Conductos de arena (sand pipes) como potenciales indicadores de sismicidad en la Formación Casa Grande, Noroeste Argentino
Palabras clave:
estructuras de deformación en sedimentos blandos, Paleógeno, sismitas, escape de fluidos, Cordillera OrientalResumen
En depósitos fluviales de la Formación Casa Grande (Eoceno medio; Cordillera Oriental, Jujuy, Argentina) se reconocieron una serie de estructuras de deformación en sedimento blando (soft-sediment deformation structures (SSDS)) cuya génesis podría estar asociada a movimientos sísmicos (sismitas). Dicha unidad ha sido vinculada a los primeros estadios de evolución de la cuenca de antepaís andina en la transición entre la Puna y la Cordillera Oriental. El presente trabajo se centra particularmente en describir e interpretar estructuras discordantes a la estratigrafía entendidas como conductos de arena (sand pipes) y discutir los procesos vinculados a su formación. Estas estructuras se caracterizan por una morfología de embudo invertido y se destacan por sus dimensiones de escala métrica. Asociadas a los conductos de arena se reconocieron estructuras como laminación disturbada, pilar y plato, diques clásticos y calcos de carga. Considerando los rasgos de las estructuras se interpreta como mecanismos formadores de las mismas los procesos de licuefacción y fluidización. De acuerdo con las características del depósito y de las estructuras, su presencia en intervalos estratigráficos restringidos, la continuidad lateral, la repetición vertical, el contexto geológico y la similitud con estructuras producidas por sismos recientes, se propone eventos sísmicos como el mecanismo desencadenante de la deformación.
Citas
Alfaro, P., Delgado, J., Estevez, A., Molina, J. M., Moretti, M. y Soria, J. M. (2002). Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, Southern Spain). International Journal of Earth Sciences, 91, 505–513. doi: https://doi.org/10.1007/s00531-001-0241-z
Allen, J. R. L. (1977). The possible mechanics of convolute lamination in graded sand beds. Journal of the Geological Society, 134(1), 19–31. doi: https://doi.org/10.1144/gsjgs.134.1.0019
Allen, J. R. L. (1982). Sedimentary Structures. Their Character and Physical Basis. Developments in Sedimentology. Elsevier.
Allen, J. R. L. y Banks, N. L. (1972). An Interpretation and Analysis of Recumbent Folded Deformed cross Bedding. Sedimentology, 19(3–4), 257–283. doi: https://doi.org/10.1111/j.1365-3091.1972.tb00024.x
Bastin, S. H., Quigley, M. C., Bassett, K., y Green, R. A. (2013). Characterisation of modern and paleo-liquefaction features in eastern Christchurch, NZ following the 2010-12 Canterbury earthquake sequence [Resumen en congreso]. 19th NZGS Geotechnical Symposium, Queenstown, New Zealand.
Berra, F. y Felletti, F. (2011). Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sedimentary Geology, 235(3–4), 249–263. doi: https://doi.org/10.1016/j.sedgeo.2010.08.006
Bezerra, F. H. R., da Fonseca, V. P., Vita-Finzi, C., Lima-Filho, F. P. y Saadi, A. (2005). Liquefaction induced structures in Quaternary alluvial gravels and gravelly sediments, NE Brazil. Engineering Geology, 76(3–4), 191–208. doi: https://doi.org/10.1016/j.enggeo.2004.07.007
Boll, A. y Hernández, R. (1986). Interpretación estructural del área de Tres Cruces. Boletín de Informaciones Petroleras, 3(7), 2–14.
