Fossil bubble structure related to microbial activity coeval with the middle Ediacaran Oceanic Oxygenation Event in the Tandilia System


  • Maria Julia Arrouy IHLLA
  • Lucía Gómez-Peral Centro de Investigaciones Geológicas, UNLP-CONICET, La Plata.
  • Victoria Penzo Centro de Investigaciones Geológicas, UNLP-CONICET, La Plata. Argentina
  • Camila Ferreyra Centro de Investigaciones Geológicas, UNLP-CONICET, La Plata. Argentina
  • Daniel G. Poiré Centro de Investigaciones Geológicas, UNLP-CONICET, La Plata. Argentina


The well-preserved limestone succession, Loma Negra Formation (~40 m), in the Tandilia System was deposited in a shallow carbonate ramp under low energy conditions. The evolution in the depositional settings of the unit was indicated as deepening upwards varying from shallow-middle to outer ramp environment. The limestone fabric is assumed as the product of biologically controlled precipitation of micrite, where the terrigenous supply was limited. From detailed meso- and microscopic descriptions it is possible to recognize microbially induced sedimentary structures ‘MISS’ represented by typical microtextures related to microbial activity that appear represented throughout the entire formation. In addition, micro-stromatolites are observed in the unit associated with the microbial mats showing micro-columnar conical to domical morphologies.

In the basal and middle Loma Negra Formation, hemispherical structures are recognized in the bed-tops and interpreted as bubbles-like and gas escape features associated with the microbial mat interaction. Their morphology is compared with oxygen bubbles produced by modern experimental modelling with photosynthetic cyanobacteria microbial mats. Moreover, hemispherical structures are associated with increasing gas pressure lifting grains and the organic components to the surface. 

This paper provides evidence to understand the possible causal relationship between microbial activity and seawater oxygenation. The high oxygen production revealed by geochemistry proxies and here proposed as probably associated with photosynthetic microbial activity might be a plausible explanation for the record of the documented Middle Ediacaran Oceanic Oxygenation Event in the Loma Negra Formation.



Arrouy, M. J., Poiré, D. G., Gómez-Peral, L. E., and Canalicchio, J. M. (2015). Sedimentología y estratigrafía del Grupo La Providencia (Nom. Nov.): Cubierta Neoproterozoica, Sistema de Tandilia, Argentina. Latin American Journal of Sedimentology and Basin Analysis 22 (2), 1–38.

Arrouy, M.J., Warren, L.V., Quaglio, F. Poiré, D.G., Guimarães Simões, M., Boselli, M.R., and Gómez-Peral, L.E. (2016). Ediacaran discs from South America: probable soft-bodied macrofossils unlock the paleogeography of the Clymene Ocean. Scientific Reports, 6:30590, 1-10. DOI: 10.1038/srep30590.

Arrouy, M.J., and Gómez-Peral, L.E. (2021). Exposing the inside of the fine-grained siliciclastic tidal shelf deposits of the Alicia Formation, Tandilia Basin, during the Ediacaran anoxia in the Clymene Ocean. Journal of South American Earth Sciences, 102945.

Arthur, M.A., and Sageman, B.B. (1994). Marine black shales. Depositional and mechanisms and environment of ancient deposits. Annual Review of Earth and Planetary Sciences, 22:499–551.

Bagnoud-Velásquez, M., Spangenberg, J.E., Poiré, D.G., and Gómez-Peral, L.E., (2013). Stable isotope (S, C) chemostratigraphy and hydrocarbon biomarkers in the Ediacaran upper section of Sierras Bayas Group, Argentina. Precambrian Research, 231:388-400.

Banerjee, S., Sarkar, S., and Eriksson, P.G. (2014). Palaeoenvironmental and biostratigraphic implications of microbialmat-related structures: examples from modern Gulf of Cambay and Precambrian Vindhyan basin. Journal of Palaeogeography 3(2), 127-144.

Bau, M., and Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research 79 (1–2):37–55.

Bosak, T., Liang, B., Sim, M.S., and Petroff A.P. (2009). Morphological record of oxygenic photosynthesis in conical stromatolites. Proceedings of the National Academy of Sciences. USA 106:10939–43.

