Facies analysis and petrography of the upper Cretaceous deposits in the northen Neuquen basin: implications for the beginning of the Foreland stage

Authors

  • Lucas D. Lothari Universidad Nacional de Río Negro, General Roca, Río Negro.
  • Ricardo E. Gómez Universidad Nacional de Río Negro, Instituto de Investigaciones en Paleobiología y Geología, Río Negro, Argentina. / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones en Paleobiología y Geología, Río Negro, Argentina.
  • Maisa A. Tunik Universidad Nacional de Río Negro, Instituto de Investigaciones en Paleobiología y Geología, Río Negro, Argentina. / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones en Paleobiología y Geología, Río Negro, Argentina.
  • Silvio A. Casadio Universidad Nacional de Río Negro, Instituto de Investigaciones en Paleobiología y Geología, Río Negro, Argentina. / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones en Paleobiología y Geología, Río Negro, Argentina.

Keywords:

Neuquén Basin, fluvial fan, Diamante Formation, Bajada del Agrio Group, Upper Cretaceous

Abstract

The Neuquén Basin is one of the main hydrocarbon-generating basins in Argentina. This, along with a large sedimentary record, has made it the subject of numerous geological studies. Most of these studies focus on the central part of the basin, with very little background in the area of the high mountain ranges in Mendoza (Fig. 1). The rocks studied belong to the Bajada del Agrio Group, which includes the Huitrín and Rayoso formations, and the Diamante Formation equivalent to the Neuquén Group (Fig. 2 and 3). These units correspond to the transition between the back-arc and foreland stages (Lower Cretaceous-Upper Cretaceous).
The goal of this work is to perform a detailed sedimentological, petrographic and stratigraphic study analyzing facies, stratigraphic relationships and provenance, with the aim of adjusting the depositional model of the succession representing the Lower Cretaceous-Upper Cretaceous transition.
A sedimentological section was measured at Vega de los Patos (Fig. 4), approximately 100 km north of Malargüe. In that section fifteen facies were identified (Table 1), five facies associations (Fig. 5, 6, 7, 8 and 9) and two depositional cycles. The sedimentological analysis of the succession exposed at Vega de los Patos suggests that the analyzed section represents a transition between deposits in a marginal marine environment and fluvial fans (Fig. 15). This model allows relating the vertical variations of the facies with the progressive migration of the system, which could be related to tectonic uplift pulses.
For the petrographic analysis included eight samples of medium sandstones, two of pelites, two of gypsum/anhydrite and one carbonate. The sandstones were classified as feldspathic lithoarenites and lithoarenites (Fig. 12). The petrographic analysis also showed that the sedimentary source of the analyzed sequence is mixed, between dissected arc and recycled orogen (Fig. 12).However, it is important to highlight the appearance of conglomerate levels with carbonate lithic fragments (Fig. 13) of the Agrio Formation (Lower Cretaceous) recognized in other sectors of the basin. This suggests a contribution of part of the lower Mesozoic carbonate sequence, probably as the result of a tectonic uplift pulse. Finally, the sandstones are affected by the precipitation of carbonate, zeolitic and to a lesser extent ferruginous cement (Fig. 10) and the carbonate rocks show an intense dolomitization and evidence of microfossils (Fig. 11).
The analysis by X-ray diffractometry served to determine that the zeolitic cement observed petrographically was analcime (Fig. 14). It also revealed variations in the composition of clays along the section (Fig. 16). Such variations indicate arid and alkaline deposition conditions for the base of the Diamante Formation that change to a humid climate environment and acidic conditions in the middle sector.
In the center of the basin, the transition between the bac-arc and foreland stages is related to the Intercenonian unconformity. However, there are no previous works that mention it in the study area. In previous works, an erosion or no deposit gap of 25 Ma was established, which include the entire Rayoso Formation, with the Huitrín Formation in contact with the Neuquén Group. Using a maximum age of deposition of the Huitrín Formation 100 km south of the study area (124 Ma) and those made in the first sandstone of the Diamante Formation in the study area (107 Ma) the gap would go down to 17Ma. Considering that there was no evidence of unconformity along the studied section, a transition or a paraconformity between the strata analyzed is assumed.

