Seismostratigraphy and Cenozoic evolution of a sector of the Nágera and Perito Moreno terraces, Patagonian Continental Margin

Authors

  • José I. Isola Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. de Ciencias Geológicas. Buenos Aires, Argentina. CONICET- Universidad de Buenos Aires. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGeBA). Buenos Aires, Argentina.
  • Alejandro A. Tassone Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. de Ciencias Geológicas. Buenos Aires, Argentina. CONICET- Universidad de Buenos Aires. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGeBA). Buenos Aires, Argentina.
  • Federico D. Esteban Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. de Ciencias Geológicas. Buenos Aires, Argentina. CONICET- Universidad de Buenos Aires. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGeBA). Buenos Aires, Argentina.
  • Roberto A. Violante Servicio de Hidrografía Naval, Departamento Oceanografía, División Geología y Geofísica Marina. Montes de Oca 2124, Buenos Aires C1270ABV, Argentina.
  • Miguel J.F. Haller Centro Nacional Patagónico (CENPAT), Universidad Nacional de la Patagonia San Juan Bosco.
  • Guillaume ST-Onge Institut des Sciences de la Mer de Rimouski (ISMER) - Université du Québec à Rimouski.

Keywords:

Patagonian Continental Margin, Continental slope, Seismostratigraphy, Contouritic currents

Abstract

The continental passive margins, as the Argentine Continental Passive Volcanic Margin (MCAPV) (Franke et al., 2007; Schnabel et al., 2008; Becker et al., 2012), preserve in their sedimentary record eustatic changes and variations in the dynamics of the ocean currents, from global changes, as opening and closure of ocean gateways, to local variations, as changes in depth in the boundary of different water masses.

The Patagonian Continental Margin (MCP) is the portion of the MCAPV located south to the Colorado Fracture Zone (Fig. 1 a, b). The major features shaping the surface of the continental slope in the MCP are four contouritic terraces (Fig. 1b), from west to east: Nágera Terrace (TN), Perito Moreno Terrace (TPM), Piedra Buena Terrace and Valentín Feilberg Terrace.

The genesis and evolution of the four terraces is linked to the activity of antartic sourced bottom currents. Previous works have described the seismos- tratigraphy and the oceanographic controls in the structural building of the two easternmost terraces, (e.i., Piedra Buena and Valentín Feilberg terraces). On the contrast, very little is known on the evolution of the Nágera and Perito Moreno terraces.

This work aims to describe the Cenozoic strati- graphy of the TN (~600 a 1000 m) and TPM (~1000 a 1500 m), in relation to the major climatic and oceanographic changes occurred in the South Atlantic Ocean during this time. The study is based on the interpretation of two monochannel seismic lines acquired in 2014 on board of the Canadian vessel Coriolis II, and one multichannel seismic line provided from Secretaría de Energía de la Nación Argentina.

Through the interpretation of the seismic lines (Figs. 2-4), following the seismostratigraphic method (Mitchum et al., 1977), four mayor unconformities were recognized (Table 1). These unconformities are interpreted as sequence boundaries. After correlate this unconformities with: previous works in the MCA (data published of Tayra well by Continanzia et al., 2011; and cores published by Ewing & Lonardi, 1971) and main oceanographic-climatic changes, five seismic units (U0, U1, U2, U3 and U4; see table1) were defined for this part of the margin.

Finally, by the interpretation of these units, four stages of evolution for the TN and TPM could be defined (Fig. 5):

 

1) Paleocene - Eoceno, is characterized by thermal subsidence, as well as hemipelagic and gravitational sedimentation with negligible activity of deep ocean currents.

2) Eocene - Oligocene to mid Miocene, is characterized by the presence of a shallow marine environment with clinoforms in the outer shelf to middle slope, and it is interpreted as a deltaic progradation in a shallow sea environment.

3) Middle Miocene to Pliocene, is characterized by the first evidence of current activity in the area. It finishes with a strong erosive surface, and formation of the Nágera and Perito Moreno terraces.

4) Pliocene to Holocene is characterized by high ocean currents activity in the upper and middle slope, strong interaction between ocean currents and the seafloor, and development of contouritic deposits.

 

References

Becker, K., D. Franke, M. Schnabel, B. Schreckenberger, I. Heyde y C.M. Krawczyk, 2012. The crustal structure of the southern Argentine margin. Geophysical Journal International 189:1483-1504.

Bice, K.L. y J. Marotzke, 2002. Could changing ocean circulation have destabilized methane hydrate at the Paleocene/Eocene boundary? Paleoceanography 17:1-16.

