douglas, L. A. y Thompson, M. L. (Eds.), Soil micromorphology and soil classification. SSA Special Publication 15:85-104. Sci. Soc. Am., Madison.

Frostick, L.E. y I.Reid, 1977. The origin of horizontal laminae in ephemeral stream channel-fill. Sedimentology 24:1-9.

Garleff, K., 1977. Höhenstufen der argentinischen Andes in Cuyo, Patagonien und Feverland. Göttinger Geographic Abhand 68:1- 150.

Giambiagi, L.B., V.A. Ramos, E. Godoy, P.P. Alvarez y S. Orts, 2003. Cenozoic deformation and tectonic style of the Andes, between 33º and 34º South Latitude. Tectonics 22, 4:1041- 1051.

Haynes, C.V. Jr., 1968. Geochronology of a Late Quaternary alluvium. En: Morrison, R.B., Wright, H.E. (Eds.): Means of correlation of Late Quaternary successions. 591-631 pp. Utah.

Haynes, C.V. Jr., 2008. Younger Dryas “black mats” and the Rancholabrean termination in North America. PNAS 105,18:6520-6525.

Hudson, R.R., Aleska, A., Masotta, H.T. y E. Muro, 1990.Provincia de Mendoza. Escala 1.1.000.000. Atlas de suelos de la República Argentina. INTA, Proyecto PNUD ARG 85, 71:1- 106.

McClung de Tapia, E. y C.C. Adriano-Morán, 2012. Stable Carbon isotopes applied to vegetation rReconstruction in the Teotihuacan Valley, Mexico. Boletín de la Sociedad Geológica Mexicana 64:161-169.

McCormac. F.G., A.G. Hogg, P.G. Blackwell, C.E. Buck, T.F.G. Higham y P.J. Reimer, 2004. SHCal04 Southern Hemisphere Calibration 0 - 1000 cal BP. Radiocarbon 46:1087-1092.

Mehl, A.E., 2010. Ambientes aluviales del Pleistoceno tardío- Holoceno y Holoceno del Valle de Uco, cuenca del río Tunuyán. In: Gil., A., Neme, G. y, Zárate, M., (Comps.) (Eds.), Paleoambientes y ocupaciones del centro-oeste de Argentina durante la transición Pleistoceno-Holoceno y Holoceno. Sociedad Argentina de Antropología, 11-40 pp. Buenos Aires.

Mehl, A.E., 2011. Sucesiones aluviales del Pleistoceno tardío- Holoceno, Valle de Uco (provincia de Mendoza): inferencias paleoambientales y paleoclimáticas Tesis doctoral, Facultad

de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 355 pp. (inédito).

Mehl, A. E. y M.A Zárate, 2012. Late Quaternary alluvial records and environmental conditions in the eastern Andean piedmont of Mendoza (33?- 34? S) Argentina. Journal of South American Earth Sciences 37:41-59.

Miall, A.D., 2006. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-VerlagBerlingHridelberg, New York, 582 pp.

Munsell Color, 2000. Munsell Soil Color Chart. Macbeth Division,Kollmorgen, Baltimore.

Murphy, C.P., 1986. Thin section preparation of soils and sediments.AB Academic Publishers. Berkhamsted, Herts, 149 pp.

Nordt, L., J. von Fischer y L.Tieszen, 2007. Late Quaternary temperature record from buried soils of the North American Great Plains. Geology 35:159-162.

Perucca, L., Mehl, A. y M. Zárate, 2009. Neotectónica y sismicidad en el sector norte de la depresión de Tunuyán, provincia de Mendoza. Revista de la Asociación Geológica Argentina 64:262-273.

Piovano, E.L., D. Ariztegui, F. Córdoba, M. Cioccale, y F. Sylvestre, 2009. Hydrological Variability in South America Below the Tropic of Capricorn (Pampas and Patagonia, Argentina) during the Last 13.0 Ka. En: F. Vimeux, F. Sylvestre y M. Khodri (Eds.): Past Climate Variability in South America and Surrounding Regions. Developments in paleoenvironmentalresearch 14:323-351.

Polanski, J., 1963. Estratigrafía, neotectónica y geomorfología del Pleistoceno pedemontano, entre los ríos Diamante y Mendoza. Revista de la Asociación Geológica Argentina 17:127-349.