References

Asurmendi, E., y M. L. Sánchez, 2014. Análisis petrográfico y procedencia de las sedimentitas de las Formaciones Candeleros y Huincul (Cretácico Inferior-Superior), región occidental de cuenca Neuquina, provincia de Neuquén, Argentina. IX Congreso de Exploración y Desarrollo de Hidrocarburos. Actas: 169-176.

Arregui, C., O. Carbone y H. A. Leanza, 2011. Contexto tectosedimentario. XVIII Congreso Geológico Argentino, Geología y Recursos Naturales de la provincia del Neuquén: 29-36.

Balgord, E.A. y B. Carrapa, 2016. Basin evolution of Upper Cretaceous–Lower Cenozoic strata in the Malargüe fold-and-thrust belt: northern Neuquén Basin, Argentina. Basin Research 28 (2):183-206.

Borghi, P., R. Gómez Omil, L. Fennell, A. Folguera y M. Naipauer, 2017. Nuevas evidencias del levantamiento del sur de los Andes Centrales (36° S) durante la depositación del Grupo Neuquén. XX Congreso Geológico Argentino. Libro Digital: 2932-3697.

Broens, S. y D. M. Pereira, 2005. Evolución estructural de la zona de transición entre las fajas plegadas y corridas de Aconcagua y Malargüe Provincia de Mendoza. Revista de la Asociación Geológica Argentina 60(4):685-695.

Cruz, C. E., 1993. Facies y estratigrafía secuencial del Cretácico Superior en la zona río Diamante, Provincia de Mendoza, Argentina. XII Congreso Geológico Argentino y II Congreso Exploración de Hidrocarburos. Actas 1:46-54.

Dedi?, Ž., N. Ilijani? y S. Miko, 2018. A mineralogical-petrographical study of evaporites from Mali Kukor, Vranjkovi?i and Slane Stine quarry (Upper Permian evaporites from Dalmatia, Croatia). Geologia Croatica 71(1):19-28.

D’Elia, L., M. Muravchik, J. R. Franzese y A. Bilmes, 2012. Volcanismo de sin-rift de la Cuenca Neuquina, Argentina: relación con la evolución Triásico Tardía-Jurásico Temprano del margen Andino. Andean geology 39(1):106-132.

Di Giulio, A., A. Ronchi, A. Sanfilippo, M. Tiepolo, M. Pimentel y V. A. Ramos, 2012. Detrital zircon provenance from the Neuquén Basin (south-central Andes): Cretaceous geodynamic evolution and sedimentary response in a retroarc-foreland basin. The Geological Society of America 40 (6):559-562.

Di Giulio, A., A. Ronchi, A. Sanfilippo, E. A. Balgord, B. Carrapa, y V. A. Ramos, 2016. Cretaceous evolution of the Andean margin between 36° S and 40° S latitude through a multiproxy provenance analysis of Neuquén Basin strata (Argentina). Basin Research 29:1-21.

Dickinson, W. R., 1970. Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Research 40(2):695-707.

Dickinson, W. R., L. S. Beard, G. R. Brakenridge, J. L. Erjavec, R. C. Ferguson, K. F. Inman, R. A. Knepp, F. A. Lindberg y P. T. Ryberg, 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin 94:222-235.

Dickson, J. A. D., 1965. A modified staining technique for carbonates in thin section. Nature 205 (4971):587-587.

Escayola, M. P., M. Pimentel y R. Armstrong, 2007. Neoproterozoic backarc basin: sensitive high-resolution ion microprobe U–Pb and Sm-Nd isotopic evidence from the Eastern Pampean Ranges, Argentina. Geology 35:495-498.

Fennell, L. M., A. Folguera, M. Naipauer, G. Gianni, E. A. Rojas Vera, G. Bottesi y V. A. Ramos, 2015. Cretaceous deformation of the southern Central Andes: synorogenic growth strata in the Neuquén Group (35° 30?-37° S). Basin Research 29:51-72.

Folk, R.L., P.B. Andrews y D.W. Lewis, 1970. Detrital sedimentary rock classification and nomenclature for use in New Zeland. New Zeland Journal of Geology and Geophysics 13:937-968.