Bond, M. y López, G. M. (2014). Los mamíferos de la Formación Casa Grande (Eoceno) de la Provincia de Jujuy, Argentina. Ameghiniana, 32(3), 301–309. https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/2284
Carrapa, B., Trimble, J. y Stockli, D. (2011). Patterns and timing of exhumation and deformation in the eastern cordillera of NW Argentina revealed by (U-Th)/He thermochronology. Tectonics, 30(3). doi: https://doi.org/10.1029/2010TC002707
Chan, M. A., Hasiotis, S. T. y Parrish, J. T. (2019). Enigmatic clastic pipe swarms and implications for fluidization dynamics in aeolian deposits. Sedimentology, 66(2), 513–535. doi: https://doi.org/10.1111/sed.12491
Coutand, I., Cobbold, P., de Urreiztieta, M., Gautier, P., Chauvin, A., Gapais, D., Rossello, E., y López Gamundi, O. (2001). Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics, 20(2), 210–234. doi: https://doi.org/10.1029/2000TC900031
Cristiani, C., Matteini, M., Mazzuoli, R., Omarini, R. y Villa, I. M. (2005). Petrology of Late Jurassic - Early Cretaceous Tusaquillas and Abra Laite-Aguilar Plutonic complexes (Central Andes, 23°05`S–66°05`W): a comparison with therift-related magmatism of NW Argentina and E Bolivia. En P. Comin-Chiaramonti y C. Barros Gomez (Eds), Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Plataform (pp. 213–241). Editora da Universidade de Sao Paulo.
Deraco, M. V. (2013). Los leontínidos (Mammalia, Notoungulata) del Eoceno del Noroeste Argentino. Relaciones filogenéticas, implicancias cronológicas y aspectos tafonómicos [Tesis Doctoral no publicada]. Universidad Nacional de Tucumán.
Deraco, M. V., Powell, J. E. y López, G. (2008). Primer leontínido (Mammalia, Notoungulata) de la Formación Lumbrera (Subgrupo Santa Bárbara, Grupo Salta-Paleógeno) del Noroeste argentino. Ameghiniana, 45(1), 83–91.
Deynoux, M., Proust, J. N., Durand, J. y Merino, E. (1990). Water-transfer cylindrical structures in the Late Proterozoic eolian sandstones in the Taoudeni Basin, West Africa. Sedimentary Geology, 66(3–4), 227–242. doi: https://doi.org/10.1016/0037-0738(90)90061-W
Draganits, E., Grassemann, B. and Schmid, H. P. (2003). Fluidization of pipes and spring pits in a Gondwana barrier-island environment: groundwater phenomenon, paleo-seisimicity or a combination of both. En A. J. Maltman, y C. K. Morley (Eds.), Subsurface Mobilization (pp. 109–121). Geological Society of London, Special Publication 216. doi: https://doi.org/10.1144/GSL.SP.2003.216.01.08
Draganits, E. y Janda, C. (2003). Subaqueous artesian springs and associated spring pits in a Himalayan Pond. Boreas, 32(2), 436–442. doi: https://doi.org/10.1111/j.1502-3885.2003.tb01096.x
Espinoza, N., Melchor, R. N. y del Papa, C. (2020). Sand pipes in eolian deposits as recorders of Andean deformation in the Miocene Angastaco Formation, northwest Argentina. Journal of South American Earth Sciences, 103, Article 102730. doi: https://doi.org/10.1016/j.jsames.2020.102730
Fernández, J., Bondesio, P. y Pascual, R. (1973). Restos de Lepidosiren paradoxa (Osteichthyes, Dipnoi) de la Formación Lumbrera (Eoceno, Eoceno?) de Jujuy. Consideraciones estratigráficas, paleoecológicas y paleozoogeográficas. Ameghiniana, 10(2), 152–172. Recuperado a partir de https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/1409
Foix, N., Paredes, J. M. y Giacosa, R. E. (2008). Paleo-earthquakes in passive margin settings, an example from the Paleocene of the Golfo San Jorge Basin, Argentina. Sedimentary Geology, 205(1–2), 67–78. doi: https://doi.org/10.1016/j.sedgeo.2008.02.002
Frey, S. E., Gingras, M. K., y Dashtgard, S. E. (2009). Experimental studies of gas-escape and water-escape structures: mechanisms and morphologies. Journal of Sedimentary Research, 79(11), 808–816. doi: https://doi.org/10.2110/jsr.2009.087
Gihm, Y. S., Kim, S. W., Ko, K., Choi, J. H., Bae, H., Hong, P. S., Lee, Y., Lee, H., Jin, K., Choi, S., Kim, J. C., Choi, M. S., y Lee, S. R. (2018). Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang earthquake. Geosciences. Journal, 22(6), 871–880. doi: https://doi.org/10.1007/s12303-018-0051-y
Gladstone, C., McClelland, H. L., Woodcock, N. H., Pritchard, D., y Hunt, J. E. (2018). The formation of convolute lamination in mud?rich turbidites. Sedimentology, 65(5), 1800–1825. doi: https://doi.org/10.1111/sed.12447
González, M. A., Tchilinguirian, P., Pereyra, F., Ramallo, E. y González, O. E. (2004). Hoja Geológica 2366-IV Ciudad de Libertador General San Martín, provincias de Jujuy y Salta, escala 1:250.000 (Boletín 274). Instituto de Geología y Recursos Minerales, SEGEMAR.
