Sedimentological study of distal rain- triggered lahars: the case of west coast of Ecuador

Autores/as

  • Maurizio Mulas Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
  • Kervin Chunga Departamento de Construcciones Civiles Facultad de Ciencias Matemáticas, Físicas y Químicas Universidad Técnica de Manabí Avenue José María Urbina Portoviejo 130105, Ecuador. Universidad Estatal Península de Santa Elena, UPSE, Facultad de Ciencias de la Ingeniería. Avda. Principal La Libertad, Ecuador.
  • Daniel Omar Garces Leon Filiación y correo electrónico: Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
  • Kenny Fernando Escobar Segovia Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.

Palabras clave:

Ash deposits; Secondary lahar; Ecuador; Lithofacies Risk

Resumen

 In this paper we present geological evidence of secondary rain triggered lahar that affected the central coast of Ecuador in the last 2ky. Eight main ash units were described in the field and then physically and petrographically characterized in the laboratory. The units present four main kinds of deposits testifying different depositional processes and the palaeotopographic condition of these sectors of Ecuador. The deposits recognized on the field are associable with granular flows with a high amount of water that compared with similar cases in the world not exceed run-out of 40km. The lateral variation inside the deposits recognized, considering the thickness and the distance from the main Holocene volcanoes (>160km), allows us to relate with secondary rain-triggered lahars and not with primary lahars. The presence of fine-grained ash of mm to the cm-thick layer above a cm to meter thick sand to gravel layer point out that these deposits are linked with single events and not with a continuous river sedimentation process. These events were triggered by rain that remobilized distal fallout deposits linked with the last 2ka eruptive activities of the Ecuadorian volcanoes as Quilotoa, Cotopaxi and Guagua Pichincha. Several units were identified in the deposits studied, and particularly it is possible to observe in one of them lateral variations of the deposits that permit to localize the debris flow body related to the secondary rain triggered lahar. The body of the debris flow is present in the coastal sector comprise between Crucita and Jama and it shows a lateral change in lithofacies related to different palaeo topographic conditions. In conclusion, in this paper, we show how the formation of secondary rain triggered lahar can occur in the coastal sector of Ecuador principally near the main river but also in flat topographic condition. Moreover, the presence of human bones and porcelain fragments also confirms that in the past, these events strongly affected old civilizations. Different municipalities as Manta, Bahia, San Vincente, Canoa, and Jama are undoubtedly exposed today to this kind of hazard. Further researches must be focused on the evaluations of the lahar volumes that can affect the coastal area of Ecuador.

Citas

Abràmoff, M.D., P.J., Magalhães and S.J., Ram, 2004. Image processing with Image. Journal Biophotonics International, 11:36-42.

Andrade, D. and I. Molina, 2006. Pululahua caldera: dacitic domes and explosive volcanism. In Field guide for the COV4 meeting in Quito.

Barba, D., C., Robin, P., Samaniego and J.P. Eissen, 2008. Holocene recurrent explosive activity at Chimborazo volcano (Ecuador). Journal of Volcanology and Geothermal Research 176:27-35.

Barberi, F., M. Coltelli, A. Frullani, M. Rosi and E. Almeida, 1995. Chronology and dispersal characteristics of recently (last 5ky) erupted tephra of Cotopaxi (Ecuador): implications for long-term eruptive forecasting. Journal of Volcanology and Geothermal Research, 69(3):217-239.

Barberi, F., M. Coltelli, G. Ferrara, F. Innocenti, J.M. Navarro and R. Santacroce, 1988. Plio-Quaternary volcanism in Ecuador. Geological Magazine 125 (1):1-14.

Branney, M.J. and B.P. Kokelaar, 2002. Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London. 137 pp.

Capra, L., L. Borselli, N. Varley, J.C. Gavilanes-Ruiz, G. Norini, D. Sarocchi, L. Caballero and A. Cortes, 2010. Rainfall-triggered lahars at Volcán de Colima, Mexico: Surface hydro-repellency as initiation process. Journal of Volcanology and Geothermal Research, 189 (1):105-117.