Franchini, M., A. Rainoldi, J. Pons, A. Giusiano, A. Impiccini y N. Cesaretti, 2014. Trazadores diagenéticos de las paleomigraciones de hidrocarburos en las areniscas rojas Cretácicas del Grupo Neuquén, cuenca Neuquina. IX Congreso de Exploración y Desarrollo de Hidrocarburo, Actas: 203-222.

Franzese, J. R. y L. A. Spalletti, 2001. Late Triassic–early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. Journal of South American Earth Sciences 14(3):257-270.

Gabriele, N. A., 2016. Evapofacies del Miembro Troncoso Superior de la Formación Huitrín (Cretácico Inferior, Cuenca Neuquina, Argentina): paleoambientes, evolución y controles. Latin American Journal of Sedimentology and Basin Analysis 23 (1):35-69.

Garrido, A., 2010. Estratigrafía del Grupo Neuquén Cretácico Superior de la cuenca Neuquina (Argentina): nueva propuesta de ordenamiento litoestratigráfico. Revista del Museo Argentino de Ciencias Naturales 12 (2):121-177.

Gianni, G. M., F. M. Dávila, A. Echaurren, L. Fennell, J. Tobal, C. Navarrete, P. Quezada, A. Folguera y M. Giménez, 2018. A geodynamic model linking Cretaceous orogeny, arc migration, foreland dynamic subsidence and marine ingression in southern South America. Earth-Science Reviews 185:437-462

Gómez R., M. Tunik y S. Casadío, 2017. Análisis sedimentológico - petrográfico del Grupo Neuquén (Cretácico Superior) en el área Vega Grande, sur de Mendoza. XX Congreso Geológico Argentino, Libro Digital: 775-782.

Gómez, R., L. Lothari, M., Tunik y S. Casadio, 2019. Onset of foreland basin deposition in the Neuquén Basin (34°-35° S): New data from sedimentary petrology and U–Pb dating of detrital zircons from the Upper Cretaceous non-marine deposits. Journal of South American Earth Sciences 95:102-257.

Ingersoll, R. V., T. F. Fullard, R. L. Ford, J. P. Grimm, J. D. Pickle y S. W Sares, 1984. The effect of grain size on detrital modes; a test of the Gazzi–Dickinson point-counting method. Journal of Sedimentary Research 54:103-116.

Leanza H.A., 2003. Las sedimentitas huitrinianas y rayosianas (Cretácico inferior) en el ámbito central y meridional de la cuenca Neuquina, Argentina. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales. Serie Contribuciones Técnicas, Geología 2:1-31.

Lescano, M. A., D. G. Lazo, C. S., Cataldo, M. B., Aguirre-Urreta y A. Concheyro, 2015. Primer hallazgo de nanofósiles calcáreos en el Miembro La Tosca, Formación Huitrín, Sierra de Cara Cura, Mendoza. Reunión de Comunicaciones “60 años (1955 2015)” de la Asociación Paleontológica Argentina. Actas RCAPA 2015: 71-72.

Kelly, S. B., y H. Olsen, 1993. Terminal fans: a review with reference to Devonian examples. Sedimentary Geology 85(1-4): 339-374.

Legarreta L. y A. Boll, 1982. Formación Huitrín. Análisis estratigráfico y esquema prospectivo. Provincia de Mendoza. YPF, Informe interno (inédito).

Legarreta, L., C. A. Gulisano y M. A. Uliana, 1993. Las secuencias sedimentarias jurásico-cretácicas. XII Congreso Geológico Argentino. Relatorio 1 (9): 87-114.

Naipauer, M., F. Tapia, M. Farías, M. M. Pimentel y V. A. Ramos, 2014. Evolución mesozoica de las áreas de aporte sedimentario en el sur de los Andes Centrales: El registro de las edades U-Pb en circones. XIX Congreso Geológico Argentino. Actas: 1632-1633.

Naipauer, M., F. Tapia, J. Mescua, M. Farías, M. M. Pimentel y V. A. Ramos, 2015. Detrital and volcanic zircon U–Pb ages from southern Mendoza (Argentina): An insight on the source regions in the northern part of the Neuquén Basin. Journal of South American Earth Sciences 64:434-451.

Manacorda, L., A. Cafferata, D. Boggetti, M. Pacheco, L. Barrionuevo, M. Reinante y V. Meissingern, 2004. Modelo paleoambiental del Grupo Neuquén en la zona norte de la cuenca Neuquina. X Reunión de Sedimentología 10:88-90.