Grier, M., Salfity, J. A. y Allmendinger, R. W. (1991). Andean reactivation of the Cretaceous Salta rift, northwestern Argentina. Journal of South American Earth Sciences, 4(4), 351–372. doi: https://doi.org/10.1016/0895-9811(91)90007-8
Hanks, T. C. (1992). Small earthquakes, tectonic forces. Science, 256(5062), 1430-1432. doi: 10.1126/science.256.5062.1430
Henríquez, S., DeCelles, P. G., Carrapa, B., Hughes, A. N., Davis, G. H. y Alvarado, P. (2020). Deformation history of the Puna plateau, Central Andes of northwestern Argentina. Journal of Structural Geology, 140, 104133. doi: https://doi.org/10.1016/j.jsg.2020.104133
Herrera, C. M., Powell, J. y del Papa, C. (2012). Un nuevo Dasypodidae (Mammalia, Xenarthra) de la Formación Casa Grande (Eoceno) de la provincia de Jujuy, Argentina. Ameghiniana, 49(2), 267–271. doi: https://doi.org/10.5710/AMGH.v49i2(502)
Hurst, A., Cartwright, J. A. y Duranti, D. (2003). Fluidization structures produced by upward injection of sand through a sealing lithology. En P. Van Rensbergen, R. R. Hillis, A. J. Maltman y C. K. Morley (Eds.), Subsurface Sediment Mobilization (pp. 123–137). Geological Society of London, Special Publication 216. doi: https://doi.org/10.1144/GSL.SP.2003.216.01.09
Hurst, A., Scott, A. y Vigorito, M. (2011). Physical characteristics of sand injectites. Earth-Science Reviews, 106(3–4), 215–246. doi: https://doi.org/10.1016/j.earscirev.2011.02.004
Insel, N., Grove, M., Haschke, M., Barnes, J. B., Schmitt, A. K. y Strecker, M. R. (2012). Paleozoic to early Cenozoic cooling and exhumation of the basement underlying the eastern Puna plateau margin prior to plateau growth. Tectonics, 31(6). doi: https://doi.org/10.1029/2012TC003168
Jolly, R. J. H. y Lonergan, L. (2002). Mechanisms and controls on the formation of sand intrusions. Journal of the Geological Society, 159(5), 605–617. doi: https://doi.org/10.1144/0016-764902-025
Kley, J., Rosello, E., Monaldi, C. y Habighorst, B. (2005). Seismic and field evidence for selective inversion of Cretaceous normal faults, Salta rift, northwest Argentina. Tectonophysics, 399(1–4), 155-172. doi: https://doi.org/10.1016/j.tecto.2004.12.020
Lapiana, A. (2021). Evolución de los sistemas fluviales en la región de antepaís Paleocena–Neógena en la región de Sierra Aguilar – Tres Cruces, Noreste Argentino [Tesis Doctoral no publicada]. Universidad Nacional de Córdoba.