Capra, L., M.A. Poblete and R. Alvarado, 2004. The 1997 and 2001 lahars of Popocatépetl volcano (Central Mexico): textural and sedimentological constraints on their origin and hazards. Journal of Volcanology and Geothermal Research, 131(3-4): 351-369.

Chunga, K. and M.F. Quiñonez, 2013. Evidencia sedimentaria de tsunamis en la planicie aluvial de Villamil-Playas, Golfo de Guayaquil.Acta Oceanográfica Del Pacífico, 18 (1):163-180.

Collins, B.D. and T. Dunne, 1988. Effects of forest land management on erosion and revegetation after the eruption of Mount St. Helens. Earth Surface Processes and Landforms, 13(3):193- 205.

Collins, B.D., T. Dunne and A.K. Lehre, 1983. Erosion of tephra-covered hill slopes north of Mount St. Helens, Washington: May 1980–May 1981. Zeitschrift für Geomorphologische Naturwissenschaftliche Forschung, 16(1):103-121.

Crosta, G.B. and P. Dal Negro, 2003. Observations and modeling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event. Natural Hazards and Earth System Science, 3(1/2):53-69.

De Bélizal, E., F. Lavigne, D.S. Hadmoko, J.P. Degeai, G.A. Dipayana, B.W. Mutaqin, M.A. Marfai, M. Coquet, B. Le Mauff, A.K. Robin and C. Vidal, 2013. Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: A major risk. Journal of Volcanology and Geothermal Research, 261:330-347.

Delannay, R., A. Valance, A.Mangeney, O. Roche, and P. Richard, 2017. Granular and particle-laden flows: from laboratory experiments to field observations. Journal of Physics D: Applied Physics, 50(5):1-40.

Di Muro, A., M. Rosi, E. Aguilera, R. Barbieri, G. Massa, F. Mundula and F. Pieri, 2008. Transport and sedimentation dynamics of transitional explosive eruption columns: the example of the 800 BP Quilotoa Plinian eruption (Ecuador). Journal of Volcanology and Geothermal Research, 174(4):307-324.

Doyle, E.E., S.J. Cronin, S.E. Cole and J.C. Thouret, 2010. The coalescence and organization of lahars at Semeru volcano, Indonesia. Bulletin of Volcanology, 72(8):961-970.

Estrada, E., B.J. Meggers and C. Evans, 1962. Possible transpacific contact on the coast of Ecuador. Science, 135(3501):371-372.

Fisher, R.V. and H.U. Schmincke, 2012. Pyroclastic rocks. Springer Science and Business Media. 471 pp.

Folk, R.L., 1980. Petrology of sedimentary rocks. Hemphiliîs, Austin.182 pp.

Giordano G., D. De Rita, M. Fabbri and S. Rodani, 2002. Facies associations of rain-generated versus crater lake-withdrawal lahar deposits from Quaternary volcanoes, central Italy. Journal of Volcanology and Geothermal Research 118:145-159.

Gunkel, G., C. Beulker, B. Grupe and F. Viteri, 2008. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador. Advances in Geosciences 14:29-33.

Hall, M.L. and P.A. Mothes, 2008. Quilotoa volcano - Ecuador: an overview of young dacitic volcanism in a lake-filled caldera. Journal of Volcanology and Geothermal Research. 176:44-55.

Hall, M.L. and P.A. Mothes, 1994. Tefroestratigrafia Holocénica de los volcanes principales del Valle Interandino, Ecuador. El contexto geológico del espacio físico ecuatoriano. Neotéctonica, geodinámica, volcanismo, cuencas sedimentarias, riesgo sísmico, 6:47-68.

Hall, M.L. and P.A. Mothes, 1992. Quilotoa Volcano-Ecuador. Eruption History and Possible Effects of Future Eruptions to the Hacienda San Juan, La Maná, Cotopaxi Province. Unpub. Report for the Imperial Tobacco Company, Quito and London.

Hall, M.L., C. Robin, B. Beate, P.A. Mothes and M. Monzier, 1999. Tungurahua Volcano, Ecuador: structure, eruptive history and hazards. Journal of Volcanology and Geothermal Research, 91(1):1-21.

Harris, M., V. Martínez, W.J. Kennedy, C. Roberts and J. Gammack- Clark, 2004. The Complex Interplay of Culture and Nature in Coastal South-Central Ecuador. Expedition, 46(1):38-43.