Miall, A.D., 1996. The geology of fluvial deposits: Sedimentary facies, basin analysis and petroleum geology. Springer, Berlin.

Moscariello, A., 2017. Alluvial fans and fluvial fans at the margins of continental sedimentary basins: geomorphic and sedimentological distinction for geo-energy exploration and development. Geological Society, Special Publications 440: 215-243.

Mpodozis, C. y V.A. Ramos, 1989. The Andes of Chile and Argentina. In: Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series 11:59-90.

Mpodozis, C. y V.A. Ramos, 2008. Tectónica Jurásica en Argentina y Chile: extensión, subducción oblicua, rifting, deriva y colisiones?. Revista de Asociación Geológica Argentina 63 (4): 481-497.

Muñoz, M., F. Tapia, M.Persico, M. Benoit, R.Charrier, M. Farías y A. Rojas, 2018. Extensional tectonics during Late Cretaceous evolution of the Southern Central Andes: Evidence from the Chilean main range at~ 35° S. Tectonophysics 744:93-117.

Ramos, V.A., T.E. Jordan, R.W. Allmendinger, C. Mpodozis, S.M. Kay, J.M. Cortes y M.A. Palma, 1986. Paleozoic terranes of the Central Argentine Chilean Andes. Tectonics 5 (6): 855-880.

Ramos, V. A., 2004. Cuyania, an exotic block to Gondwana: review of a historical success and the present problems. Gondwana Research 7 (4): 1009-1026.

Ramos, V. A., A. Mosquera, A. Folguera y E. García Morabito, 2011. Evolución tectónica de los Andes y del Engolfamiento Neuquino adyacente. XVIII Congreso Geológico Argentino, Geología y Recursos Naturales de la provincia del Neuquén. 335-348.

Rocha-Campos, A. C., M. A. Basei, A. P. Nutman, L. E. R. Kleiman Varela, E. Llambias, F. M. Canile y O. Da Rosa, 2010. 30 million years of Permian volcanism recorded in the Choiyoi igneous province (W Argentina) and their source for younger ash fall deposits in the Parana Basin: SHRIMP U–Pb zircon geochronology evidence. Gondwana Reserch 19:509-523.

Scasso, R. A. y C. O. Limarino, 1997. Petrología y diagénesis de rocas clásticas. Asociación Argentina de Sedimentología, Publicación especial.

Scivetti, N. y J. R. Franzese, 2019. Late Triassic-Late Jurassic subsidence analysis in Neuquén Basin central area. Journal of South American Earth Sciences 94:102-230.

Sruoga, P., M. Etcheverría, A. Folguera y D. Repol, 2000. Descripción geológica de la Hoja 3569-I, Volcán Maipo, Provincia de Mendoza. Servicio Geológico Nacional (Inédito).

Tunik, M. A., 2001. Análisis sedimentológico y tectónico de la primera ingresión atlántica en la Alta Cordillera de Mendoza. Tesis doctoral. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (inédito).

Tunik, M., A. Folguera, M. Naipauer, M. Pimentel y V. A. Ramos, 2010. Early uplift and orogenic deformation in the Neuquén Basin: constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophysics 489(1):258-273.

Wang, G., P. Li, F. Hao, H. Zou y X. Yu, 2015. Dolomitization process and its implications for porosity development in dolostones: A case study from the Lower Triassic Feixianguan Formation, Jiannan area, Eastern Sichuan Basin, China. Journal of Petroleum Science and Engineering 131:184-199.

Zavala, C., y J.J. Ponce, 2011. La Formación Rayoso (Cretácico Temprano) en la Cuenca Neuquina. XVIII Congreso Geológico Argentino, Geología y Recursos Naturales de la Provincia del Neuquén. 205-222.

Published

2020-07-01

How to Cite

Lothari, L. D., Gómez, . R. E., Tunik, M. A. ., & Casadio, S. A. (2020). Facies analysis and petrography of the upper Cretaceous deposits in the northen Neuquen basin: implications for the beginning of the Foreland stage. Latin American Journal of Sedimentology and Basin Analysis, 27(1), 3-28. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/34

Issue

Section

Research Papers