Historical changes in terrigenous river supply from the Río de la Plata basin to the inner shelf of Uruguay.

Authors

  • Analía Marrero Oceanografía y Ecología Marina, Facultad de Ciencias, Universidad de la República. Iguá 4225 (11400), Montevideo, Uruguay.
  • Adriana Tudurí Oceanografía y Ecología Marina, Facultad de Ciencias, Universidad de la República. Iguá 4225 (11400), Montevideo, Uruguay.
  • Laura Pérez Oceanografía y Ecología Marina, Facultad de Ciencias, Universidad de la República. Iguá 4225 (11400), Montevideo, Uruguay. Centro Universitario Regional Este (CURE), Sede Rocha. Ruta 9 y Ruta 15, Rocha, Uruguay.
  • Carolina Cuña CICTERRA, Universidad Nacional de Córdoba. Av. Vélez Sarsfield 1611 (X5016GCA), Córdoba, Argentina.
  • Pablo Muniz Oceanografía y Ecología Marina, Facultad de Ciencias, Universidad de la República. Iguá 4225 (11400), Montevideo, Uruguay.
  • Rubens C. Lopes Figueira Instituto Oceanográfico, Universidade de São Paulo. Praça do Oceanográfico 191 (05508-120) São Paulo, SP, Brasil.
  • Michel Michaelovitch de Mahiques Instituto Oceanográfico, Universidade de São Paulo. Praça do Oceanográfico 191 (05508-120) São Paulo, SP, Brasil.
  • Paulo Alves de Lima Ferreira Instituto Oceanográfico, Universidade de São Paulo. Praça do Oceanográfico 191 (05508-120) São Paulo, SP, Brasil.
  • Daniela Pittauerová MARUM, Center for Marine Environmental Sciences, University of Bremen. Leobener Strasse (28359), Bremen, Germany. Institute of Environmental Physics, University of Bremen. Otto-Hahn-Alle 1 (28359), Bremen, Germany.
  • Till Hanebuth Center for Marine Environmental Sciences, University of Bremen. Leobener Strasse (28359), Bremen, Germany. School of Coastal and Marine Systems Sciences, Coastal Carolina University. South Carolina, USA.
  • Felipe García-Rodríguez Oceanografía y Ecología Marina, Facultad de Ciencias, Universidad de la República. Iguá 4225 (11400), Montevideo, Uruguay. Centro Universitario Regional Este (CURE), Sede Rocha. Ruta 9 y Ruta 15, Rocha, Uruguay.

Keywords:

Geochronology, River Flow Anomalies, Sedimentation, Climate Indices, Río de la Plata Estuary.

Abstract

The Río de la Plata Estuary (RdlP) is a fluvio- marine system that drains into the Southwestern Atlantic Ocean with the Paraná and Uruguay rivers as main tributaries. The estuary is fed by a 3,100,000 km2 catchment area which extends over the territories of Argentina, Paraguay, Brazil, Bolivia and Uruguay (Acha et al., 2008). The RdlP exhibits significant natural decadal- and annual-scale, hydrodynamic and oceanographic variability associated with the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation (AMO) and the El Niño/ La Niña Southern Oscillation (ENSO) (Depetris and Pasquini, 2007b; Chiessi et al., 2009; Garreaud et al., 2009). Such variability affects the moisture budget over the surrounding continental areas and leads, thus, to changes in the river discharge. PDO is associated with ENSO as both appear to display similar hydrological responses, though their inherent mechanisms are not yet fully understood (Garreaud et al., 2009). In this sense, warm and cold PDO phases strongly resemble El Niño and La Niña events, respectively (Garreaud et al., 2009). During El Niño episodes, an increase in precipitation over the RdlP drainage basin is commonly observed (Boulanger et al., 2005; Camilloni, 2005; Garreaud et al., 2009; García-Rodríguez et al., 2014), and consequently increased Paraná and Uruguay river discharges are displayed (Depetris and Pasquini, 2007a). Campos et al. (1999) have recorded a freshwater plume of low salinity and temperature (32, 18 ºC respectively) associated with an increase in RdlP discharge during the El Niño event of 1997, expanding northwards up to 23ºS. Furthermore, during negative AMO phases it was recorded an increasing trend on the precipitations over the SE South America (SESA) and, as a consequence, a concomitant increase in the Rivers Paraná and Uruguay discharge was recorded, while the opposite pattern was observed during positive phases (Chiessi et al., 2009). The aim of this paper is to infer the link between changes in the delivery of terrigenous sediment to the adjacent Atlantic Ocean with recorded hydrological variability of the RdlP. To achieve this, we used sedimentological and geochemical proxies from two sediment cores, which were retrieved from the inner continental shelf off Uruguay and encompass the past 100 AD.