Bushnell, D.C., J.E. Baldi, F.H. Bettini, H. Franzin, E. Kovaks, R. Marinelli y G.J. Wartenburg, 2000. Petroleum system analysis of the Eastern Colorado Basin, offshore Northern Argentine. Petroleum systems of South Atlantic margins, M. R. Mello. AAPG Memoir:403-415, Tulsa.

Cavallotto, J.L., R.A. Violante y F.J. Hernández-Molina, 2011. Geological aspects and evolution of the Patagonian continental margin. Biological Journal of the Linnean Society 103:346–362.

Continanzia, J.L., R. Manceda, G.M. Covellone y A.S. Gavarrino, 2011. Cuencas de Rawson y Valdés: Síntesis del Conocimiento Exploratorio - Visión actual. En E. Kozlowski, L. Legarreta, Boll y P.A. Marshall (Eds.), Simposio Cuencas Argentinas Visión Actual: VIII Congreso de Exploración y Desarrollo de Hidrocarburos. Actas 1:47–64, Mar del Plata.

Ewing, M. y A.G. Lonardi, 1971. Sediment transport and distribution in the Argentine Basin. 5 Sedimentary structure of the Argentina margin, basin and related provinces. En L.H. Ahrens, F. Press, S.K. Runkorn y H.C. Urey (Eds.), Physics and Chemistry of the Earth. Pergamon Press, Londres 8:125-249.

Franke, D., S. Neben, S. Ladage, B. Schreckenberger y K. Hinz, 2007. Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Marine Geology 244:46-67.

Gruetzner, J., G. Uenzelmann-Neben y D. Franke, 2011. Variations in bottom water activity at the southern Argentine margin: Indications from a seismic analysis of a continental slope terrace. Geo-Marine Letters 31:405–417.

Gruetzner, J., G. Uenzelmann-Neben y D. Franke, 2012. Variations in sediment transport at the central Argentine continental margin during the Cenozoic. Geochemistry Geophysics Geosystems 13:1-15.

Gruetzner, J., G. Uenzelmann-Neben y D. Franke, 2016. Evolution of the northern Argentine margin during the Cenozoic contro- lled by bottom current dynamics and gravitational processes. Geochemistry Geophysics Geosystems 17:3131–3149.

Hernández-Molina, F.J., M. Paterlini, R.A. Violante, P. Marshall, de Isasi, L. Somoza y M. Rebesco, 2009. A contourite depositional system on the Argentine slope: an exceptional record of the influence of Antarctic water masses. Geology 37:507-510.

Hernández-Molina, F.J., M. Paterlini, L. Somoza, R. Violante, Arecco, M. de Isasi, M. Rebesco, G. Uenzelmann- Neben, S. Neben y P. Marshall, 2010. Giant mounded drifts in the Argentine Continental Margin: Origins, and global implications for the history of thermohaline circulation. Marine and Petroleum Geology 27:1508-1530.

Hinz, K., S. Neben, B. Schreckenberger , H.A. Roeser, M. Block, K. Goncalves de Souza y H. Meyer, 1999. The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during breakup. Marine and Petroleum Geology 16:1-25.

Lastras, G., J. Acosta, A. Muñoz y M. Canals, 2011. Submarine canyon formation and evolution in the Argentine continental margin between 44°30’S and 48°S. Geomorphology 128:116- 136.

López-Martínez, J., A. Muñoz, J.A. Dowdeswell, A. Linés y J. Acosta, 2011. Relict seafloor ploughmarks record deep-keeled icebergs to 45°S on the Argentine margin. Marine Geology 288:43-48.

Marchès, E., T. Mulder, M. Cremer, C. Bonnel, V. Hanquiez, E.

Gonthier y P. Lecroat, 2007. Contourite drift construction influenced by capture of Mediterranean Outflow Water deep- sea current by the Portimão submarine canyon (Gulf of Cadiz, south Portugal). Marine Geology 242:247-260.

Marinelli, R.V. y H.J. Franzin, 1996. Cuencas Rawson y Península Valdés. En V.A. Ramos, M.A. Turic (Eds.), Geología y Recursos Naturales de la Plataforma Continental Argentina. XIII Con- greso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Relatorio 9:159-169, Buenos Aires.

Miller, K.G., M.A. Kominz, J.V. Browning, J.D. Wright, G.S. Mountain, M.E. Katz, P.J. Sugarman, B.S. Cramer, N. Christie-Blick y S.F. Pekar, 2005. The Phanerozoic record of global sea-level change. Science 310(5752):1293-1298.