Lapiana, A., Petrinovic, I. A., del Papa, C. E., Montero López, C. y Brod, J. A. (2023). Intra-basin Early Miocene volcanism at the Northern Puna-Eastern Cordillera boundary, province of Jujuy, Argentina. Journal of South American Earth Sciences, 130, 104581. doi: https://doi.org/10.1016/j.jsames.2023.104581
López Steinmetz, R. L. y Galli, C. I. (2015). Hydrological change during the Pleistocene-Holocene transition associated with the Last Glacial Maximum-Altithermal in the eastern border of Northern Puna. Andean Geology, 42(1), 1–19. Recuperado a partir de http://www.redalyc.org/articulo.oa?id=173936233001
López Steinmetz, R. L., Salvi, S., Sarchi, C. y Santamans, C. (2020). Lithium and brine geochemistry in the salars of the Southern Puna, Andean plateau of Argentina. Economic Geology, 115(5), 1079–1096. doi: https://doi.org/10.5382/econgeo.4754
Lowe, D. R. (1975). Water escape structures in coarse-grained sediments. Sedimentology, 22(2), 157–204. doi: https://doi.org/10.1111/j.1365-3091.1975.tb00290.x
Lowe, D. R. y LoPiccolo, R. D. (1974). The Characteristics and Origins of Dish and Pillar Structures. Journal of Sedimentary Research, 44(2), 484–501.
Mon, R. (1976). The structure of the eastern border of the Andes in northwestern Argentina. Geologische Rundschau, 65, 211–222. doi: https://doi.org/10.1007/BF01808464
Mon, R. y Drozdzewski, G. (1999). Estructura doble vergente en los Andes del Norte Argentino. Revista de la Asociación Geológica Argentina, 54(1), 3–8.
Mon, R., Mena, R. y Amengual, R. (1996). Plegamiento cenozoico del basamento proterozoico de la Cordillera Oriental del norte Argentino. Revista de la Asociación Geológica Argentina, 51(3), 213-223.
Monaldi, C. R., Salfity, J. A. y Kley, J. (2008). Preserved extensional structures in an inverted Cretaceous rift basin, northwestern Argentina: Outcrop examples and implications for fault reactivation. Tectonics, 27(1). doi: https://doi.org/10.1029/2006TC001993
Montenat, C., Barrier, P., Philippe, Ott D?estevou P. y Hibsch, C. (2007). Seismites: An attempt at critical analysis and classification. Sedimentary Geology, 196(1–4), 5–30. doi: https://doi.org/10.1016/j.sedgeo.2006.08.004
Montero López, C., del Papa, C., Hongn, F., Strecker, M. R. y Aramayo, A. (2018). Synsedimentary broken-foreland tectonics during the Paleogene in the Andes of NW Argentine: new evidence from regional to centimeter-scale deformation features. Basin Research, 30(1), 142–159. doi: https://doi.org/10.1111/bre.12212
Montero López, C., Hongn, F., López Steinmetz, R. L., Aramayo, A., Pingel, H., Strecker, M. R. y Bianchi C. (2020). Development of an incipient paleogene topography between the present?day eastern Andean plateau (Puna) and the eastern cordillera, southern central Andes, NW Argentina. Basin Research, 33(2), 1194–1217. doi: https://doi.org/10.1111/bre.12510
Moretti, M., Alfaro, P., Caselles, O. y Cañas, J. A. (1999). Modeling seismites with a digital shaking table. Tectonophysics, 304(4), 369–383. doi: https://doi.org/10.1016/S0040-1951(98)00289-3
Moretti, M. (2000). Soft-sediment deformation structures interpreted as seismites in middle-late Pleistocene aeolian deposits (Apulian foreland, southern Italy). Sedimentary Geology, 135(1–4), 167–179. doi: https://doi.org/10.1016/S0037-0738(00)00070-1
Moretti, M., Soria, J. M., Alfaro, P. y Walsh, N. (2001). Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, Southern Spain). Facies, 44, 283–294. doi: https://doi.org/10.1007/BF02668179