Sediment Core GeoB 13813-4 was taken from the inner-shelf “RdlP paleo-valley mudbelt” (Fig. 1;34°44’13’’S, 53°33’16’’W) during research cruise M76/3a (Krastel et al., 2012; Lantzsch et al., 2014). Sediment Core BAR1 was retrieved in the inner- shelf “Barra del Indio” zone (Fig. 1; 35°03’00’’S, 56°09’00’’W), performed by the Faculty of Sciences, Universidad de la República (Uruguay). For Core GeoB 13813-4, we analyzed the relative abundan- ce of major elements (Ca and Ti) obtained by an X-ray fluorescent sediment core scanner AVAATECH and the Ca/Ti ratio was used to infer continental versus marine influence. This chemical elemental ratio was chosen according to previous successful applications within the Atlantic Ocean (Chiessi et al., 2009; Mahiques et al., 2009; Govin et al., 2012; Bender et al., 2013; Burone et al., 2013). Furthermore, the arithmetic mean grain size distribution was studied from both sediment cores, using the GRADISTAT program (Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments) version 8 (Blott and Pye, 2001) (Fig. 4). For Core GeoB 13813-4 grain size were obtained by Laser Particle Sizer LS200 and for Core BAR1 were obtained by Malvern Mastersizer 2000 Laser analyser.

The chronology from both cores was assessed by 210Pbxs dating (Table 1 and Fig. 2; Appleby, 2001; 2008). For core BAR1 we selected the CRS (Constant Rate Supply) model (which is highly used for estuarine systems), while for GeoB 13813-4 the CF- CS (Constant Fluxe: Constant Sedimentation Rate) model was applied (Appleby, 2008; Bernal et al., 2010). In the last case, the decision of using the CF-CS model was due to the lack of a complete 210Pb dataset, which would bring very high sedimentation rates uncertainties (Sanchez-Cabeza and Ruiz-Fernández, 2012). To assess the climatic variability over the past century as inferred from the sediment proxies, we evaluated the climatic indices PDO and Southern Oscillation Index (SOI), of the Joint Institute for the Study of the Atmosphere and Ocean, University of Washington (http://jisao.washington.edu), as well as the AMO from the NOAA (http://www.aoml. noaa.gov/phod/amo_faq.php). We further compared these data with temporal series (encompassing the last century) of the Paraná and Uruguay flu- vial discharges (http://www.hidricosargentina. gov.ar/acceso_bd.php), river-flow anomalies were calculated following the approach of Piovano et al. (2004). The generated proxy data were analyzed by running cluster analyses using the stratigraphically constrained Moristia similarity index, in PAST program version 3 (http://folk.uio.no/ohammer/ past/). The generated groups are represented with red lines in figure 3. The sedimentation rate of core GeoB 13813-4 was assumed to be constant with a mean value of 1.3 cm yr-1 (Table 1; Perez Becoña, 2014), while for the sedimentation rate of core BAR1 three groups were observed: 1911-1973; 1976-1984 and 1986-2010. The mean sedimentation rate for the above groups showed an increasing trend from 0.24 ± 0.13 cm yr-1 to 0.31 ± 0.14 cm yr-1 and 0.37 ± 0.10 cm yr-1, respectively.