Bosak, T., Bush, J.W.M., Flynn, M., Liang, B., Ono, S., Petroff, A.P., and Sim, M.S. (2010). Formation and stability of oxygen-rich bubbles that shape photosynthetic mats. Geobiology, 8:45–55.

Chafetz H.S., Rush P.F. and Utech N.M., (1991) Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system. Sedimentology, 38:107–126.

Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X., and Xiao, S. (2013). Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224:690–701.

Cingolani, C. (2011). The Tandilia System of Argentina as a southern extension of the Río de la Plata craton: an overview. International Journal of Earth Sciences 100:221–242.

Cui, H., Kaufman, A.J., Xiao, S., Zhu, M., Zhou, C., and Liu, X-M. (2015). Redox architecture of an Ediacaran ocean margin: integrated chemostratigraphic (d13C–d34S–87Sr/86Sr–Ce/Ce*) correlation of the Doushantuo Formation, South China. Chemical Geology, 405:48–62.

Dalla Salda, L. and Iñiguez Rodríguez, A.M. (1979). La Tinta, Precámbrico y Paleozoico de Buenos Aires. VII Congreso Geológico Argentino, Buenos Aires. Actas I: 539–550.

Eriksson, P.G., Simpson, E.L., Eriksson, K.A., Bumby, A.J., Steyn, G.L., and Sarkar, S. (2000). Muddy roll-up structures in siliciclastic interdune beds of the ca. 1.8 Ga Waterberg Group, South Africa. Palaios, 15: 177–183.

Eriksson, P. G., Sarkar, S., Banerjee, S., Porada, H., Catuneanu, O., and Samanta, P. (2010). Paleoenvironmental context of microbial mat-related structures in siliciclastic rocks: Examples from the Proterozoic of India and South Africa; In: Microbial mats: Modern and ancient microorganisms in stratified systems (eds) Seckbach J and Oren A, Springer-Verlag, Berlin, pp. 73–108.

Fenchel, T. and Kühl, M. (2000) Artificial cyanobacterial mats: growth, structure, and verticalzonation patterns. Microb. Ecol. 40, 85-93.

Gehling, J.G. (1999). Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14: 40–57.

Gerdes, G., Klenke, T., and Noffke, N. (2000). Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology 47: 279–308.

German, C.R., Elderfield, H., 1990. Application of the Ce anomaly as paleoredox indicator: the ground rules. Paleoceanography 5, 823–833.

Gómez-Peral, L.E., D.G. Poiré, H. Strauss H., and Zimmermann, U. (2007). Chemostratigraphy and diagenetic constraints on Neoproterozoic carbonate successions from the Sierras Bayas Group, Tandilia System, Argentina. Chemical Geology 237, 127–146.

Gómez-Peral, L.E., Raigemborn, M.S., and Poiré, D.G. (2011). Petrología y evolución diagenética de las facies silicoclásticas del Grupo Sierras Bayas, Sistema de Tandilia, Argentina. Latin American Journal of Sedimentology and Basin Analysis 18 (1), 3–41.

Gómez-Peral, L.E., Kaufman, A.J., and Poiré, D.G. (2014). Paleoenvironmental implications of two phosphogenic events in Neoproterozoic sedimentary successions of the Tandilia System, Argentina. Precambrian Research, 252, 88–106.

Gómez-Peral, L.E., Sial, A.N., Arrouy, M.J., Richiano, S., Ferreira, V.P., Kaufman, A.J., and Poiré, D.G. (2017). Paleoclimatic and paleoenvironmental evolution of the Early Neoproterozoic basal dolomitic platform, Río de La Plata Craton, Argentina: insights from the ?13C chemostratigraphy. Sedimentary Geology, 353: 139–157.

Gómez-Peral, L.E., Kaufman, A.J., Arrouy, M.J., Richiano, S., Sial, A.N., Póiré, D.G., and Ferreira, V.P. (2018). Preglacial palaeoenvironmental evolution of the Ediacaran Loma Negra Formation, far southwestern Gondwana, Argentina. Precambrian Research, 315: 120–137.

Gómez-Peral, L.E., Arouty, M.J., Poiré, D.G., and Cavarozzi, C.E. (2019). Redox-sensitive 803 element distribution in the Neoproterozoic Loma Negra Formation in Argentina, in 804 the Clymene Ocean context. Precambrian Research, 332: 105–384.