Mitchum, R.M. Jr., P.R. Vail y J.B. Sangree, 1977. Seismic strati- graphy and Global changes of sea level, part 6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. En C.E. Payton (Ed.), Seismic stratigraphy appli- cations to hydrocarbon exploration. American Association of Petroleum Geologists, Memoir 26:117-133.

Muñoz, A., J. Cristobo, P. Ríos, M. Druet, V. Polonio, E. Uchupi, J. Acosta y Atlantis Group, 2012. Sediment drifts and cold-water coral reefs in the Patagonian upper and middle continental slope. Marine and Petroleum Geology 36:70-82.

Muñoz, A., J. Acosta, J. Cristobo, M. Druet y E. Uchupi, 2013. Geomorphology and shallow structure of a segment of the Atlantic Patagonian margin. Earth-Science Reviews 121:73-95.

Nurnberg, D. y R.D. Müller, 1991. The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics 191:27-53.

Piola, A.R. y R.P. Matano, 2001. Brazil and Falklands (Malvinas) currents. A Derivative of the Encyclopedia of Ocean Sciences: 35-43.

Preu, B., T. Schwenk, F.J. Hernández-Molina, R. Violante, M. Paterlini, S. Krastel, J. Tomasini y V. Spieß, 2012. Sedimentary growth pattern on the northern Argentine slope: The impact of North Atlantic Deep Water on southern hemisphere slope architecture. Marine Geology 329-331:113-125.

Preu, B., F.J. Hernández-Molina, R. Violante, A.R. Piola, C.M. Paterlini, T. Schwenk, I. Voigt, S. Krastel y V. Spieß, 2013. Morphosedimentary and hydrographic features of the northern Argentine margin: The interplay between erosive, depositional and gravitational processes and its conceptual implications. Deep Sea Research 75:157-174.

Rabinowitz, P.D. y J. LaBrecque, 1979. The Mesozoic South Atlantic Ocean and Evolution of its Continental Margins. Journal of Geophysical Research 84:5973-6002.

Schlitzer, R., 2010. Ocean Data View. http://odv.awi.de

Schnabel, M., D. Franke, M. Engels, K. Hinz, S. Neben, V. Damm, S. Grassmann, H. Pelliza y P.R. Dos Santos, 2008. The structure of the lower crust at the Argentine continental margin, South Atlantic at 44°S. Tectonophysics 454:14-22.

Schümann, T.K., 2002. The hydrocarbon potential of the deep offshore along the Argentine volcanic rifted margin–A numerical simulation. PhD Thesis, Univ. Hamburgo (Alemania), 194 pp. (Inédito).

Smith, W.H.F. y T. Sandwell, 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956-1962.

Talley, L.D., 1996. Antarctic Intermediate Water in the South Atlantic. En G. Wefer, W.H. Berger, G. Siedler y D.J. Webb (Eds.), The South Atlantic: Present and past circulation. Springer, Berlín:219-238.

Tsuchiya, M., L.D. Talley y M.S. McCartney, 1994. Water-mass distributions in the western South Atlantic; a section from South Georgia Island (54°S) northward across the equator. Journal of Marine Research 52:55-81.

Uenzelmann-Neben, G., T. Weber, J. Grüetzner y T. Maik, 2016. Transition from the Cretaceous ocean to Cenozoic circulation in the western South Atlantic - A twofold reconstruction. Tectonophysics. doi.org/10.1016/j.tecto.2016.05.036

Violante, R.A., C.M. Paterlini, I.P. Costa, F.J. Hernández-Molina, L.M. Segovia, J.L. Cavalloto, S. Marcolini, G. Bozzano, C. Laprida, N. García Chapori, T. Bickert y V. Spieß, 2010. Sismoestratigrafia y evolución geomorfológica del talud continental adyacente al litoral del este bonaerense, Argentina. Latin American Journal of Sedimentology and Basin Analysis 17:33-62.

Zachos, J., M. Pagani, L. Sloan, E. Thomas y K. Billups, 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science 292(5517):686-693.

Published

2021-03-31

How to Cite

Isola , J. I. ., Tassone, A. A. ., Esteban, F. D. ., Violante, R. A. ., Haller, M. J. ., & ST-Onge, G. (2021). Seismostratigraphy and Cenozoic evolution of a sector of the Nágera and Perito Moreno terraces, Patagonian Continental Margin. Latin American Journal of Sedimentology and Basin Analysis, 24(1), 45-59. Retrieved from https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/121

Issue

Section

Special Issue