Hidalgo, S., M. Monzier, E. Almeida, G. Chazot, J.P. Eissen, J.Van der Plicht and M.L. Hall, 2008. Late Pleistocene and Holocene activity of the Atacazo–Ninahuilca volcanic complex (Ecuador). Journal of Volcanology and Geothermal Research, 176(1):16-26.

Hodgson, K.A. and V.R. Manville, 1999. Sedimentology and flow behavior of a rain-triggered lahar, Mangatoetoenui Stream, Ruapehu volcano, New Zealand. Geological Society of America Bulletin, 111(5):743-754.

Iverson, R.M. and R.G. LaHusen, 1989. Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science, 246(4931):796-799.

Kilian, R., E. Hegner, S. Fortier and M. Satir, 1995. Magma evolution within the accretionary mafic basement of Quaternary Chimborazo and associated volcanos (Western Ecuador). Andean Geology, 22(2):203-218.

Knapp, G. and P.A. Mothes, 1999. Quilotoa ash and human settlements. In: Abya-Yala (Ed.). Actividad Volcanica y Pueblos Precolombinos en el Ecuador, 139-156.

Kilgour, G., V. Manville, F. Della Pasqua, A.G. Reyes, A.H. Graettinger, K.A. Hodgson and A.D. Jolly, 2010. The 25 September 2007 eruption of Mt. Ruapehu, New Zealand: directed ballistics, Surtseyan jets, and ice-slurry lahars. Journal of Volcanology and Geothermal Research 191:1-14.

Leavesley, G.H., G.C. Lusby and R.W. Lichty, 1989. Infiltration and erosion characteristics of selected tephra deposits from the 1980 eruption of Mount St. Helens, Washington, USA. Hydrological sciences journal, 34(3):339-353.

Lonsdale, P., 1978. Ecuadorian subduction system. AAPG Bulletin, 62(12): 2454-2477.

Manville, V. and S.J. Cronin, 2007. Breakout lahar from New Zealand’s crater lake. Eos, Transactions American Geophysical Union, 88(43):441-442.

Manville, V., K.A. Hodgson, B.F. Houghton and J.D.L. White, 2000. Tephra, snow and water: complex sedimentary responses at an active snow-capped stratovolcano, Ruapehu, New Zealand. Bulletin of Volcanology, 62(4-5):278-293.

Massey, C.I., V. Manville, G.H. Hancox, H.J. Keys, C. Lawrence and M. McSaveney, 2010. Out-burst flood (lahar) triggered by retrogressive landsliding, 18 March 2007 at Mt Ruapehu, New Zealand—a successful early warning. Landslides, 7(3):303- 315.

Mothes, P.A. and M.L. Hall, 1997. Quilotoa Caldera, Ecuador: a young eruptive centre in the western cordillera. 1997 IAVCEI General Assembly, Puerto Vallarta, Mexico.

Mothes, P.A. and M.L. Hall, 2008. The plinian fallout associated with Quilotoa’s 800 yr BP eruption, Ecuadorian Andes. Journal of Volcanology and Geothermal Research, 176:56-69.

Mothes, P. A. and J.W. Vallance, 2015. Lahars at Cotopaxi and Tungurahua Volcanoes, Ecuador: highlights from stratigraphy and observational records and related downstream hazards. In J. F. Shroder and P. Papale (Eds.) Volcanic Hazards, Risks and Disasters. Hazards and disasters series 1:141-168.

Mothes, P.A., M.L. Hall and R.J. Janda, 1998. The enormous Chillos Valley Lahar: an ash-flow-generated debris flow from Cotopaxi Volcano, Ecuador. Bulletin of Volcanology, 59(4):233- 244.

Mothes, P.A., M.L. Hall, D. Andrade, H. Yepes, T.C. Pierson, A. Gorki Ruiz and P. Samaniego, 2004. Character, stratigraphy and magnitude of historical lahars of Cotopaxi volcano (Ecuador). Acta vulcanologica, 16(1/2):1000-1023.

