A sedimentary record of the environmental evolution and changes in trophic state of San Roque reservoir (Córdoba, Argentina) during the 20th–21st centuries


  • Luciana Mengo Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Universidad Nacional de Córdoba. Av. Vélez Sarsfield 1699, X5016, Córdoba, Argentina.
  • Silvana Halac Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Universidad Nacional de Córdoba. Av. Vélez Sarsfield 1699, X5016, Córdoba, Argentina.
  • Gabriela Foray Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR). Ministerio de Ciencia y Tecnología. Gobierno de la Provincia de Córdoba. Pabellón CEPROCOR, X5164, Santa María de Punilla, Córdoba, Argentina.
  • Ingrid Costamagna Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Universidad Nacional de Córdoba. Av. Vélez Sarsfield 1699, X5016, Córdoba, Argentina.
  • Eduardo Piovano Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Universidad Nacional de Córdoba. Av. Vélez Sarsfield 1699, X5016, Córdoba, Argentina.


Paleolimnological studies have been widely used to establish the past conditions of lakes and reservoirs due to both anthropic impact and climatic influences. The San Roque reservoir (SRr) is located in a semiarid region of central Argentina and has reached a hypereutrophic state in the last two decades. The main aim of this study is to reconstruct the environmental history of the SRr. The sedimentological record of the SRr, along with its chronology, provides a detailed archive of environmental changes. The multi-proxy analysis of the paleolimnological record makes it possible to identify four main environmental stages throughout the history of the SRr, resulting from the action of natural and anthropic drivers. Stage 1 (1911–1958 CE) can be considered the environmental base level of the reservoir as anthropic activity then was the lowest of all the stages. Stage 2 (1958–1978 CE) represents an increase in the volume of the SRr as a result of the construction of a second dam, along with a generalized increase in regional precipitation at the end of the period. Stage 3 (1978–2000 CE) is characterized by an increase in the internal primary production (eutrophic state), mainly caused by an anthropic input of nutrients (e.g., sewage effluents) due to urban expansion in the fluvial catchment. Stage 4 (2000–2018 CE) corresponds to the highest trophic scenario in the SRr, which has led to a hypereutrophic state. This is mainly associated with the increase in urbanization throughout the catchment and, especially, in the littoral area of the reservoir. The environmental reconstruction indicates that the SRr has been impacted by different types of disturbances throughout its history, including an enlargement of its volume due to the construction of the second dam and the higher nutrient load resulting from the increased urbanization. In addition, the great hydroclimatic jump after the 70s may have influenced these processes. Our results mostly highlight that anthropic and natural forcing synergistically promoted the generalized degradation of SRr water quality. These results can provide tools for modeling future scenarios and improving watershed management policies.


Ballester, R. (1931). Proyecto del nuevo dique san roque. Revista de la Universidad Nacional de Córdoba 18(1-2): 42–65.[Project of the new San Roque Dam].

Binford, M. W., Kahl, J. S. and Norton, S. A. (1993). Interpretation of 210Pb profiles and verification of the CRSdating model in PIRLA project lake sediment cores. Journal of Paleolimnology, 9 (3): 275-296.

Birks, H.H. and Birks, H.J.B. (2006). Multi-proxy studies in palaeolimnology. Vegetation History and Archaeobotany 15(4): 235–251.

Bonansea, M. and Fernandez, R.L. (2013). Remote sensing of suspended solids concentration in a reservoir with frequent wildland fires on its watershed. Water Science and Technology 67(1): 217–223.

Bonetto, A.A., Di Persia, D.H., Maglianesi, R. and Corigliano, M. del C. (1976). Caracteres limnológicos de algunoslagos eutróficos de embalse de la Región Central de Argentina. ECOSUR 3(5): 83–98. [Limnological characters of some eutrophic reservoirs in the Central Region of Argentina].

Brahney, J., Clague, J.J., Menounos, B. and Edwards, T.W.D. (2008). Timing and cause of water level fluctuations in Kluane Lake, Yukon Territory, over the past 5000 years. Quaternary Research 70(2): 213–227.

Cabido, M. and Zak, M.R. (1999). Vegetación del norte de Córdoba. SAGyRR.52 pp. [Vegetation of Cordoba north].

