Meandering tidal-fluvial channels and lag concentration of terrestrial vertebrates in the fluvial- tidal transition of an ancient estuary in Patagonia.


  • Roberto A. Scasso Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 1º Piso (1428), Ciudad Autónoma de Buenos Aires, Argentina - CONICET.
  • María Teresa Dozo CENPAT - CONICET. Boulevard Brown Nº 2915, Puerto Madryn, Chubut, Argentina.
  • José I. Cuitiño Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 1º Piso (1428), Ciudad Autónoma de Buenos Aires, Argentina - CONICET.
  • Pablo Bouza CENPAT - CONICET. Boulevard Brown Nº 2915, Puerto Madryn, Chubut, Argentina.

Palabras clave:

Fluvial-tidal transition, Miocene, Sedimentology, Taphonomy, Patagonia.


The La Pastosa beds constitute a nice example of sediments deposited in the highly meandering reach of the fluvial-tidal transition within an estuary, developed at the top of the “Rionegrense” stage, a marine-estuarine sequence of late Miocene age from Patagonia. Sedimentary facies include channel lags rich in mud intraclasts; cross-bedded sandstones with mud drapes and “set-climber” ripples; heterolithic and herringbone bedding; and inclined heterolithic stratification (IHS), and suggest a strong tidal influence. Tidal facies together with paucity of bioturbation and marine fossils indicate that sedimentation took place mainly in brackish tidal-fluvial channels, bounded by deposits formed in transgressive conditions at the base and at the top of the succession. Channel lag intraformational conglomerates are product of collapse of the cutbank due to erosion in the active margin of lateral migrating meandering channels that eroded adjacent muddy tidal flats and salt marshes. Cross- bedded sandstones were accumulated above the conglomerates, forming subtidal sand dunes in the deeper parts of the channels and IHS was formed in point bars. Discontinuities at the base of the channels are the result of the entire channel-system lateral migration, whereas discontinuities capped by small mud pebbles at the base of large IHS sets are the result of seasonally increased run-off and widening of the channels. Alternation of sandy and muddy IHS suggests periodical changes in the position of the turbidity maximum due to seasonal variation of fluvial discharge, in good agreement with the seasonal climate in Patagonia during the late Miocene. IHS sets dipping alternatively to the north and south indicate lateral migration of the east-west running, high-sinuosity channels in the tightly meandering reach of the tidal-fluvial transition. The well preserved vertebrate fauna of Huayquerian mammal age is dominated by the hydrocherid Cardiatherium patagonicum together with whistling ducks and loricariid fishes. This fauna inhabited out-of-channel, freshwater, low-energy restricted environments, like marshes and ponds where the carcasses accumulated and underwent diagenetic fossilization. Repeated lateral migration of meandering channels caused erosion of these deposits and the bones were exhumed and incorporated into the channels, and finally concentrated in channel lags after short transport. Combination of fossilization in a low-energy environment and concentration after short transport in meandering channels make the fluvial-tidal transition “first class” deposits for prospecting vertebrate fossils. In spite of exhumation and transport, vertebrate fossil association closely reflects the environments adjacent to the channels. Excellent preservation is more related to rapid burial than to the energy level of the environment of final accumulation.


Allen, G.P., 1991. Sedimentary processes and facies in the Gironde estuary: a recent model for macrotidal estuarine systems. In D.G. Smith, G.E. Reinson, B.A. Zaitlain and R.A. Rahmani (Eds.), Clastic Tidal Sedimentology. Canadian Society of Petroleum Geologists, Memoir 16:29-40.

Allen, G.P., H.C. Salomon, P. Bassoullet, Y. du Penhoat and C. de Grandpre, 1980. Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sedimentary Geology 26:69-90.

Ashley, G.M., 1990. Classification of large-scale subaqueous bedforms: a new look at an old problem. Journal of Sedimentary Petrology 60:160-172.

Barreda, V.D. and L. Palazzesi, 2007. Patagonian vegetation turnovers during the Paleogene–early Neogene: origin of arid- adapted floras. The Botanical Review 73:31-50.

Behrensmeyer, A.K., 1975. The taphonomy and paleoecology of Plio?Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Bulletin of the Museum of Comparative Zoology 146:473-578.

Bergovist, L., E.B. de Almeida and H.I. de Araújo Júnior, 2010. Tafonomia da assembleia fossilífera de mamíferos da “Fenda 1968”, Bacia de São José de Itaboraí, Estado do Rio de Janeiro, Brasil. Revista Brasilera de Paleontología 14:75-86.

