A Paleolimmological perspective of recent hidroclimate variability in the Central Argentina: from the Little Ice Age to the 21th century.
Keywords:
Hydroclimatic changes, South American Monsoon System, Pampean paleolimnological record, Chacopampean Plains.Abstract
This paper provides a review of the hydroclima- tic variability reconstructions along the subtropical Argentinean region based on paleolimnological re- cords from Laguna Mar Chiquita (Córdoba; Piovano et al., 2002, 2004, 2009), Laguna Melincué (Santa Fe; Guerra, 2015; Guerra et al., 2015) to Lagunas Encadenadas del Oeste (LEO; Buenos Aires; Córdoba, 2012; Fig. 1). Lake records span two climatologically interesting periods, the so-called Little Ice Age (LIA; Grove, 2001; Wanner et al., 2008) and the 20th century. Regional climate in the studied area is mainly defined by the South American Monsoon System that rules the precipitation regime and is one of the major atmospheric features driving seasonal climatic variability in southeastern South America (Vera et al., 2006; Garreaud et al., 2009; Carvalho et al., 2011; Fig. 1). The need for an integral analysis of the high (1-101 years) and low (>102 years) frequency hydroclimatic variability associated with the South American Monsoon System activity becomes relevant when considering the significant “hydroclimatic jump” occurred during mid-1970s in the southeast of South America (Castañeda and Barros, 1994; Boulanger et al., 2005; Piovano et al., 2009; Carvalho et al., 2011; Jacques-Coper and Garreaud, 2014). This “jump” toward humid conditions (Figs. 2, 3) has been recorded as one of the largest instrumentally recorded hydrological changes occurred globally in continental environments (Giorgi, 2002). Because some climate variability patterns are characterized by long periods, it is difficult to distinguish whether the observed environmental variability is natural or corresponds to a climatic change with multiple forcing factors (natural plus anthropogenic). In this sense hydroclimatic reconstructions based on mul- tiple proxies (sedimentology, geochemistry, biomar- kers, stable isotopes) provide insight into how was environmental variability during a longer period than that perceived by the people of an affected region. Results of instrumental data blended with multi- proxy studies on sedimentary cores from Laguna Mar Chiquita (Fig. 5), Laguna Melincué (Fig. 6) and Lagunas Encadenadas del Oeste (Fig. 7) indicate that Pampean lake systems have clearly recorded hydrological variations around the end of the LIA (since AD 1770) to the present. Sedimentological, geochemical and isotopic data (Figs. 5, 6 and 7) combined with robust chronologies based on 210Pb profiles (Fig. 4) and historical data (Piovano et al., 2002, 2004; Guerra, 2015; Guerra et al., 2015; Córdoba, 2012; Córdoba et al., en revisión) provide the framework for building a sedimentary model for Pampean shallow lakes with highly variable water depth and salinity (Fig. 8). Intervals with either negative or positive hydrological balances control lake water levels, salinity and primary productivity, and also the isotopic composition of both authigenic carbonate (d18Ocarb and d13Ccarb) and sedimentary organic matter (d13Com). Extensive evaporation during lowstand stages results in an enrichment of 18O and 13C in the lake waters, and is recorded in the sediments as the most positive d18Ocarb and d13Ccarb compositions. Conversely, more negative d18Ocarb and d13Ccarb values are the result of increasing freshwater input into the lake system. Relatively low d13Com values correspond with high lake levels, low salinity, low alkalinity and high lake productivity. High water salinity during lowstands diminishes the amount of primary production and the d13Com value is correspondingly high. Lake water level drops and concurrent increases in salinity promoted the development of evaporitic layers and a marked decrease in primary productivity. The deposits of these dry stages are evaporite-bearing sediments with a low organic matter content. Conversely, highstands are recorded as organic matter-rich muds. These results show that Pampean lakes are good sensors of high- and low-frequency changes in the recent hydrological budget and, therefore, document climatic changes at middle latitudes in south-eastern South America.