Cabrera, A.L. (1971). Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica 14(1-2): 1–42. [Phytogeography of Argentinian republic].

Cachi, J.C. (1975). Variaciones plantónicas del Embalse San Roque (Córdoba- República Argentina) y su relación con los procesos de potabilización. [Planktonic variations of San Roque reservoir(Córdoba-Argentina) and its relationship with purification process].

Camilloni, I.A. and Barros, V.R. (2003). Extreme discharge events in the Paraná River and their climate forcing. Journal of Hydrology 278(1-4): 94–106.

Cardoso-Silva, S., López-Doval, J.C., Moschini-Carlos, V. and Pompêo, M. (2018). Metals and limnological variables in an urban reservoir: compartmentalization and identification of potential impacted areas. Environmental Monitoring and Assessment190(1): 1-13.

Carpenter, S.R. and Leavitt, P.R. (1991). Temporal variation in a paleolimnological record arising from a trophic cascade. Ecology 72(1): 277–285.

Cohen, A. (2003). Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, 528 pp.

Colladón, L. (2004). Estadística Meteorológica, Temperaturas Medias Mensuales 1994-2003, Cuenca del Río San Antonio. Villa Carlos Paz.[Meteorological Statistics, Monthly Average Temperatures 1994-2003, Basin of San Antonio river].

Colladón, L. (2014). Síntesis Pluviométrica 1992-2012, Cuenca del Río San Antonio: Sistema del Río Suquía, Provincia de Córdoba. [Pluviometric Synthesis 1992-2012, Basin of San Antonio river: Suquía River system, Province of Córdoba].

Compagnucci, R.H., Agosta, E.A. and Vargas, W.M. (2002). Climatic change and quasi-oscillations in central-west Argentina summer precipitation: Main features and coherent behaviour with southern African region. Climate Dynamics 18(5): 421–435.

Costa-Böddeker, S., Bennion, H., Araújo de Jesus, T., Albuquerque, A.L.S., Figueira, R.C.L. and Bicudo, D. de C. (2012). Paleolimnologically inferred eutrophication of a shallow,tropical, urban reservoir in southeast Brazil. Journal of Paleolimnology 48(4): 751–766.

Dasso, C.M., Piovano, E.L., Pasquini, A.I. and Córdoba, F.E. (2014). Recursos hídricos superficiales. Relatorio del XIX Congreso Geológico Argentino 1209–1231. [Surface water resources].

Dean, W.E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss of ignition: comparison with other methods. Journal of Sedimentary Petrology 44(1): 242–248.

Dearing, J.A. (2013). Why Future Earth needs lake sediment studies. Journal of Paleolimnology 49(3): 537–545.

Deon, J.U. (2015). Sierras Chicas, conflictos por el agua y el uso del suelo. Relaciones de poder en la gestión de cuencas. El caso de la cuenca del río Chavascate, Córdoba, Argentina. Revista del Departamento de Geografía 4(1): 162–189. [Conflicts for water and land use. Power relations in watershed management. The case of the river basin Chavascate, Cordoba, Argentina].

Dokulil, M.T. (1994). Environmental control of phytoplankton productivity in turbulent turbid systems. In: Descy, J.-P., C.S. Reynolds and J. Padisák (Eds.), Phytoplankton in Turbid Environments: Rivers and Shallow Lakes, Springer Dordrecht, pp. 65–72.

Dubois, N., Saulnier-Talbot, É., Mills, K., Gell, P., Battarbee, R., Bennion, H., Chawchai, S., Dong, X., Francus, P., Flower, R., Gomes, D.F., Gregory-Eaves, I., Humane, S., Kattel, G., Jenny, J.P., Langdon, P., Massaferro, J., McGowan, S., Mikomägi, A., Ngoc, N.T.M., Ratnayake, A.S., Reid, M., Rose, N., Saros, J., Schillereff, D., Tolotti, M. and Valero-Garcés, B. (2018). First human impacts and responses of aquatic systems: A review of palaeolimnological records from around the world. Anthropocene Review 5(1): 28–68.