The most positive and stable values of SOI (La Niña events) were recorded during 1910-1970. After 1970, a higher variability and a trend towards more negative values was observed (El Niño events). After the year 2005, very negative SOI values occurred (Fig. 4). PDO showed either negative or close to zero values during the early period 1910–1970 (cold phase). During the subsequent interval, i.e., 1970– 2005, positive values (warm phase) were observed. Regarding with AMO, a positive phase was observed from 1925-1960, followed by a negative phase (1960- 2000), but then a shift to a positive phase until the present was observed. The Paraná river discharge anomalies for the years 1910–1970 were mostly associated with negative values (Fig. 4), while between 1970 and 2010 positive anomalies were documented. Between the years 2000 and 2010, we mostly registered values close to zero. Furthermore, the trends in AMO and SOI indices were negatively associated with the anomalies of both Paraná and Uruguay rivers flows, while PDO index were positive associated with such anomalies.

A change in mode polarity observed for PDO and AMO took place by the middle 1970s, in addition to more frequent and intense El Niño events that led to the increased rainfall over SESA (Garreaud et al., 2009). Thus, the increase in rainfall over SESA was concomitant with positive anomalies in the Paraná and Uruguay river discharge rates after 1970 (Camilloni, 2005). In this sense, the Paraná river discharge was 20% higher during the past 30 years than the historical average of the 20th century (Mauas et al., 2008). The results of the cluster analyses groups (Fig. 3) showed a differentiation in both sediment cores that correspons to the beginning of the 1970s, which could be associated with the increasing discharge trend recorded for the Parana and Uruguay rivers over the last three decades. The increase in RdlP discharge led to a higher accumulation rate of terrigenous sediments, as inferred from the high sedimentation rate and mean grain size (BAR1), and the lowest Ca/ Ti ratio (GeoB 13813-4), and explains both the spatial and temporal sedimentological and geochemical variability. Ca/Ti ratio in the RdlP was successfully used to infer marine vs. continental influence, as Ti is associated with a continental RdlP discharge, while Ca is associated with autochthonous marine productivity (e.g. foraminifera, Burone et al., 2013). Thus, the highest continental sediment supply to the inner continental shelf is observed in GeoB 13813-4 after 1970, associated with a decrease in the Ca/Ti ratio (Fig. 4). Regarding with Core BAR1 the grain- size distribution and the sedimentation rate were both associated with the estuarine hydrodynamic changes. After 1970, the highest and most variable sedimentation rate and mean grain size was found, probably associated to an increase in both the Paraná and Uruguay river discharges during the past three decades, while the lowest and more stable sedimentation rates and mean sediment grain size recorded before 1970, is indicating a reduced RdlP freshwater supply to the study area. This study shows that both sediment cores contain a distinct continental runoff record as the result of climatic changes (PDO, AMO and ENOS), which have influenced the precipitation patterns over SESA. Both sites reflect similar responses to these environmental changes for the last 100 yr in continental terrigenous sediment supply from the RdlP watershed towards the inner continental shelf. We conclude that it is possible to assess the temporal? RdlP discharge patterns variability within the estuarine and adjacent oceanic area through the study of terrigenous proxies from sediment cores retrieved within the continental shelf.

References

Acha, E., H. Mianzan, O. Iribarne, D. Gagliardini, C. Lasta y P. Daleo, 2003. The role of the Río de la Plata bottom salinity front in accumulating debris. Marine Pollution bulletin 46:197-202.

Acha, E., H. Mianzan, R. Guerrero, J. Carreto, D. Giberto, N. Montoya y M. Carignan, 2008. An overview of physical and ecological processes in the Rio de la Plata Estuary. Continental shelf research 28:1579-1588.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. En W.M. Last and J.P. Smol (Eds.), Tracking environmental Change using Lake sediments. Vol. 1: Basin Analysis, Coring and Chronological Techniques. Kluwer Academic Publishers, Dordrecht:171-201.