The paleohydrological reconstructions based on these Pampean lacustrine sedimentary sequences (Figs. 5, 6 and 7) allowed identifying three major environmental periods (Fig. 9). The paleolimnologi- cal records indicate that during the end of the LIA arid conditions prevailed along the Pampean region, reflected by low to extremely shallow-water depths, with shorter intermediate lake-level phases (Period III; Fig. 9). The LIA would have extended until AD 1870/1880, as indicated by the passage from ephemeral to perennial lake systems. From ca. AD 1870/1880 to 1976/1977 a progressive climate improvement after a sustained increase in effective moisture occurred along the region, reflected by the intermediate lake levels achieved since the second half of the nineteenth century (Period II; Fig. 9). During the last ~ 40 years the highest lake levels of the analyzed period were established, leading to the development of the present-day hydrological conditions (Period I).
These results allow improving the models based on past hydroclimatic variability in areas located east-southeast of American Arid Diagonal (Bruniard, 1982; Piovano et al., 2009), and provide critical information to decipher South American Monsoon System activity in its southernmost influence area.
References
Aceituno, P., M.R. Prieto, M.E. Solari, A. Martínez, G. Poveda y M. Falvey, 2009. The 1877–1878 El Niño episode: Associated impacts in South America. Climatic Change 92:389-416.
Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. En W.M. Last y J.P. Smol (Eds.), Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht:171-201.
Appleby, P.G., 2008. Three decades of dating recent sediments by fallout radionuclides: a review. The Holocene 18:83-93.
Azara, F., 1837. Diario de un reconocimiento de las guardias y fortines, que guarnecen la línea de frontera de Buenos-Aires para ensancharla. Buenos Aires. Imprenta del Estado. 49 pp.
Barros, V., M. González, B. Liebmann y I. Camilloni, 2000. Influence of the South Atlantic convergence zone and South Atlantic sea surface temperature on interannual summer rainfall variability in Southeastern South America. Theoretical and Applied Climatology 67:123-133.
Bird, B.W., M.B. Abbott, M. Vuille, D.T. Rodbell, N.D. Stansell y M.F. Rosenmeier, 2011. A 2.300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proceedings of the National Academy of Sciences 108:8583-8588.
Birks, S.J. y V.N. Remenda, 1999. Hydrogeological investigation of Chappice Lake, southeastern Alberta: groundwater inputs to a saline basin. Journal of Paleolimnology 21:235-255.
Boulanger, J.P., J. Leloup, O. Penalba, M. Rusticucci, F. Lafon y W. Vargas, 2005. Observed precipitation in the Paraná-Plata hydrological basin: long-term trends, extreme conditions and ENSO teleconnections. Clymate Dynamics 24:393-413.
Bracco, R., H. Inda, L. del Puerto, C. Castiñeira, P. Sprechmann y F. García-Rodríguez, 2005. Relationships between Holocene sea-level variation, trophic development and climate change in Negra Lagoon, southern Uruguay. Journal of Paleolimnology 33:252-262.
Brunetto, E. y M. Iriondo, 2007. Neotectónica en la Pampa Norte (Argentina). Revista de la Sociedad Geológica de España 20:17-29.
Bruniard, E., 1982. La diagonal árida Argentina: un límite climático real. Revista Geográfica 95:5-20.
Carroll J. y I. Lerche, 2003. Sedimentary processes: quantification using radionuclides. Elsevier, Oxford. 272 pp.
Carvalho, L.M., C. Jones, A.E. Silva y B. Liebmann, 2011. The South American Monsoon System and the 1970s climate transition. International Journal of Climatology 31:1248-1256.
Castañedas, E. y V. Barros, 1994. Las tendencias de la precipitación en el Cono Sur de América al Este de los Andes. Meteorológica 19:23-32.
Chebli, G., M. Mozetic, E. Rossello y M. Bühler, 2000. Cuencas sedimentarias de la llanura Chacopampeana. En R. Caminos (Ed.), Geología Argentina. Instituto de Geología y Recursos Minerales, Anales 29, Buenos Aires, 20:627-644.
Cingolani, C.A., 2005. Unidades morfoestructurales (y estructuras menores) de la provincia de Buenos Aires. En R.E. de Barrio,
R.O. Etcheverry, M.F. Caballé y E. Llambías (Eds.), Geología y Recursos Minerales de la Provincia de Buenos Aires. Relatorio del XVI Congreso Geológico Argentino, La Plata: 21-30.
Cioccale, M., 1999. Climatic fluctuations in the central region of Argentina in the last 1000 years. Quaternary International 62:35-47.