Moretti, M. y Sabato, L. (2007). Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant'Arcangelo Basin (Southern Italy): Seismic shock vs. overloading. Sedimentary Geology, 196(1–4), 31–45. doi: https://doi.org/10.1016/j.sedgeo.2006.05.012
Mount, J. F. (1993). Formation of fluidization pipes during liquefaction: Examples from the Uratanna Formation (Lower Cambrian), South Australia. Sedimentology, 40(6), 1027–1037. doi: https://doi.org/10.1111/j.1365-3091.1993.tb01378.x
Neuwerth, R., Suter, F., Guzman, C. A. y Gorin, G. E. (2006). Soft-sediment deformation in a tectonically active area: The Plio-Pleistocene Zarzal Formation in the Cauca Valley (Western Colombia). Sedimentary Geology, 186(1–2), 67–88. doi: https://doi.org/10.1016/j.sedgeo.2005.10.009
Obermeier, S. F. (1996). Use of liquefaction-induced features for paleoseismic analysis. An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, 44(1–4), 1–76. doi: https://doi.org/10.1016/S0013-7952(96)00040-3
Obermeier, S. F., Olsonc, S. M. y Green, R. A. (2005). Field occurrences of liquefaction-induced features, a primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology, 76(3-4), 209–234. doi: https://doi.org/10.1016/j.enggeo.2004.07.009
Owen, G. (1987). Deformation processes in unconsolidated sands. En M. E. Jones, y R. M. F. Preston (Eds.), Deformation of Sediments and Sedimentary Rocks (pp. 11–24). Geological Society of London, Special Publication 29. doi: https://doi.org/10.1144/GSL.SP.1987.029.01.02
Owen, G. (1995). Soft-sediment deformation in upper Proterozoic Torridonian sandstones (Applecross Formation) at Torridon, northwest Scotland. Journal of Sedimentary Research, 65(3a), 495–504. doi: https://doi.org/10.1306/D4268108-2B26-11D7-8648000102C1865D
Owen, G. (2003). Load structures: gravity-driven sediment mobilization in the shallow subsurface. En P. Van Rensebergen, R. R. Hillis, A. J. Maltman y C. K. Morley (Eds.), Subsurface Sediment Mobilization (pp. 21–34). Geological Society of London, Special Publication 216. doi: https://doi.org/10.1144/GSL.SP.2003.216.01.03
Owen, G. y Moretti, M. (2011). Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology, 235(3–4), 141–147. doi: https://doi.org/10.1016/j.sedgeo.2010.10.003
Pingel, H., Strecker, M. R., Alonso, R. N. y Schmitt, A. K. (2013). Neotectonic basin and landscape evolution in the Eastern Cordillera of NW Argentina, Humahuaca Basin (~ 24° S). Basin Research, 25(5), 554–573. doi: https://doi.org/10.1111/bre.12016
Ramos, V. A. y Folguera, A. (2009). Andean flat-slab subduction through time. En J. B. Murphy, J. D. Keppie y A. J. Hynes (Eds.), Ancient Orogens and Modern Analogues (pp. 31–54). Geological Society of London, Special Publication 327. doi: https://doi.org/10.1144/SP327.3
Reineck, H. E. y Singh, I. B. (1980). Penecontemporaneous Deformation Structures. En Depositional Sedimentary Environments. Springer Study Edition. doi: https://doi.org/10.1007/978-3-642-81498-3_8
Rodríguez-Fernández, L. R., Heredia, N., Seggiaro, R. E. y González, M. A. (1998). Estructura andina de la cordillera oriental en el área de la quebrada de Humahuaca, provincia de Jujuy, NO de Argentina. Trabajos de Geología, (21), 321–332. doi: https://doi.org/10.17811/tdg.21.1999.321-333
Rodríguez-Pascua, M. A., Calvo, J. P., De Vicente, G. y Gómez-Gras, D. (2000). Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology, 135(1–4), 117–135. doi: https://doi.org/10.1016/S0037-0738(00)00067-1