Appleby, P.G., 2008. Three decades of dating recent sediments by follout radionucleids: a review. The holocene 18:83-93.

Appleby, P.G. y F. Oldfield, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1-8.

Barros, V., M. González, B. Liebmann y I. Camilloni, 2000. Influence of the South Atlantic convergence zone and South Atlantic sea surface temperature on interannual summer rainfall variability in Southeastern South America. Theoretical and Applied Climatology 67:123-133.

Bender, V.B., T.J.J. Hanebuth y C.M. Chiesi, 2013. Holocene shifts of the subtropical shelf front off Southeastern South America controlled by high and low latitude atmospheric forcings. Paleoceanography 28:1-10.

Bernal, J.P., L. Beramendi, K. Lugo-Ibarra y L.W. Daessle, 2010. Revisión a algunos geocronómetros aplicables al Cuaternario. Boletín de la sociedad geológica Mexicana 62:305-323.

Blott, S.J. y K. Pye, 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. earth surface Processes and Landforms 26:1237-1248.

Boulanger, J-P., J. Leloup, O. Penalba, M. Rusticucci, F. Lafon y W. Vargas, 2005. Observed precipitation in the Paraná-Plata hydrological basin: long-term trends, extreme conditions and ENSO teleconnections. Climate dynamics 24:393-413.

Burone, L., M.M. Mahiques, R.C.L. Figueira, F. García- Rodríguez, P. Sprechmann, Y. Alvarez, P. Muniz, E. Brugnoli, N. Venturini, S.H. Sousa y V. Centurion, 2011. Evolución paleoambiental de la Bahía de Montevideo. En F. García- Rodríguez (Ed.), el holoceno en la zona costera de uruguay. Universidad de la República:197-227.

Burone, L., L. Ortega, P. Franco-Fraguas, M. Mahiques, F. García- Rodríguez, N. Venturini, Y. Marin, E. Brugnoli, R. Nagai, P. Muniz, M. Bícego, R. Figueira y A. Salaroli, 2013. A multiproxy study between the Río de la Plata and the adjacent South-western Atlantic inner shelf to assess the sediment footprint of river vs. marine influence. Continental shelf research 55:141-154.

Camilloni, I., 2005. Variabilidad y tendencias hidrológicas en la cuenca del Plata. En V. Barros, A. Menéndez y G. Nagy (Eds.), el cambio climático en el río de la Plata. CIMA, Buenos Aires:21-31.

Campos, E., C.D. Lentini, J.L. Miller y A.R. Piola, 1999. Interanual variability of the sea surface temperature in the South Brazil Bight. geophysical research Letters 26:2061-2064.

C.A.R.P., 1989. Estudio para la Evaluación de la Contaminación en el Río de la Plata. Comisión Administradora del Río de la Plata, Informe de Avance 1:1-72.

Carvalho, L.M.V., C. Jones, A.E. Silva, B. Liebmann y P.L. Silva Dias, 2010. The South American Monsoon System and the 1970s climate transition. international Journal of Climatology 31:1248-1256.

Cavallotto, J.L., 2002. Evolución Holocena de la Llanura costera del margen sur del Río de la Plata. revista de la Asociación geológica Argentina 57:376-388.

Cavallotto, J.L. y R. Violante, 2005. Geología y Geomorfología del Río de la Plata. En R. de Barrio, R.O. Etcheverry, M.F. Caballé y E. Llambías (Eds.), geología y recursos minerales de la Provincia de buenos Aires. Relatorio XVI Congreso Geológico Argentino:237-253.

Chiessi, C.M., S. Mulitza, J. Patzold, G. Wefer, y J.A. Marengo, 2009. Possible impact of the Atlantic Multidecadal Oscillation on the South American summer monsoon. geophysical research Letters 36. L21707, doi:10.1029/2009GL039914.