Mulas, M., R. Cioni and F. Mundula, 2012. Stratigraphy of the Rheomorphic, Densely Welded, Monte Ulmus Ignimbrite (SW Sardinia, Italy). Acta Vulcanologica, 23(1/2):17-26.

Nairn, I.A., C.P. Wood and C.A.Y. Hewson, 1979. Phreatic eruptions of Ruapehu: April 1975. Journal New Zealand Journal of Geology and Geophysics. 22:155-173.

Németh, K., S.J. Cronin, D. Charley, M. Harrison and E. Garae, 2006. Exploding lakes in Vanuatu - ‘Surtseyan-style’ eruptions witnessed on Ambae Island. Episodes 29:87-92.

Newhall, C. and R. Punongbayan, 1996. Fire and mud: eruptions and lahars of Mount Pinatubo. Philippine Institute of Volcanology and Seismology, Quezon City, and University of Washington Press (Seattle) 1:989-1013.

Pallini, R., 1996. Studio stratigrafico e granulometrico di un deposito di ricaduta da colonna pliniana in assenza di vento (Vulcano Pululagua, Ecuador). Università di Pisa, Pisa. Phd thesys.

Papale, P. and M. Rosi, 1993. A case of no-wind plinian fallout at Pululagua caldera (Ecuador): implications for models of clast dispersal. Bulletin of Volcanology, 55(7):523-535.

Pierson, T.C. and K.M. Scott, 1985. Debris Flow to Hyperconcentrated Streamflow. Water resources research, 21(10):1511-1524.

Pierson, T.C., R.J. Janda, J.V. Umbal and A.S. Daag, 1992. Immediate and long-term hazards from lahars and excess sedimentation in rivers draining Mt. Pinatubo, Philippines.U.S. Geological Survey Water-Resources Investigations Report 1:92-4039.

Pistolesi, M., R. Cioni, M. Rosi and E. Aguilera, 2014.Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology, 207:51-63.

Pistolesi, M., M. Rosi, R. Cioni, K.V. Cashman, A. Rossotti and E. Aguilera, 2011. Physical volcanology of the post–twelfth-century activity at Cotopaxi volcano, Ecuador: Behavior of an andesitic central volcano. Geological Society of America Bulletin, 123(5-6):1193-1215.

Pistolesi, M., R. Cioni, M. Rosi, K.V. Cashman, A. Rossotti and E. Aguilera, 2013. Evidence for lahar-triggering mechanisms in complex stratigraphic sequences: the post-XII century eruptive activity of Cotopaxi Volcano, Ecuador. Bulletin of Volcanology. 75:698.

Robin, C.,P. Samaniego, J.L. Le Pennec, P.A.Mothes and J. Van Der Plicht,2008.Late Holocene phases of dome growth and Plinian activity at Guagua Pichincha volcano (Ecuador). Journal of Volcanology and Geothermal Research, 176(1):7-15.

Robin, C.,P. Samaniego, J.L. Le Pennec, M. Fornari, P.A. Mothes and J. Van Der Plicht, 2010. New radiometric and petrological constraints on the evolution of the Pichincha volcanic complex (Ecuador). Bulletin of volcanology, 72(9): 1109-1129.

Rodolfo, K.S., 1989. Origin and early evolution of lahar channel at Mabinit, Mayon Volcano, Philippines. Geological Society of America Bulletin, 101(3):414-426.

Rodolfo, K.S., J.V. Umbal, R.A. Alonso, C.T. Remotigue, M.L. Paladio-Melosantos, J.H. Salvador, D. Evangelista and Y. Miller, 1996. Two years of lahars on the western flank of Mount Pinatubo: Initiation, flow processes, deposits, and attendant geomorphic and hydraulic changes. Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines, 1:989- 1013.

Rosi, M.,P. Landi, M. Polacci, A. Di Muro and D. Zandomeneghi, 2004. Role of conduit shear on ascent of the crystal-rich magma feeding the 800-year-BP Plinian eruption of Quilotoa Volcano (Ecuador). Bulletin of Volcanology, 66(4):307-321.

Samaniego, P., M. Monzier, C. Robin and M.L. Hall, 1998. Late Holocene eruptive activity at Nevado Cayambe Volcano, Ecuador. Bulletin of Volcanology, 59(7):451-459.