Egeland, E.S., Garrido, J.L., Clementson, L., Andresen, K., Thomas, C.S., Zapata, M.,

Airs, R., LLewellyn, C.A., Newman, G.L., Rodr?guez, F. and Roy, S. (2011). Data sheets aiding identification of phytoplankton carotenoids and chlorophylls in collaboration with. In: Roy, S., C. Llewellyn, E. Egeland and G. Johnsen (Eds.), Phytoplankton pigments: Characterization, Chemotaxonomy and Applications in Oceanography, Cambridge University Press, Cambridge, UK, pp. 665–822.

Elchyshyn, L., Goyette, J.O., Saulnier-Talbot, É., Maranger, R., Nozais, C., Solomon, C.T. and Gregory-Eaves, I. (2018). Quantifying the effects of hydrological changes on long-term water quality trends in temperate reservoirs: insights from a multiscale, paleolimnological study. Journal of Paleolimnology 60(3): 361–379.

Foucher, A., Evrard, O., Cerdan, O., Chabert, C., Lecompte, F., Lefèvre, I., Vandromme, R. and Salvador?Blanes, S. (2020). A quick and low?cost technique to identify layers associated with heavy rainfall in sediment archives during the Anthropocene. Sedimentology, 67(1), 486-501.

Gangi, D., Plastani, M.S., Laprida, C., Lami, A., Dubois, N., Bordet, F., Gogorza, C., Frau, D. and de Tezanos Pinto, P. (2020). Recent cyanobacteria abundance in a large sub-tropical reservoir inferred from analysis of sediment cores. Journal of Paleolimnology 63(3): 195–209.

García de Emiliani, M.O. (1977). Ciclo anual del fitoplancton en el Embalse San Roque (Córdoba, Argentina). Revista Asociación Ciencias Naturales Litoral 8: 1–12. [Annual cycle of phytoplankton in the San Roque Reservoir (Cordoba, Argentina)].

Garreaud, R.D. (2009). The Andes climate and weather. Advances in Geosciences 22: 3–11.

Gavilán, J.G. (1981). Study water quality in the san Roque reservoir. Water Qual. Bull.

Environ. 6 (4), 136–158.

Gómez, E.A, Raniolo, L.A., Pierini, J.O., Pons, J.C. (2016). Batimetría y perfilado sísmico en el Lago San Roque-Córdoba. Informe técnico Instituto Argentino de Oceanografía-Conicet. [Bathymetry and seismic profiling in San Roque Lake-Cordoba].

Guerra, L., Piovano, E.L., Córdoba, F.E., Sylvestre, F. and Damatto Moreira, S. (2015). The hydrological and environmental evolution of shallow Lake Melincué, central Argentinean Pampas, during the last millennium. Journal of Hydrology 529: 570– 583.

Guerra, L., Piovano, E.L., Córdoba, F.E., Tachikawa, K., Rostek, F., Garcia, M., Bard, E. and Sylvestre, F. (2016). Climate change evidences from the end of the Little Ice Age to the Current Warm Period registered by Melincué Lake (Northern Pampas, Argentina). Quaternary International 438: 160–174.

Guerra, L., Martini, M.A., Córdoba, F.E., Ariztegui, D. and Piovano, E.L. (2018). Multi-annual response of a Pampean shallow lake from central Argentina to regional and large-scale climate forcings. Climate Dynamics 52(11): 6847–6861.

Guilizzoni, P., Bonomi, G., Galanti, G. and Ruggiu, D. (1983). Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiologia 103: 103–106.

Guilizzoni, P. and Lami, A. (2003). Paleolimnology: use of algal pigments as indicators. In: Bitton, G. (Ed.), Encyclopedia of Enviromental Microbiology, Wiley and Sons, Chichester, pp. 2306–2317.

Halac, S., Bazán, R., Larrosa, N., Nadal, A.F., Ruibal Conti, A.L., Rodríguez, M.I., Ruiz, M. and Lopéz, A.G. (2019). First report on negative association between cyanobacteria and fecal indicator bacteria at San Roque reservoir (Argentina):

impact of environmental factors. Journal of Freshwater Ecology 34(1): 273–291.