Ciotti, A.M., C. Odebrecht, G. Fillmann y O.O. Moller, 1995. Freshwater outflow and Subtropical Convergence influence on phytoplankton biomass on the southern Brazilian continental shelf. Continental shelf research 15:1737-1756.

Córdoba, F., 2012. el registro climático del holoceno tardío en latitudes medias del se de sudamérica: limnogeología de las Lagunas encadenadas del oeste de buenos Aires, Argentina. Tesis Doctoral, Facultad de Ciencias Exactas, Físicas y Natura- les, Universidad Nacional de Córdoba, 263 pp. (inédito).

Correa, I.C.S., R.N. Ayup-Zouain, J. Weschenfelder y L.J. Tomazelli, 2008. Areas fontes dos minerais pesados e sua distribuição sobre a plataforma continental sul-brasileira, uruguaia e norte-argentina. revista Pesquisas em geosciencias 35:137-150.

Depetris, P.J. y A.I. Pasquini, 2007a. The geochemistry of the Paraná river: an overview. En M.J. Parma (Ed.), Limnology of a subtropical wetland. Springer-Verlag, Berlin Heidelberg:144-174.

Depetris, P.J. y A.I. Pasquini, 2007b. Discharge trends and flow dynamics of southern southamerican rivers draining the southern Atlantic seabord: an overview. Journal of hydrology 333:385-399.

Fossati, M., F. Cayocca y I. Piedra-Cueva, 2014. Fine sediment dynamics in the Río de la Plata. Advances in geosciences 39:75-80.

Francus, P., H. Lamb, T. Nakawaga, M. Marshall y E. Brown, 2009. The potential of high resolution X-ray fluorescense core scanning: Aplications in paleolimnology. PAges news 17:93- 95.

FREPLATA, 2004. Análisis Diagnóstico Transfronterizo del Río de la Plata y su Frente Marítimo. Documento Técnico. Proyecto “Protección Ambiental del Río de la Plata y su Frente Marítimo: Prevención y Control de la Contaminación y Restauración de Hábitats”. Proyecto PNUD/GEF/RLA/99/G31, 311 pp.

García-Rodríguez, F., E. Brugnoli, P. Muniz, N. Venturini, L. Burone, M. Hutton, M. Rodríguez, A. Pita, N. Kandratavicius,

L. Perez y J. Verocai, 2014. Warm-phase ENSO events modulate the continental freshwater input and the trophic state of sediments in a large South American estuary. Marine Freshwater research 65:1-11.

Garreaud, R.D., M. Vuille, R. Compagnucci y J. Marengo, 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281:180-195.

Goldberg, E.D. y G.O.S. Arrhenius, 1958. Geochemistry of pacific pelagic sediments. geochimica et Cosmochimica Acta 13:153- 212.

Govin, A., U. Holzwarth, D. Heslop, L. Ford Keeling, M. Zabel, S. Mulitza, J. A. Collins y C.M. Chiessi, 2012. Distribution of major elements in Atlantic surface sediments (36°N–49°S): Imprint of terrigenous input and continental weathering. geochemistry, geophysics, geosystems 13:1525-2027.

Guerrero, R., E. Acha, M. Framiñan y C. Lasta, 1997. Physical oceanography of the Rio de la Plata Estuary, Argentina. Continental shelf research 17:727-742.

Hanebuth, T.J.J., H. Lantzsch, F. García-Rodríguez y L. Perez Becoña, en prensa. Currents controlling sedimentation: paleo- hydrodynamic variability inferred from the continental-shelf system off SE South America (Uruguay). En P. Muniz, D. Conde, N. Venturini y E. Brugnoli (Eds.), Ciencias Marino Costeras en el umbral del siglo XXi: desafíos en Latinoamérica y el Caribe (Xv CoLACMAr).

Henderson, G.H., 2002. New oceanic proxies for paleoclimate. earth and Planetary science Letters 203:1-13.