Samaniego, P., H. Martin, M. Monzier, C. Robin, M. Fornari, J.P. Eissen and J. Cotten, 2005. Temporal evolution of magmatism in the Northern Volcanic Zone of the Andes: the geology and petrology of Cayambe Volcanic Complex (Ecuador). Journal ofpetrology, 46(11):2225-2252.

Samaniego, P., C. Robin, G. Chazot, E. Bourdon and J. Cotten, 2010. Evolving metasomatic agent in the Northern Andean subduction zone, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador). Contributions to Mineralogy and Petrology, 160(2), 239-260.

Samaniego, P., D. Barba, C. Robin, M. Fornari and B. Bernard, 2012.Eruptive history of Chimborazo volcano (Ecuador): A large, ice-capped and hazardous compound volcano in the Northern Andes. Journal of Volcanology and Geothermal Research, 221:33-51.

Schneider, J.L., F.J.P. Torrado, D.G. Torrente, P. Wassmer, M.D.C.C. Santana and J.C. Carracedo, 2004. Sedimentary signatures of the entrance of coarse-grained volcaniclastic flows into the sea: the example of the breccia units of the Las Palmas Detritic Formation (Mio–Pliocene, Gran Canaria, Eastern Atlantic, Spain). Journal of volcanology and geothermal research, 138(3):295-323.

Smith, R.C.M., 1991. Landscape response to a major ignimbrite eruption: Taupo volcanic center, New Zealand. In: Fisher, R.V. and G.A. Smith, (Eds.), Sedimentation in Volcanic Settings: SEPM, Special Publication, 45. Society for Sedimentary Geology, Tulsa, Oklahoma, USA, 123-137.

Smith, G.A. and W.J. Fritz, 1989. Volcanic influences on terrestrial sedimentation. Geology 17:375-376.

Smith, G.A. and D.R. Lowe, 1991. Lahars: volcano-hydrologic events and deposition in the debris flow hyperconcentrated flow continuum. In: Fisher, R.V., Smith, G.A. (Eds.), Sedimentation in Volcanic Settings: SEPM, Special Publication, 45. Society for Sedimentary Geology, Tulsa, Oklahoma, USA, 59-70.

Usselmann, P., 2010. Geodinámica y ocupación humana del litoral pacífico en el sur de Colombia y en el Ecuador desde el Holoceno (últimos 10 000 años). Bulletin de l’Institut français d’études andines, 39 (3):589-602.

Van Westen, C.J. and A.S. Daag, 2005. Analyzing the relation between rainfall characteristics and lahar activity at Mount Pinatubo, Philippines. Earth Surface Processes and Landforms, 30(13):1663-1674.

Volentik, A.C., C. Bonadonna, C.B. Connor, L.J. Connor and M. Rosi, 2010. Modeling tephra dispersal in absence of wind: insights from the climactic phase of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador). Journal of Volcanology and Geothermal Research, 193(1):117-136.

Whittaker, J.E., 1988. Benthic Cenozoic Foraminifera from Ecuador: Taxonomy and Distribution of Smaller Benthic Foraminifera from Coastal Ecuador (Late Oligocene-Late Pliocene). British Museum of Natural History.

Zanchetta, G., R. Sulpizio, M.T. Pareschi, F.M. Leoni and R. Santacroce, 2004. Characteristics of May 5–6, 1998 volcaniclastic debris flows in the Sarno area (Campania, southern Italy): relationships to structural damage and hazard zonation. Journal of Volcanology and Geothermal Research, 133(1):377-393.

Zeidler, J.A. and D. Pearsall, 1994. Regional Archaeology in Northern Manabi, Ecuador, Pittsburg/Quito: Univ. of Pittsburgh. Memoirs in Latin American Archaeology, 1.224 pp.

Descargas

Publicado

2021-03-31

Cómo citar

Mulas, M. ., Chunga, K. ., Garces Leon, D. O. ., & Escobar Segovia, K. F. . (2021). Sedimentological study of distal rain- triggered lahars: the case of west coast of Ecuador. Latin American Journal of Sedimentology and Basin Analysis, 26(1), 1-17. Recuperado a partir de https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/59

Número

Sección

Trabajos de investigación