Bridges, P.H. and M.R. Leeder, 1976. Sedimentary model for intertidal mudflat channels, with examples from the Solway Firth, Scotland. Sedimentology 23:533-552.

Choi, K.S., R.W. Dalrymple, S.S. Chun and S.P. Kim, 2004. Sedimentology of modern, inclined heterolithic stratification (IHS) in the macrotidal Han River delta, Korea. Journal of Sedimentary Research 74:677-689.

Cione, A.L., M.M. Azpelicueta, J.R. Casciotta and M.T. Dozo, 2005. Tropical freshwater teleosts from Miocene beds of Eastern Patagonia, Southern Argentina. Geobios 38:29-42.

Cladera, G., E. Ruigomez, E. Ortiz-Jaureguizar, M. Bond and G. López, 2004. Tafonomía de la Gran Hondonada (Formación Sarmiento, Edad-Mamífero Mustersense, Eoceno Medio), Chubut, Argentina. Ameghiniana 41:315-330.

Cuitiño, J.I., R.A. Scasso, M.T. Dozo and P. Bouza, 2012. Diversidad y ciclicidad de estructuras heterolíticas mareales en paleoestuarios del Mioceno tardío de Península Valdés (Chubut). XIII Reunión Argentina de Sedimentología, Actas:64- 65, Salta.

Dalrymple, R.W. and K. Choi, 2007. Morphologic and facies trends through the fluvial–marine transition in tide- dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews 81:135-174.

Dalrymple, R.W. and B.A. Zaitlin, 1994. High-resolution sequence- stratigraphy of a complex, incised valley succession, the Cobequid Bay–Salmon River estuary, Bay of Fundy, Canada. Sedimentology 41:1069-1091.

Dalrymple, R.W., E.K. Baker, P.T. Harris and M. Hughes, 2003. Sedimentology and stratigraphy of a tide-dominated, foreland– basin delta (Fly River, Papua New Guinea). In F.H. Sidi, D. Nummedal, P. Imbert, H. Darman and H.W. Posamentier (Eds.), Tropical Deltas of Southeast Asia–Sedimentology, Stratigraphy, and Petroleum Geology. SEPM Special Publication 76:147- 173.

de Mowbray, T., 1983. The genesis of lateral accretion deposits in recent intertidal rnudflat channels, Solway Firth, Scotland. Sedimentology 30:425-435.

de Raaf, J.F.M., J.R. Boersma and A. van Gelder, 1977. Wave- generated structures and sequences from a shallow marine succession, Lower Carboniferous, County Cork, Ireland. Sedimentology 24:451-483.

del Río, C.J., 2000. Malacofauna de las Formaciones Paraná y Puerto Madryn (Mioceno marino, Argentina): su origen, composición y significado bioestratigráfico. In F.G. Aceñolaza and R. Herbst (Eds.), El Neógeno de Argentina, Serie Correlación Geológica 14:77-101.

del Río, C.J., 2004. Tertiary marine molluscan assemblages of eastern Patagonia (Argentina): a biostratigraphic análisis. Journal of Paleontology 78:1097-1122.

del Río, C.J., S. Martínez and R.A. Scasso, 2001. Nature and origin of spectacular marine Miocene shell–beds of northeastern Patagonia (Argentina). Paleoecological and bathymetric significance. Palaios 16:3-25.

Dozo, M.T., P. Bouza, A. Monti, L. Palazzesi, V. Barreda, G. Massaferro, R.A. Scasso and C. Tambussi, 2010. Late Miocene continental biota in Northeastern Patagonia (Península Valdés, Chubut, Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 297:100-106.

Eberth, D.A., 1996. Origin and significnce of mud-filled incised valleys (Upper Cretaceous) in southern Alberta, Canada. Sedimentology 43:459-477.

Embry, A. F., 1995. Sequence boundaries and hierarchies: problems and proposals. In R.J. Steel, V.L. Felt, E.P. Johannessen and C. Matthiew (Eds.), Sequence-stratigraphy on the Northwest European Margin. Norsk Petroleumsforening, Special Publication 5:1-11. Amsterdam.

Feruglio, E., 1949. Descripción Geológica de la Patagonia. Dirección General de Yacimientos Petrolíferos Fiscales, 3 Tomos, T1:1-323; T2:1-349; T3:1-331. Buenos Aires.