Gómez-Peral, L.E., Arouy, M.J., Richiano, S., Cereceda, A. Alé, S.A., and Poiré, D.G. (2021). Unravelling hidden glacial effects in the Cryogenian marine depositional settings of the Tandilia Basin, Argentina. Precambrian Research, 106261.

Hagadorn, J.W., and Bottjer, D.J. (1997). Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition: Geology, v. 25, p. 1047-1050

Halverson, G.P., Hoffman, P.F., Schrag, D.P., Maloof, A.C., and Rice, A.H.N. (2005), Toward a Neoproterozoic composite carbon-isotope record: Geological Society of America Bulletin, v. 117, (9): 1181–1207.

Hartmann, L.A., Santos, J.O.S., Bossi, J., Campal, N., Schipilov, A., and McNaughton, N.J. (2002). Zircon and titanite U-Pb SHRIMP geochronology of Neoproterozoic felsic magmatism on the eastern border of the Rio de la Plata Craton, Uruguay. Journal of South American Earth Sciences 15: 229–236.

Hernández, M., Arrouy, M.J., Scivetti, N., Franzese, J.R., Canalicchio, J.M., and Poiré, D.G. (2017). Tectonic evolution of the Neoproterozoic Tandilia Sedimentary cover, Argentina: new evidence of contraction and extensional events in the southwest Gondwana margin. Journal of South American Earth Sciences 79: 230–238.

Homann, M.; Heubeck, C., Airo, A., and Tice, M. M., (2015) Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa), Precambrian Research, Vol. 266, 47-64,

Holser, W.T. (1997). Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeography Palaeoclimatolology Palaeoecology 132, 309–323.

Iñiguez Rodríguez, A. M. (1999). La Cobertura Sedimentaria de Tandilia. In: Caminos R. (Ed), Geología Argentina. (SEGEMAR). pp 101 – 106.

Jorgensen B.B., Revsbech N.P., and Cohen Y. (1983). Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnology and Oceanography 28, 1075–1093.

Laenen, B., Hertogen, J., and Vandenbarghe, N. (1997). The variation of the trace-element content of the fossil biogenic apatite through eustatic sea level cycles. Paleogeography Paleoclimatology Paleoceanography 132, 325-342.

Ling, H.F., Chen, X., Li, D., Wang, D., Shields-Zhou, G.A., and Zhu, M. (2013). Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater. Precambrian Research 225, 110–127.

Luo M, Chen Z, Hu S, Zhang Q, Benton M J, Zhou C, Wen W and Huang J. (2013). Carbonate reticulated ridge structures from the lower middle Triassic of the Luoping Area, Yunnan, southwestern China: Geobiologic features and implications for exceptional preservation of the Luoping Biota; Palaios 28 541–551.

Lyons, T.W., Reinhard, C.T., and Planavsky, N.J. (2014). The rise of oxygen in Earth/’s early ocean and atmosphere. Nature 506, 307–315

Macdonald, F.A., Jones, D.S., and Schrag, D.P. (2009). Stratigraphic and tectonic implications of a newly discovered glacial diamictite–cap carbonate couplet in southwestern Mongolia. Geology 37 (2), 123-126.

Mata, S.A., Harwood, C.L., Corsetti, F.A., Stork, N.J., Eilers, K., Berelson, W.M., and Spear, J.R. (2012). Influence of gas production and filament orientation on stromatolite

microfabric. Palaios 27, 206–219.

Marchese H.G., and Di Paola E. (1975). Miogeosinclinal Tandil. Revista de la Asociación Geológica Argentina 30(2):161–179.

McArthur, J.M., and Walsh, J.N. (1984). Rare-earth element geochemistry of the phosphorites. Chemical Geology 47, 191–220.

McLennan, S.M. (1989). Rare earth elements in sedimentary rocks: in?uence of provenance and sedimentary processes. In: Lipin, B.R., McKay, G.A. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Min. Soc. Am. Rev. Mineral., vol. 21, pp. 169–200.

Morad, S., and Felitsyn, S. (2001). Identi?cation of primary Ce-anomaly signatures in fossil biogenic apatite: implication for the Cambrian oceanic anoxia and phosphogenesis. Sedimentary Geology 143, 259–264.