Coianiz, L., D. Ariztegui, E.L. Piovano, P. Guilizzoni, A. Lami, S. Guerli y N. Waldman, 2015. Environmental change in subtropical South America for the last two millennia as shown by lacustrine pigments. Journal of Paleolimnology 53:233-250.
Compagnucci, R.H., E.A. Agosta y W.M. Vargas, 2002. Climatic change and quasi-oscillations in central-west Argentina summer precipitation: main features and coherent behaviour with southern African region. Climate Dynamics 18:421-435.
Córdoba, F., 2012. El registro climático del Holoceno tardío en latitudes medias del SE de Sudamérica: Limnogeología de las Lagunas Encadenadas del Oeste, Argentina. Tesis Doctoral, Universidad Nacional de Córdoba, Argentina, 285 pp. (Inédita).
Córdoba, F., E. Piovano, S. Mulsow, F. Sylvestre y M. Zárate (en revisión). 210Pb sediment profiles and geochronology in shallow lacustrine systems under marked hydrological variability in the Argentinean Pampas. Quaternary International (en revisión).
da Silva, L., E. Piovano, Y.P. Azevedo y N. Aquino, 2008. Quantitative evaluation of the sedimentary organic matter in Laguna Mar Chiquita, Argentina. Organic Geochemistry 39:450-464.
Darwin, C., 1860. A Naturalist’s Voyage Round the World. The Voyage of the Beagle First Edition. Chapter VII:142–143. (The Project Gutenberg EBook, http://www.darwinsgalapagos.com/ Darwin_voyage_beagle/darwin_beagle_title.html).
Deschamps J.R. y E.P. Tonni, 2007. Aspectos ambientales en torno al primer fuerte de la frontera sur de Buenos Aires: ‘‘El Zanjón’’ 1745–1779. de Trabajo no. 175. Departamento de Investigaciones, Universidad de Belgrano, 24 pp.
Dussel, P. y R.G. Herrera, 1999. Repercusiones socioeconómicas del cambio de curso del Río Salado en la segunda mitad del siglo XVIII. En B. García Martínez y J.A. González (Eds.), Estudios sobre historia y ambiente en América. El Colegio de México. Instituto Panamericano de Geografía e Historia, México: 137-149.
Eugster, H.A. y K. Kelts, 1983. Lacustrine chemical sediments. En A.S. Goudie y K. Pye (Eds.), Chemical Sediments and Geomorphology. Academic Press, London: 321-368.
García-Rodríguez, F., E. Piovano, L. del Puerto, H. Inda, S. Stutz, R. Bracco, D. Panario, F. Córdoba, F. Sylvestre y D. Ariztegui, 2009. South American lake paleo-records across the Pampean Region. PAGES 17:115-117.
Garreaud, R.D., M. Vuille, R. Compagnucci y J. Marengo, 2009. Present-day Souh American Climate (LOTRED South America). Palaeogeography, Palaeoclimatology, Palaeoecology 281:180-195.
Gatti, S., 2010. Melincué, su historia. Editado por la Biblioteca Popular Bernardino Rivadavia, Melincué, Santa Fe, Argentina, 200 pp.
Genta, J., G. Perez-Iribarren y C.R. Mechoso, 1998. A recent increasing trend in the streamflow of rivers in southeastern South America. Journal of Climate 11:2858-2862.
Giorgi, F., 2002. Variability and trends of sub-continental scale surface climate in the twentieth century. Part I: observations. Climate Dynamics 18:675–691.
Grove, J.M., 2001. The Initiation of the “Little Ice Age” in Regions Round the North Atlantic. Climatic Change 48:53-82.
Guerra, L., 2015. Registros de la variabilidad hidroclimática del Holoceno tardío en la Llanura Pampeana Argentina: limnogeología de la laguna Melincué (33°43’ S-61°28’ O). Tesis Doctoral, Universidad Nacional de Córdoba, Argentina, 222 pp. (Inédita).
Guerra, L., E. Piovano, F. Córdoba, F. Sylvestre y S. Damatto, 2015. Hydrological and environmental evolution of the shallow Lake Melincué, central Argentinean Pampas along the last millennium. Advances in Paleohydrology Research and Applications. Journal of Hydrology. DOI: 10.1016/j. jhydrol.2015.01.002.