Haller, M.J., 1979. Estratigrafía de la región al poniente de Puerto Madryn, provincia del Chubut, República Argentina. VII Congreso Geológico Argentino Actas I:285-297, Neuquén.

Haller, M.J., A.J. Monti and C. Meister, 2001. Hoja Geológica 4363–1, Península de Valdés, provincia del Chubut. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Boletín 266:1-25.

Herrera, E.A., V. Salas, E.R. Congdon, M.J. Corriale and Z. Tang- Martínez, 2011. Capybara social structure and dispersal patterns: variations on a theme. Journal of Mammalogy 92:12- 20.

Kidwell, S.M., 1986. Models for fossil concentrations: Paleobiologic implications. Paleobiology 12:6-24.

Kirby, M.X., 2001. Differences in growth rate and environment between Tertiary and Quaternary Crassostrea oysters. Paleobiology 27:84-103.

Lettley, C. and S.G. Pemberton, 2004. Speciation of McMurray Formation inclined heterolithic strata: Varying depositional character along a riverine estuary system. Core Conference CD, Canadian Society of Petroleum Geologists, Annual Meeting, Calgary.

Lettley, C.D., S.G. Pemberton, M.K. Gingras, M.J. Ranger and B.J. Blakney, 2005. Integrating sedimentology and ichnology to shed light on the system dynamics and paleogeography of an ancient riverine estuary. In J.A. MacEachern, K.L. Bann, M.K. Gingras and S.G. Pemberton (Eds.), Applied Ichnology. SEPM Short Course Notes 52:144-162.

Malumián, N., 1999. La sedimentación en la Patagonia extraandina. In R. Caminos (Ed.), Geología Argentina. Anales del Instituto de Geología y Recursos Minerales, Buenos Aires, vol. 29:557-578.

Malumián, N. and V. Masiuk, 1973. Asociaciones foraminiferológicas fósiles de la República Argentina. V Congreso Geológico Argentino, Actas III:433-453, V. Carlos Paz.

Martínez, S. and C. del Río, 2002. Las provincias malacológicas miocenas y recientes del Atlántico sudoccidental. Anales de Biología 24:121-130.

Masiuk, V., D. Becker and A. García Espiasse, 1976. Micropaleontología y sedimentología del Pozo YPF Ch.PV es-1 (Península de Valdez) Provincia del Chubut, República Argentina. Importancia y correlaciones. ARPEL 24, Yacimientos Petrolíferos Fiscales, 22 pp.

Mossop, G.D. and P.D. Flach, 1983. Deep channel sedimentation in the Lower Cretaceous McMurray Formation, Athabasca Oil Sands, Alberta. Sedimentology 30:493-509.

Musial, G., I. Reynaud, M.K. Gingras, H. Féniès, R. Labourdette and O. Parize, in press. Subsurface and outcrop characterization of large tidally influenced point bars of the Cretaceous McMurray Formation (Alberta, Canada). Sedimentary Geology, doi:10.1016/j.sedgeo.2011.04.020.

Palazzesi, L. 2008. Palinología de las Formaciones Gaiman y Puerto Madryn en el área de Península Valdés (noreste del Chubut): edad, correlación y ambiente de sedimentación. PhD thesis, University of Buenos Aires, Argentina (unpublished).

Palazzesi, L. and V. Barreda, 2004. Primer registro palinológico de la Formación Puerto Madryn, Mioceno de la provincia del Chubut, Argentina. Ameghiniana 41:355-362.

Plink-Björklund, P. and R. Steel, 2010. Incised valleys on an Eocene coastal plain and shelf, Spitsbergen - part of a linked shelf-slope system. In R.W. Dalrymple, D.A. Leckie and R.W. Tillman (Eds.), Incised Valleys in Time and Space, SEPM Special Publication 85:281-307.

Puckett, T.M., 1994. New ostracoda species from an upper cretaceous oyster reefs, northern gulf coast plain, U.S.A. Journal of Paleontology 68:1321-1335.

Pufahl, P.K. and N. James, 2006. Monospecific Pliocene oyster buildups, Murray Basin, South Australia: Brackish water end member of the reef spectrum. Palaeogeography, Palaeoclimatology, Palaeoecology 233:11-33.

Ranger, M.J. and S.G. Pemberton, 1992. The sedimentology and ichnology of estuarine point bars in the McMurray Formation of the Athabasca Oil Sands deposit, northeastern Alberta, Canada. In S.G. Pemberton (Ed.), Applications of Ichnology to Petroleum Exploration. SEPM Core Workshop 17:401-421.