Nágera, J.J. (1940). Tandilia. Biblioteca Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata XXIV. pp. 272.

Noffke N., Gerdes, G., Klenke, T., and Krumbein W.E. (1996). Microbially induced sedimentary structures – examples from modern sediments of siliciclastic tidal flats. Zentralblatt Geologie und Paläontologie, 1:307–316.

Noffke, N., Gerdes, G., Klenke, T., and Krumbein, W.E. (2001). Microbially induced sedimentary structures a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71, 649–656.

Noffke, N., Gerdes, G., and Klenke, T. (2003). Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty,

and evaporitic carbonatic). Earth-Science Reviews 62, 163–176.

Noffke, N., Christian, D., Wacey, D., and Hazen, R.M. (2013). Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13, 1103–1124.

Och, L.M., and Shields-Zhou, G.A. (2012). The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth-Science Reviews, 110: 26–57.

Pankhurst, R.J., Ramos, A., and Linares, E. (2003). Antiquity of the Río de la Plata craton in Tandilia, southern Buenos Aires province, Argentina. Journal of South American Earth Sciences, 16: 5–13.

Pi, D. H., Liu, C. O., Shields-Zhou, G.A., and Jiang, S. Y. (2013). Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: constraints for redox environments and origin of metal enrichments. Precambrian Research, 225: 218–229.

Poiré, D.G., González, P.D., Canalicchio, J.M., and García Repetto, F. (2005). Estratigrafía del Grupo Mina Verdún, Proterozoico, Uruguay. Latin American Journal of Sedimentology and Basin Analysis, 12 : 125–143.

Poiré, D.G., Gómez-Peral, L.E., and Arrouy, M.J. (2018). Glaciations in South America. In: Geology of Southwest Gondwana, Siegesmund, S., Basei, M.A.S., Oyhantçabal, P., Oriolo, S. (Eds.). Special Publication of Springer Nature, 527-541.

Porada, H., and Bouougri, E. (2007). “Wrinkle structures” da critical review. In: Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O. (Eds.), Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Elsevier, Amsterdam, pp. 135-144.

Reinech,H.E., Gerdes, G., Claes, M., Dunajtschik, K., Riege, H., and Krumbein, W.E. (1990). Microbial modification of sedimentary surface structures, in Heling, D., Rothe, P., Förstner, U., and Stoffers, P., eds., Sediments and Environmental Geochemistry: Springer-Verlag, Berlin, p.254–276

Runnegar, B., and Fedonkin, M. (1992). Proterozoic metazoan body fossils. In: Schopf, J., Klein, C. (Eds.), The Proterozoic Biosphere, A Multidisciplinary Study. Cambridge Univ. Press.

Sahoo, S.K., Planavsky, N.J, Kendall, B., Wang, X., Shi, X., Scott, C., Anbar, A.D., Lyons, T.W., and Jiang G. (2012). Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489 : 546–549.

Sahoo, S. K., Planavsky, N.J., Jiang, G., Kendall, B., Owens, J.D., Wang, X., Shi, X., Anbar, A.D., and Yons, T.W.L. (2016). Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology, 14:457–468.

Sallstedt, T., Bengtson, S., Broman, C., Crill, P.M., and Canfield, D.E. (2018). Evidence of

oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic

Vindhyan and Aravalli Supergroups, India. Geobiology, 16:139–159.

Sarkar, S., Choudhuri, A., Banerjee, S., Van Loon, A. J., and Bose, P. K. (2014a). Seismic and non-seismic soft sediment deformation structures in the Proterozoic Bhander Limestone, central India; Geologos, 20:89–103.

Sarkar, S., Choudhuri, A., Mandal, S., and Eriksson, P.G. (2016). Microbial mat-related structures shared by both siliciclastic and carbonate formation; Journal of Palaeogeography, 5:278–291.

Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Altermann, W and Catuneanu O (eds) 2007. Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record; Atlases in Geoscience, 311pp.

Schieber, J. (1998). Possible indicators of microbial mat deposits in shales and sandstones: examples from the Mid-Proterozoic Belt Supergroup, Montana, USA. Sedimentary Geology, 120:105–124.

Schieber, J. (1999). Microbial mats in terrigenous clastics: the challenge of identification in the rock record. Palaios, 14:3–12.