Rossetti, D. (1999). Soft-sediment deformation structures in late Albian to Cenomanian deposits, Sào Luis Basin, northern Brazil: evidence for paleoseismicity. Sedimentology, 46(6), 1065–1081. doi: https://doi.org/10.1046/j.1365-3091.1999.00265.x
Ross, J. A., Peakall, J. y Keevil, G. M. (2011). An integrated model of extrusive sand injectites in cohesionless sediments. Sedimentology, 58(7), 1693–1715. doi: https://doi.org/10.1111/j.1365-3091.2011.01230.x
Ross, J. A., Peakall, J. y Keevil, G. M. (2014). Facies and flow regimes of sandstone-hosted columnar intrusions: Insights from the pipes of Kodachrome Basin State Park. Sedimentology, 61(6), 1764–1792. doi: https://doi.org/10.1111/sed.12115
Salfity, J. A. y Marquillas, R. A. (1994). Tectonic and sedimentary evolution of the Cretaceous-Eocene Salta Group basin, Argentina. En J. A. Salfity (Ed.), Cretaceous tectonics of the Andes (pp. 266–315). Earth Evolution Sciences, Springer. doi: https://doi.org/10.1007/978-3-322-85472-8_6
Sánchez, M. L., Asurmendi, E. y Armas, P. (2013). Subgrupo Río Colorado (Grupo Neuquén): registros de paleosismicidad en la cuenca de antepaís andina, cuenca Neuquina, provincias de Neuquén y Río Negro. Revista de la Asociación Geológica Argentina, 70(1), 96–114. Recuperado a partir de https://revista.geologica.org.ar/raga/article/view/494
Schillizzi, R., Luna, L. y Falco, J. I. (2010). Estructuras de deformación (¿sismitas?) en la Formación Río Negro, Provincia de Río Negro, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 17(1), 17–32. Recuperado a partir de https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/175
Siks, B. C. y Horton, B. K. (2011). Growth and fragmentation of the Andean foreland basin during eastward advance of fold-thrust deformation, Puna plateau and Eastern Cordillera, northern Argentina. Tectonics, 30(6). doi: https://doi.org/10.1029/2011TC002944
Tapia, M. J., Farrell, E. E., Mautino, L. R., del Papa, C., Barreda, V. D. y Palazzesi, L. (2023). A snapshot of mid Eocene landscapes in the southern Central Andes: Spore-pollen records from the Casa Grande Formation (Jujuy, Argentina). PLoS ONE, 18(4), Article e0277389. doi: https://doi.org/10.1371/journal.pone.0277389
Tsuchida, H. y Hayashi, S. (1971). Estimation of liquefaction potential of sandy soils [Conference presentation abstract]. Third Joint Meeting US-Japan Panel on Wind and Seismic Effects, Tokio.
Turner, J. C. y Mon, R. (1979). Cordillera oriental. En J. C. Turner (Ed.), Geología Regional Argentina (pp. 57–94). Segundo Simposio de Geología Regional Argentina, Academia Nacional de Ciencias.
Wheatley, D. F., Chan, M. A. y Sprinkel, D. A. (2016). Clastic pipe characteristics and distributions throughout the Colorado Plateau: Implications for paleoenvironment and paleoseismic controls. Sedimentary Geology, 344, 20–33. doi: https://doi.org/10.1016/j.sedgeo.2016.03.027
Zappettini, E.O. (1989). Geología y metalogénesis de la región comprendida entre las localidades de Santa Ana y Cobres, provincias de Jujuy y Salta. (Tesis Doctoral, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales). Biblioteca Digital Exactas. Recuperado a partir de http://hdl.handle.net/20.500.12110/tesis_n2236_Zappettini
##submission.downloads##
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Mario Albertengo, Cecilia del Papa, Ayelén Lapiana
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.