Reineck H.E. and I.B. Singh, 1980. Depositional sedimentary environments. Springer, Berlin, 549 pp.

Rogers, R.R. and S.M. Kidwell, 2000. Associations of vertebrate skeletal concentrations and discontinuity surfaces in terrestrial and shallow marine records: a test in the Cretaceous of Montana. The Journal of Geology 108:131-154.

Scasso, R. and C.J. del Río, 1987. Ambientes de sedimentación y proveniencia de la secuencia marina del Terciario Superior de la región de Península Valdés. Revista de la Asociación Geológica Argentina 42:291-321.

Scasso, R.A., L.N. Castro and O.R. Tofalo, 2000. Phosphogenesis, sequence-stratigraphy and paleoceanography in Gaiman Formation phosphates, Argentina. 31st International Geological Congress, Río de Janeiro, Brasil. Symposium of Authigenic minerals in marine and continental environments. Abstract 2344.

Scasso, R.A., J.M. McArthur, C.J. del Río, S. Martínez and M.F. Thirlwall, 2001. 87Sr/86Sr late Miocene age of fossil molluscs in the “Entrerriense” of the Valdés Peninsula (Chubut, Argentina). Journal of South American Earth Sciences 14:319– 329.

Smith, D.G., 1987. Meandering river point bar lithofacies models: modern and ancient examples compared. In F.G. Ethridge,

R.M. Flores and M.D. Harvey (Eds.), Recent Developments in Fluvial Sedimentology. SEPM Special Publication 39:83-91.

Smith, D.G., 1988. Modern point bar deposits analogous to the Athabasca Oil Sands, Alberta, Canada. In P.L. de Boer, A. van Gelder and S.D. Nio (Eds.), Tide-Influenced Sedimentary Environments and Facies. Reidel Publishing Company:417-432.

Stenzel, H.B., 1971. Oysters. In R.C. Moore and C. Teichert (Eds.), Treatise on Invertebrate Paleontology. The Geological Society of America, Lawrence. N1224 pp.

Swift, D.J.P., S. Phillips and J.A. Thorne, 1991. Sedimentation on continental margins. V: Parasequences. In D.J.P. Swift, G.F. Oertel, R.W. Tillman and J.A. Thorne (Eds.), Shelf sand and sandstone bodies: geometry facies and sequence stratigraphy: International Association of Sedimentologists, Special Publication 8:369-392.

Tambussi, C., 2011. Palaeoenvironmental and faunal inferences based on the avian fossil record of Patagonia and Pampa: what works and what does not. Biological Journal of the Linnean Society 103:458-474.

Thomas, R.D., D.G. Smith, J.M. Wood, J. Visser, E.A. Calverly- Range and E.H. Koster, 1987. Inclined heteolithic stratification- terminology, description, interpretation and significance. Sedimentary Geology 53:123-179.

van den Berg, J.H., J.R. Boersma and A. van Gelder, 2007. Diagnostic sedimentary structures of the fluvial-tidal transition zone - Evidence from deposits of the Rhine and Meuse. Netherlands Journal of Geosciences - Geologie en Mijnbouw 86:287-306.

Voorhies, M.R., 1969. Taphonomy and population dynamics of an early Pliocene Vertebrate fauna, Knox County, Nebraska. Contributions to Geology, Special Paper 1:69 pp.

Woods, C.A. and W. Kilpatrick, 2005. Infraorden Hystricognathi. In D.E. Wilson and D.M. Reeder (Eds.), Mammal species of the World: a taxonomic and Geographic reference, 3º ed., Vol. 2. The Johns Hopkins University Press, Baltimore, Maryland:1538-1600.

Zinsmeister, W., L.G. Marshall, R. Drake and G. Curtis, 1981. First radioisotope (potassium-argon) age of marine Neogen Río Negro Beds in northeastern Patagonia, Argentina. Science 212:440.




Cómo citar

Scasso , R. A. ., Dozo , M. T. ., Cuitiño , J. I. ., & Bouza, P. . (2021). Meandering tidal-fluvial channels and lag concentration of terrestrial vertebrates in the fluvial- tidal transition of an ancient estuary in Patagonia. Latin American Journal of Sedimentology and Basin Analysis, 19(1), 27-45. Recuperado a partir de



Trabajos de investigación