Semikhatov, M. A., Gebelein, C. D., Cloud, P., Awramik, S. M., and Benmore, W. C. (1979). Stromatolite morphogenesis: progress and problems: Canadian Journal of Earth Sciences, 16:992–1014.

Shi, X.Y., Zhang, C.H., Jiang, G.Q., Liu, J., Wang, Y., and Liu, D.B. (2008). Microbial mats in the Mesoproterozoic carbonates of the North China platform and their potential for hydrocarbon generation. Geoscience 22(5), 669-682.

Shields-Zhou, G. and Och, L. (2011). The case for a Neoproterozoic Oxygenation Event: Geochemical evidence and biological consequences. GSA Today, 21(3): 4-11. DOI: 10.1130/GSATG102A.1

Shields, G., and Stille, P. (2001). Diagenetic constraints on the use of cerium anomalies as palaeoseawater proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175:29–48.

Sim, M.S., Liang, B., Petroff, A.P., Evans, A., Klepac-Ceraj, V., Flannery, D.T., Walter, M.R., and Bosak, T. (2012). Oxygen-dependent morphogenesis of modern clumped photosynthetic mats and implications for the Archean stromatolite record. Geosciences, 2:235–59.

Stille, P., Gauthier-Lafaye, F., Jensen, K.A., Gomez, P., Ewing, R., Louvat, D., 2000. REE migration in groundwaters close to the natural fission reactor or Bangombe´ Gabon.; Sm–Nd isotope evidence. Earth Planet. Sci. Lett.

Sumner D. Y., Jungblut D., Hawes I., Andersen D. T., Mackey J., and Wall K. (2016). Growth of elaborate microbial pinnacles in Lake Vanda, Antarctic. Geobiology DOI: 10.1111/gbi.1218

Taylor, S.R., and McLennan, S.M. (1985). The Continental Crust; Its Composition and Evolution: London, Blackwell, p. 312.

Tostevin, R., Shields, G.A., Tarbuck, G.M., He, T., Clarckson, M.O., and Wood, R.A. (2016). Effective use of cerium as redox proxy in carbonate-dominated marine settings. Chemical Geology, 438:146–162.

Tribovillard, N., Algeo, T. J., Lyons, T., and Roboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232:12–32.

van Smeerdijk Hood, A., and Wallace, M.W. (2015). Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia, Precambrian Research, 261, 96–111.

Warren, L. V., Quaglio, F., Riccomini, C., Simões, M.G., Poiré, D.G., Strikis, N.M., Anelli, L.E., and Strikis, P.C., (2014). The puzzle assembled: Ediacaran guide fossil Cloudina reveals an old proto-Gondwana seaway. Geology 42(5), 391–394.

Webb, G.E., and Kamber, B.S. (2000). Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochimica et Cosmochimmica Acta 64, 1557–1565. http://dx.

Wei, W., Frei, R., Gilleaudeaub, G.J., Wei, G.Y., and Linga, H.F. (2018). Oxygenation variations in the atmosphere and shallow seawaters of the Yangtze Platform during the Ediacaran Period: Clues from Cr-isotope and Ce-anomaly in carbonates. Precambrian Research 313 :78–90.

Wei, H. Wang, X., Shi, X., Jiang, G., and Tang, D. (2019). Iodine content of the carbonates from the Doushantuo Formation and shallow ocean redox change on the Ediacaran Yangtze Platform, South China. Precambrian Research, 322: 160–169.

Zhao, C., Shi, M., Feng, Q., Ye, Y., Khan, M. Z., and Feng, F. (2020). New study of microbial mats from the Mesoproterozoic Jixian Group, North China: Evidence for photosynthesis and oxygen release, Precambrian Research, 344: 105-734, ISSN 0301-9268,



2021-09-21 — Actualizado el 2022-01-04

Cómo citar

Arrouy, M. J., Gómez-Peral, L., Penzo, V. ., Ferreyra, C. ., & Poiré, D. G. . (2022). Fossil bubble structure related to microbial activity coeval with the middle Ediacaran Oceanic Oxygenation Event in the Tandilia System . Latin American Journal of Sedimentology and Basin Analysis, 28(2), 101-120. Recuperado a partir de



Volumen especial