Halac, S., Mengo, L., Guerra, L., Lami, A., Musazzi, S., Loizeau, J.L., Ariztegui, D. and Piovano, E.L. (2020). Paleolimnological reconstruction of the centennial eutrophication processes in a sub-tropical South American reservoir. Journal of South American Earth Sciences 103: 102707.

Harris, I., Osborn, T.J., Jones, P. and Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7(1): 1–18.

Heiri, O., Lotter, A.F. and Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25(1): 101–110.

Hodgson, D.A., Vyverman, W. V., Verleyen, E., Sabbe, K., Leavitt, P.R., Taton, A., Squier, A.H. and Keely, B.J. (2004). Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquatic Microbial Ecology 37(3): 247–263.7

Jongman, R. H. J., ter Braak, C.J.F., and Van Tongeren, O. F. R. (1995). Data Analysis in Community and Landscape Ecology. Cambridge University Press. 299 pp.

Juggins, S. (2009). Rioja: analysis of quaternary science data, R package version 0.5–6.

Kennedy, R.H. (2005). Toward integration in reservoir management. Lake and Reservoir Management 21(2): 128–138.

Krasa, J., Dostal, T., Jachymova, B., Bauer, M. and Devaty, J. (2019). Soil erosion as a source of sediment and phosphorus in rivers and reservoirs – Watershed analyses using WaTEM/SEDEM. Environmental Research 171: 470–483.

Lami, A., Guilizzoni, P. and Marchetto, A. (2000). High resolution analysis of fossil pigments, carbon, nitrogen and sulphur in the sediment of eight European Alpine lakes: The MOLAR project. Journal of Limnology 59(1): 15–28.

Lami, A., Niessen, F., Guilizzoni, P., Masaferro, J. and Belis, C.A. (1994). Palaeolimnological studies of the eutrophication of volcanic Lake Albano (Central Italy). Journal of Paleolimnology 10(3): 181–197.

Leavitt, P.R. (1993). A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. Journal of Paleolimnology 9(2): 109– 127.

Liu, X., Wu, Q., Chen, Y. and Dokulil, M.T. (2011). Imbalance of plankton community metabolism in eutrophic Lake Taihu, China. Journal of Great Lakes Research 37(4): 650–655.

Martino, R.D., Guereschi, A.B. and Carignano, C.C. (2012). Influencia de la tectónica preandina sobre la tectónica Andina: El caso de la falla de la Sierra Chica, Sierras Pampeanas de Córdoba. Revista de la Asociación Geológica Argentina 69(2): 207– 221.

Menounos, B. (1997). The water content of lake sediments and its relationship to other physical parameters: an alpine case study. The Holocene 7(2): 207–212.

Merlo, C., Abril, A., Amé, M. V., Argüello, G.A., Carreras, H.A., Chiappero, M.S., Hued, A.C., Wannaz, E., Galanti, L.N., Monferrán, M. V., González, C.M. and Solís, V.M. (2011). Integral assessment of pollution in the Suquía River (Córdoba, Argentina) as a contribution to lotic ecosystem restoration programs. Science of the Total Environment 409(23): 5034–5045.

Monferrán, M.V., Galanti, L.N., Bonansea, R.I., Amé, M.V. and Wunderlin, D.A. (2011). Integrated survey of water pollution in the Suquía River basin (Córdoba, Argentina). Journal of Environmental Monitoring 13(2): 398–409.

Moorhouse, H.L., McGowan, S., Taranu, Z.E., Gregory-Eaves, I., Leavitt, P.R., Jones, M.D., Barker, P. and Brayshaw, S.A. (2018). Regional versus local drivers of water quality in the Windermere catchment, Lake District, United Kingdom: The dominant influence of wastewater pollution over the past 200 years. Global Change Biology 24(9): 4009–4022.

Obst, M., Wehrli, B. and Dittrich, M. (2009). CaCO3 nucleation by cyanobacteria: Laboratory evidence for a passive, surface-induced mechanism. Geobiology 7(3): 324–347.

Oksanen, J., F. Guillaume Blanchet, R.K., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P. and M. Henry H. Stevens, H.W. (2019). Package

‘vegan’. R Package Version 3.4.0.