Krastel, S., G. Wefer and cruise participants, 2012. Report and preliminary results of RV METEOR Cruise M78/3. Sediment transport off Uruguay and Argentina: From the shelf to the deep sea. 19.05.2009 - 06.07.2009, Montevideo (Uruguay). Berichte, Fachbereich Geowissenschaften, Universität Bre- men, 79 pp.

Kodama, Y.M., 1992. Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ) Part I: Characteristics of subtropical frontal zones. Journal of the Meteorological society of Japan 70:813-836.

Krishnaswamy, S., D. Lal, J. Martin y M. Meybeck, 1971. Geo- chronology of lake sediments. earth and Planetary science Letters 11:407-414.

Kurucz, A., A. Massello, S. Méndez, R. Cranston y P. Wells, 1998. Calidad ambiental del Río de la Plata. En P.G. Wells y G.R. Daborn (Eds.), río de la Plata: una revisión ambiental. University of Dalhousie, 248 pp.

Lantzsch, H., T.J.J. Hanebuth, C.M. Chiessi, T. Schwenk y R. Violante, 2014. The high-supply, current-dominated continental margin of southeastern South America during the late Quaternary. quaternary research 81:339-354.

Leslie, C. y G.J. Hancock, 2007. Estimating the date corresponding to the horizon of the first detection of 137Cs and 239+240Pu in sediments cores. Journal of environmental radioactivity 99:483-490.

Licursi, M., M.V. Sierra y N. Gómez, 2006. Diatom assemblages from a turbid coastal plain estuary: Río de la Plata (South America). Journal of Marine systems 62:33-45.

Martins, L.R., I.R. Martins y C. M. Urien, 2003. Aspectos sedimentares da plataforma continental na área de influencia de Rio de La Plata. gravel 1:68-80.

Masello, A. y R. Menafra, 1998. Macrobenthic comunities of the Uruguayan coastal zona and adjacent áreas. En P.G. Wells y

G.R. Daborn (Eds.), río de la Plata: una revisión ambiental. University of Dalhousie, 248 pp.

Mahiques, M.M., I.K.C. Wainer, L. Burone, R. Nagai, S.H.M. Sousa, R.C. Lopes Figueira, I.C.A. da Silveira, M.C. Bicego, D.P.V. Alves y O. Hammer, 2009. A high-resolution Holocene record on the Southern Brazilian shelf: Paleoenvironmental implications. quaternary international 206:52-61.

Mauas, P.J.D., E. Flamenco y A.P. Buccino, 2008. Solar forcing of the stream flow of a continental scale South American river. Physical review Letters 101:168501.

Morisita, M., 1959. Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of science Kyushu university series e 3:65-80.

Nagai, R.H., P.A.L. Ferreira, S. Mulkherjee, M.V. Martins, R.C.L. Figueira, S.H.M. Sousa y M.M. Mahiques, 2014. Hydrodynamic controls on the distribution of surface sediments from the southeast South American continental shelf between 23°S and 38°S. Continental shelf research 89:51-60.

Neves, P.A., P.A.L. Ferreira, M.C. Bícego y R.C.L. Figueira, 2014. Radioanalytical assessment of sedimentation rates in Guajara Bay (Amazon Estuary, N Brazil): a study with unsupported 210Pb and 137Cs modeling. Journal of radioanalytical and nuclear Chemistry 299:407-414.

Parker, G. y S. Marcolini, 1992. Geomorfología del Delta del Paraná y su extensión hacia el Río de la Plata. revista de la Asociación geológica Argentina 47:243-249.

Perez Becoña, L., 2014. Estudio paleoceanográfico de la plataforma continental interna uruguaya. Tesis de Maestría, PEDECIBA, Universidad de la República, Montevideo, 127 pp. (inédito).

Perez, L., F. García-Rodríguez y T.J.J. Hanebuth, en prensa. Paleosalinity changes in the Río de la Plata estuary and on the adjacent Uruguayan continental shelf over the past 1200 cal ka BP: an approach using diatoms as proxy. En K.