Prohaska, F.J., 1976. Theclimate of argentina, Paraguay and Uruguay. En: Schwerdtfeger, W. (Ed.), Climates in Central and South America. World Survey of Climatology 12:13-73, Elsevier, Amsterdam.

Roig, F.A. y E. MartínezCarretero, 1998. La vegetación puneña en la provincia de Mendoza, Argentina. Phytocenologia 28:565- 608.

Rojo, L.D., A. Mehl, M.M. Páez y M.A. Zárate, 2012. Mid- to Late Holocene pollen and alluvial record of the arid Andean piedmont between 33º - 34º S, Mendoza, Argentina: inferences about floodplain evolution. Journal of Arid Environments 77:110-122.

Schumacher, B.A., 2000. Methods for the determination of total organic carbon (TOC) in soils and sediments. U.S. Environmental Protection Agency, Washington, DC, 25 pp.

Soil Survey Staff, 1999. Soil Taxonomy: a basic system of soil classification for making and interpreting soil surveys. Department of Agriculture, Natural Resources Conservation Service, Second Edition, United States, 870 pp.

Soil Survey Staff, 2003. Keys to Soil Taxonomy. Department of Agriculture, Natural Resources Conservation Service, Ninth Edition, United States, 334 pp.

Toledo, M.J., 2008. La crisis climática de 13.000 AP: “mantos negros”, extinciones de megafauna y cambios poblacionales. En: Zappettini, E., Crosta, S., González, M.A. y S. Segal (eds.). XVII Congreso Geológico Argentino. Jujuy. Actas II:735-736.

Toms, P.S., M. King, M.A. Zárate, R.A. Kemp, y F.F.Jr. Foit, 2004.Geochemical characterization, correlation, and optical dating of tephra in alluvial sequences of central western Argentina. Quaternary Research 62:60-75.

Wills, S.A., C. Lee Burras y J.A. Sandor, 2007. Prediction of Soil Organic Carbon Content Using Field and Laboratory Measurements of Soil Color. SoilScienceSociety of AmericaJournal 71:380-388.

Yrigoyen, M.R., 1993. Los depósitos sinorogénicos terciarios.En: Ramos, V.A. (Ed.), Geología y Recursos Naturales de Mendoza. 12º Congreso Geológico Argentino y 2º Congreso de Exploración de Hidrocarburos, Relatorio I, 11:123-148, Buenos Aires.

Zárate, M.A. y A. Mehl, 2008. Estratigrafía y geocronología de los depósitos del Pleistoceno tardío/Holoceno de la cuenca del Arroyo La Estacada, departamentos de Tunuyán y Tupungato(Valle de Uco). Mendoza. Revista de la Asociación Geológica Argentina 63:407-416.

Zárate, M.A., 2002. Geología y Estratigrafía del Pleistoceno tardío- Holoceno en el piedemonte de Tunuyán-Tupungato, Mendoza, Argentina. En: Cabaleri, N., Cingolani, C., Linares, E., López de Luchi, M.G., Ostera, H.A., y Panarello, H.O. (Eds.), XV Congreso Geológico Argentino. Actas II:615-620, El Calafate, Santa Cruz.

Zárate, M.A. y M.M. Páez, 2002. Los paleoambientes del Pleistoceno tardío-Holoceno en la cuenca del Arroyo La Estacada, Mendoza. En: Trombotto, D., Villalba, R. (Eds.), IANIGLA,30 años de investigación básica y aplicada en ciencias ambientales. Instituto Argentino de Nivología/Glaciología y Ciencias Ambientales, 117-121. Mendoza.

Zech, W., N. Senesi, G. Guggenberger, K. Kaiser, J. Lehmann, T. Miano, A. Miltner y G. Schroth, 1997. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79:17-161.

Published

2021-03-31

How to Cite

Mehl, A. ., & Zárate, M. . (2021). Paleosoils and limnic levels in the late Pleistocene and Holocene alluvial successions of the Andean Piedmont of Mendoza (33°-34° LS), Argentina. atin merican ournal of edimentology and asin nalysis, 20(1), 3–20. etrieved from https://lajsba.sedimentologia.org.ar/lajsba/article/view/150

Issue

Section

Research Papers