Hollander, D.J. y J.A. Mckenzie, 1991. CO2 control on carbon - isotope fractionation during aqueous photosynthesis: a paleo- pCO2 barometer. Geology 19:929-932.
IATASA, 1994. Estudio de sistematización de la Cuenca del Río Salado 1ra etapa: Plan director para la Cuenca de las lagunas Encadenadas del Oeste y Cuenca Superior del Arroyo Vallimanca. Informe final. Ministerio de Obras y Servicios Públicos de la Provincia de Buenos Aires.
IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex y P.M. Midgley (Eds.), IPCC, Bern, Switzerland.
Jacques-Coper, M. y R. Garreaud, 2014. Characterization of the 1970s climate shift in South America. International Journal of Climatology. DOI: 10.1002/joc.4120.
Jones, P.D., T.J. Osborn y K.R. Briffa, 2001. The evolution of climate over the last millennium. Science 292:662-667.
Laprida, C. y B. Valero-Garcés, 2009. Cambios ambientales de épocas históricas en la pampa bonaerense en base a ostrácodos: historia hidrológica de la laguna de Chascomús. Ameghiniana 46:95-111.
Laprida, C., J. Orgeira y N. García Chapori, 2009. El registro de la Pequeña Edad de Hielo en lagunas pampeanas. Revista de la Asociación Geológica Argentina 65:603-611.
Laprida, C., J. Massaferro, M.J.R. Mercau y G. Cusminsky, 2014. Paleobioindicadores del fin del mundo: ostrácodos y quironómidos del extremo sur de Sudamérica en ambientes lacustres cuaternarios. Latin American Journal of Sedimentology and Basin Analysis 21:97-117.
Leroy S.A., S. Warny, H. Lahijani, E. Piovano, D. Fanetti y A.R. Berger, 2010. The role of geosciences in the improvement of mitigation of natural disasters: five case studies. En T. Beer (Ed.), Geophysical Hazards: Minimising risk, maximising awareness. Springer, Series International Year of Planet Earth: 115-147.
Mann, M.E., Z. Zhang, S. Rutherford, R.S. Bradley, M.K. Hughes, D. Shindell, C. Ammann, G. Faluvegi y F. Ni, 2009. Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256-1260.
Martínez D.E., M.A. Gómez Peral y J. Maggi, 1994. Caracterización Geoquímica y Sedimentológica de los Fangos de la Laguna Mar Chiquita, Provincia de Córdoba: Aplicación del Análisis Multivariante. Revista de la Asociación Geológica Argentina 49:26-38.
Meyers, P.A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34:261-289.
Mon, R. y A.A. Gutiérrez, 2009. The Mar Chiquita Lake: An indicator of intraplate deformation in the central plain of Argentina. Geomorphology 111:111-122.
Moncaut, C.A., 2003. Inundaciones y sequías tienen raíces añejas en la pampa bonaerense (1576-2001). En O.C. Maiola, N.A. Gabellone y M.A. Hernández (Eds.), Inundaciones en la región pampeana. Editorial Universidad Nacional de La Plata, La Plata: 27-47.
Morellón, M., B. Valero-Garcés, A. Moreno, P. González- Sampériz, P. Mata, O. Romero, M. Maestro y A. Navas, 2008. Holocene palaeohydrology and climate variability in Northeastern Spain: The sedimentary record of Lake Estanya (Pre- Pyrenean range). Quaternary International 181:15-31.
Mulsow, S., E. Piovano y F. Córdoba, 2009. Recent aquatic ecosystem response to environmental events revealed from 210Pb sediment profiles. Marine Pollution Bulletin 59:175- 181.
Muza M, L. Carvalho, C. Jones y B. Liebmann, 2009. Intraseasonal and interannual variability of extreme dry and wet events over Southeastern South America and Subtropical Atlantic during the Austral summer. Journal of Climate 22:1682-1699.
Nogues-Paegle, J. y K.C. Mo, 2002. Linkages between summer rainfall variability over south America and sea surface temperature anomalies. Journal of Climate 15:1389-1407.
Pasquini, A.I. y P.J. Depetris, 2007. Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: An overview. Journal of Hydrology 333:385- 399.