Weckström, P. Saunders y G. Skilbeck (Eds.), Applications of paleoenvironmental techniques in estuarine studies, develop- ments in Paleoenvironmental research (dPer), Springer Verlag, Berlín.

Piola, A., 2002. El impacto del Plata sobre la plataforma conti- nental. En E.J. Schnack, F. De Francesco y J.L. Pousa (Eds.), Taller sobre el niño: sus impactos en el Plata y en la región Pampeana. Com. Inv. Cient. de la Prov. de Buenos Aires, Asoc. Bonaerense de Científicos, Facultad de Ciencias Naturales y Museo de La Plata. Contribuciones:19-22, La Plata.

Piola, A.R., R.P. Matano, E.D. Palma, O.O. Möller Jr. y E.J.D. Campos, 2005. The influence of the Plata River discharge on the western South Atlantic shelf. geophysical research Letters 32: L01603, doi:10.1029/2004GL021638.

Piovano, E.L., D. Ariztegui, S.M. Bernasconi y J.A. Mckenzie, 2004. Stable isotopic record of hydrological changes in subtropical laguna Mar Chiquita (Argentina) over the last 230 years. The holocene 14:525-535.

Pittauerová, D., B. Hettwig y H.W. Fischer, 2011. Pb-210 sediment chronology: Focused on supported lead. radioprotection 46:277-282.

Robertson, A.W. y C.R. Mechoso, 2000: Interannual and inter- decadal variability of the South Atlantic Convergence Zone. Monthly Weather review 128:2947-2957.

Ropelewski, C.F. y P.D. Jones, 1987. An extension of the Tahiti- Darwin Southern Oscillation index. Monthly Weather review 115:2161-2165.

Saito, R.T., R.C.L. Figueira, M.G. Tessler y I.I.L. Cunha, 2001. 210Pb and 137Cs geochronologies in the Cananeia–Iguape estuary (Sao Paulo, Brazil). Journal of radioanalytical and nuclear Chemistry 249:257-261.

Sanchez-Cabeza, J.A. y A.C. Ruiz-Fernández, 2012. 210Pb sediment radiochronology: An integrated formulation and classification of dating models. geochimica et Cosmochimica Acta 82:183-200.

Tribovillard, N., T.O. Argeo, T. Lyons y A. Riboulleau, 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical geology 232:12-13.

Urien, C.M. y F. Ottman, 1971. Histoire du Río de la Plata au Quaternaire. quaternaria 14:51-59.

Urien, C.M. y M. Ewing, 1974. Recent sediments and environment of southern Brazil, Uruguay, Buenos Aires, and Rio Negro continental shelf. En C.A. Burk y C.L. Drake (Eds.), The geology of Continental Margins. Springer, New York:157-177.

Walker, M., 2005. quaternary dating methods. Wiley & Sons, Chichester, 286 pp.

Wefer, G., W.H. Berger, J. Bijma y G. Fischer, 1999. Clues to ocean history: a brief overview of proxies. En G. Fischer y G. Wefer (Eds.), use of proxies in paleoceanography: examples from the south Atlantic. Springer-Verlag, Berlin, Heidelberg:1-68.

Zhou, J. y K.M. Lau, 1998. Does a Monsoon Climate Exist over South America? Journal of Climate 11:1020-1040.

Published

2021-03-31

How to Cite

Marrero , A. ., Tudurí , A. ., Pérez , L. ., Cuña , C. ., Muniz , P. ., Lopes Figueira , R. C. ., Michaelovitch de Mahiques , M. ., Alves de Lima Ferreira , P. ., Pittauerová , D. ., Hanebuth , T. ., & García-Rodríguez, F. . . (2021). Historical changes in terrigenous river supply from the Río de la Plata basin to the inner shelf of Uruguay. Latin American Journal of Sedimentology and Basin Analysis, 21(2), 165-179. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/137

Issue

Section

Special Issue