Oliver, S., Corburn, J. and Ribeiro, H. (2019). Challenges regarding water quality of eutrophic reservoirs in urban landscapes: A mapping literature review. International Journal of Environmental Research and Public Health 16(1):40.

Padedda, B.M., Sechi, N., Lai, G.G., Mariani, M.A., Pulina, S., Sarria, M., Satta, C.T., Virdis, T., Buscarinu, P. and Lugliè, A. (2017). Consequences of eutrophication in the management of water resources in Mediterranean reservoirs: A case study of Lake Cedrino (Sardinia, Italy). Global Ecology and Conservation 12: 21–35.

Pasquini, A.I., Lecomte, K.L., Piovano, E.L. and Depetris, P.J. (2006). Recent rainfall and runoff variability in central Argentina. Quaternary International 158(1): 127– 139.

Paterson, A.M., Köster, D., Reavie, E.D. and Whitmore, T.J. (2020). Preface: paleolimnology and lake management. Lake and Reservoir Management 36(3): 205–209.

Pienitz, R. and Vincent, W.F. (2003). Generic approaches towards water quality monitoring based on paleolimnology. In: Kumagai, M. and W.F. Vincent (Eds.), Freshwater management: global versus local perspectives, Springer-Verlag, Tokyo, pp. 61–82.

Pienitz, R. and Lotter, A.F. (2009). Editorial: Advances in Paleolimnology. PAGES News 17(3): 92–93.

Piovano, E.L., Larizzatti, F.E., Fávaro, D.I.T., Oliveira, S.M.B., Damatto, S.R., Mazzilli, B.P. and Ariztegui, D. (2004). Geochemical response of a closed-lake basin to 20 th century recurring droughts / wet intervals in the subtropical Pampean Plains of South America. Journal of Limnology 63(1): 21–32.

Piovano, E.L., Ariztegui, D., Córdoba, F.E., Cioccale, M. and Sylvestre, F. (2009). Hydrological variability in South America below the Tropic of Capricorn (Pampas and eastern Patagonian, Argentina) during the last 13.0 ka. In: Vimeux, F., F. Sylvestre and M. Khodri (Eds.), Past climate variability from the Last Glacial Maximum to the Holocene in South America and Sorrunding regions: From the Last Glacial Maximum to the Holocene, Springer Developments in Paleoenvironmental Reserch Series, pp. 323–351.

Prosperi, C. (1986). Algas en el agua de consumo de la Ciudad de Córdoba. Boletín de la Sociedad Argentina de Botánica 24(3-4): 413–417.

Pussetto, N., Piovano, E.L., Rodriguez, M.I., Ruiz, M. and Halac, S. R. (2020). Modelo conceptual del funcionamiento del embalse San Roque: dinámica sedimentaria y geoquímica. Revista de la Facultad de Ciencias Exactas Físicas y Naturales 7(2): 85–94.

Renaut, R.W. and Gierlowski-Kodersch, E.H. (2010). Lakes. In: James, N.P. and R.W.

Dalrymple (Eds.), Facies Models 4, Canadian Sedimentology Research Group, pp. 541–575.

Rodríguez, M.I. and Ruiz, M. (2016). Limnology of the San Roque Reservoir. In: Wunderlin, D. (Ed.), The Suquía River Basin (Córdoba, Argentina). The Handbook of Environmental Chemistry., Springer, Cham, pp. 37–59.

Roldán Pérez, G. and Ramírez Restrepo, J.J. (2008). Fundamentos de Limnología Neotropical. Universidad de Antioquía. 440 pp. [Neotropical Limnology Basics].

Saulnier-Talbot, É. (2016). Paleolimnology as a tool to achieve environmental sustainability in the Anthropocene: an overview. Geosciences 6(2): 26.

Schnurrenberger, D., Russell, J. and Kelts, K. (2003). Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology 29(2): 141–154.

Schroeder, L.A., Martin, S.C., Kerns, G.J. and McLean, C.E. (2016). Diatom assemblages in a reservoir sediment core track land-use changes in the watershed. Journal of Paleolimnology 55(1): 17–33.

Smol, J.P. (2010). The power of the past: Using sediments to track the effects of multiple stressors on lake ecosystems. Freshwater Biology 55(1): 43–59.