Pasquini, A.I., K.L. Lecomte, E.L. Piovano y P.J. Depetris, 2006. Recent rainfall and runoff variability in central Argentina. Quaternary International 158:127-139.
Penalba, O.C. y W.M. Vargas, 2004. Interdecadal and interannual variations of annual and extreme precipitation over central- northeastern Argentina. International Journal of Climatology 24:1565-1580.
Piovano, E., S. Damatto Moreira y D. Ariztegui, 2002. Recent environmental changes in Laguna Mar Chiquita (Central Argentina): A sedimentary model for a highly variable saline lake. Sedimentology 49:1371-1384.
Piovano, E., D. Ariztegui, S.M. Bernasconi, y J. A. Mckenzie, 2004. The isotopical record of hydrological changes in subtropical South America over the last 230 years. The Holocene 14:525- 535.
Piovano, E., D. Ariztegui, F. Córdoba, M. Cioccale y F. Sylvestre, 2009. Hydrological variability in South America below the Tropic of Capricorn (Pampas and eastern Patagonia, Argentina) during the last 13.0 ka. En F. Vimeux, F. Sylvestre y M. Khodri (Eds.), Past climate variability from the Last Glacial Maximum to the Holocene in South America and Surrounding regions: From the Last Glacial Maximum to the Holocene. Springer- Developments in Paleoenvironmental Research Series: 323-351.
Politis, G., 1984. Climatic variations during historical times in Eastern Buenos Aires Pampas. Argentina. Quaternary South America and Antarctic Peninsula 2:133-161.
Prieto, M.R. y R. García Herrera, 2009. Documentary sources from South America: Potential for climate reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 281:196- 209.
Prieto, M.R. y G. Herrera, 2001. De sequías, hambrunas, plagas y “otras varias y continuas calamidades acaecidas en la jurisdicción de Córdoba” durante el siglo XVIII. Cuadernos de Historia. Serie Ec. y Soc., N° 4, Secc. Art., CIFFyH, UNC 4:131-158.
Prieto, M.R. y R. Richard, 1991. Anomalías climáticas en la Cuenca del Plata y el NOA y sus consecuencias socioeconómicas. Siglos XVI, XVII y XVIII. Leguas. Revista Argentina de Geografía 1:41-103.
Quirós, R., A.M. Rennella, M.B. Boveri, J.J. Rosso y A. Sosnovsky, 2002. Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecología Austral 12:175-185.
Reati, G.J., M. Florín, G.J. Fernández y C. Montes, 1997. The Laguna de Mar Chiquita (Córdoba, Argentina): A little Known, Secularly Fluctuating, Saline Lake. International Journal of Salt Lake Research 5:187-219.
Ringuelet, R.A., A. Salibian, E. Claverie y S. Ilhero, 1967. Limnología química de las lagunas pampásicas de la provincia de Buenos Aires. Physis 27:201-221.
Robbins, J.A., 1978. Geochemical and geophysical applications of radioactive lead. En J.O. Nriagu (Ed.), The biogeochemistry of lead in the environment. Wiley, New York:285-377.
Schubert, S.D., M.J. Suarez, P.J. Pegion, R.D. Koster y J.T. Bacmeister, 2004. On the cause of the 1930s Dust Bowl. Science 303:1855-1859.
Seager, R., N. Naik, W. Baethgen, A. Robertson, Y. Kushnir, J. Nakamura y S. Jurburg, 2010. Tropical Oceanic Causes of Interannual to Multidecadal Precipitation Variability in Southeast South America over the Past Century. Journal of Climate 23:5517-5539.
Stupar, Y., G. García, J. Schafer, S. Schmidt, E. Piovano, G. Blanc, F. Huneau y P. Le Coustumer, 2014. Identificación de fases portadoras y flujos de mercurio en el registro sedimentario de la Laguna del Plata, región central de Argentina Revista Mexicana de Ciencias Geológicas 31:104-115.
Stutz, S., M. Borel, S. Fontana, L. del Puerto, H. Inda, F. García- Rodríguez y M. Tonello, 2010. Late Holocene climate and environment of the SE Pampa grasslands, Argentina, inferred from biological indicators in shallow, freshwater Lake Nahuel Rucá. Journal of Paleolimnology 44:761-775.