Teranes, J.L., McKenzie, J.A., Lotter, A.F. and Sturm, M. (1999). Stable isotope response to lake eutrophication: Calibration of a high-resolution lacustrine sequence from Baldeggersee, Switzerland. Limnology and Oceanography 44(2): 320–333.

Thompson, J.B., Schultze-Lam, S., Beveridge, T.J. and Des Marais, D.J. (1997). Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and Oceanography 42(1): 133–141.

Tripaldi, A., Zárate, M.A., Forman, S.L., Badger, T., Doyle, M.E. and Ciccioli, P. (2013). Geological evidence for a drought episode in the western Pampas (Argentina, South America) during the early-mid 20th century. The Holocene 23(12): 1731–1746.

Troin, M., Vallet-Coulomb, C., Sylvestre, F. and Piovano, E. (2010). Hydrological modelling of a closed lake (Laguna Mar Chiquita, Argentina) in the context of 20th century climatic changes. Journal of Hydrology 393(3-4): 233–244.

Troin, M., Vrac, M., Khodri, M., Caya, D., Vallet-Coulomb, C., Piovano, E.L. and Sylvestre, F. (2016). A complete hydro-climate model chain to investigate the influence of sea surface temperature on recent hydroclimatic variability in subtropical South America (Laguna Mar Chiquita, Argentina). Climate Dynamics 46(5-6): 1783–1798.

Turgeon, K., Solomon, C.T., Nozais, C. and Gregory-Eaves, I. (2016). Do novel ecosystems follow predictable trajectories? Testing the trophic surge hypothesis in reservoirs using fish. Ecosphere 7(12): 1–17.

Wang, L.C., Chou, Y.M., Chen, H.F., Chang, Y.P., Chiang, H.W., Yang, T.N., Shiau, L.J. and Chen, Y.G. (2021). Paleolimnological evidence for lacustrine environmental evolution and paleo-typhoon records during the late Holocene in eastern Taiwan. Journal of Paleolimnology 1-17.

Wengrat, S., Padial, A.A., Jeppesen, E., Davidson, T.A., Fontana, L., Costa-Böddeker, S. and Bicudo, D.C. (2018). Paleolimnological records reveal biotic homogenization driven by eutrophication in tropical reservoirs. Journal of Paleolimnology 60(2): 299–309.

Wengrat, S., Bennion, H., Ferreira, P.A. de L., Figueira, R.C.L. and Bicudo, D.C. (2019). Assessing the degree of ecological change and baselines for reservoirs: challenges and implications for management. Journal of Paleolimnology 62(4): 337–357.

Winston, B., Hausmann, S., Escobar, J. and Kenney, W.F. (2014). A sediment record of trophic state change in an Arkansas (USA) reservoir. Journal of Paleolimnology 51(3): 393–403.

Woodbridge, J., Davies, H.J., Blake, W.H. and Fyfe, R.M. (2014). Recent environmental change in an upland reservoir catchment: a palaeoecological perspective. Journal of Paleolimnology 52(3): 229–244.

Xu, Z., Cai, X., Yin, X., Su, M., Wu, Y. and Yang, Z. (2019). Is water shortage risk decreased at the expense of deteriorating water quality in a large water supply reservoir? Water Research 165: 114984.

Ye, Y., He, X.Y., Chen, W., Yao, J., Yu, S. and Jia, L. (2014). Seasonal water quality upstream of Dahuofang Reservoir, China - the effects of land use type at various spatial scales. CLEAN- Soil, Air, Water 42(10): 1423–1432.

Züllig, H. (1985). Carotenoids from plankton and purple sulphur bacteria in lake sediments as indicators of changes in the environment. Experientia 41(4): 533– 534.


2021-09-28 — Actualizado el 2022-07-05

Cómo citar

Mengo, L., Halac, S., Foray, G. ., Costamagna, I., & Piovano, E. (2022). A sedimentary record of the environmental evolution and changes in trophic state of San Roque reservoir (Córdoba, Argentina) during the 20th–21st centuries. Latin American Journal of Sedimentology and Basin Analysis, 29(1), 3-21. Recuperado a partir de https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/29-1-2



Trabajos de investigación