Stutz, S., M.S. Tonello, M.A. González Sagrario, D. Navarro y S.L Fontana, 2014. Historia ambiental de los lagos someros de la Llanura Pampeana desde el Holoceno medio: inferencias paleoclimáticas. Latin American Journal of Sedimentology and Basin Analysis 21:119-138.
Tonello, M.S. y A.R. Prieto, 2010. Tendencias climáticas para los pastizales pampeanos durante el Pleistoceno tardío-Holoceno: Estimaciones cuantitativas basadas en secuencias polínicas fósiles partir de registros polínicos fósiles. Ameghiniana 47:501-514.
Tonni, E.P., A.L. Cione y A.J Figini, 1999. Predominance of arid climates indicated by mammals in the pampas of Argentina during the Late Pleistocene and Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 147:257-281.
Tonni, E.P., R.A. Bonini, A.E. Molinari, F.J. Prevosti, L.H. Pomi, J.E. Carbonari y R. Huarte, 2008. Análisis radiocarbónico en una tafocenosis de la región pampeana (provincia de Buenos Aires, Argentina): Su vinculación con la Gran Seca de 1827- 1832. Intersecciones en Antropología 9:307-311.
Tripaldi, A., M.A. Zárate, S.L. Forman, T. Badger, M.E. Doyle y P.L. Ciccioli, 2013. Geological evidence for a drought episode in the western Pampas (Argentina, South America) during the early-mid 20th century. The Holocene 23:1731-1746.
Troin, M., C. Vallet-Coulomb, F. Sylvestre y E. Piovano, 2010. Hydrological modeling of a closed lake (Laguna Mar Chiquita, Argentina) in the context of 20th century climatic changes. Journal of Hydrology 393:233-244.
Valero-Garcés, B.L. y K.R. Kelts, 1995. A sedimentary facies model for perennial and meromictic saline lakes: Holocene Medicine Lake Basin, South Dakota, USA. Journal of Paleolimnology 14:123-149.
Valero-Garcés, B.L., M. Grosjean, H. Schreir, K. Kelts, y B. Messerli, 1999. Holocene lacustrine deposition in the Atacama Altiplano: facies models, climate and tectonic forcing. Paleogeography, Paleoclimatology, Paleoecology 151:101-125.
Vera, C., W. Higgins, J. Amador, T. Ambrizzi, R. Garreaud, D. Gochis, D. Gutzler, D. Lettenmaier, J. Marengo, C. Mechoso,
J. Noguès-Paegle, P.L. Silva Diaz y C. Zhang, 2006. Towards a unified view of the American Monsoon System. Journal of Climate 19:4977-5000.
Viglizzo, E.F. y F.C. Frank, 2006. Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century. Quaternary International 158:122-126.
Villalba, R., 1994. Tree ring and glacial evidence for the Medieval Warm Epoche and the Little Ice Age in southern South America. Climatic Change 26:183-197.
Villalba, R., H.R. Grau, J.A. Boninsegna, G.C. Jacoby y A. Ripalta, 1998. Tree-ring evidence for long-term precipitation changes in subtropical South America. International Journal of Climatology 18:1463-1478.
Vuille, M., S.J. Burns, B.L. Taylor, F.W. Cruz, B.W. Bird, M.B. Abbott y V.F. Novello, 2012. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Climate of the Past 8:1309-1321.
Wanner, H., J. Beer, J. Bütikofer, T.J. Crowley, U. Cubasch, J. Flückiger, H. Goosse, M. Grosjean, F. Joos, J.E. Kaplan, M. Küttel, S.A. Müller, I.C. Prentice, O. Solomina, T.F. Stocker, P. Tarasov, M. Wagner y M. Widmannmet, 2008. Mid- to Late Holocene climatic change: an overview. Quaternary Science Reviews 27:1791-1828.
Zárate, M., 2003. The Loess record of Southern South America. Quaternary Science Reviews 22, 1987-2006.
Zhou J. y K. Lau, 2001. Principal modes of interannual and decadal variability of summer rainfall over South America. International Journal of Climatology 21:1623-1644.
Zhou, J. y K.M. Lau, 1998. Does a monsoon climate exist over South America? Journal of Climate 11:1020-1040.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.